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Long-range ordered mesoporous silica SBA-15 of high surface area and 

uniform pore size was obtained by hydrothermal synthesis using tetraethyl 

orthosilicate (TEOS) as silica source and Pluronic P123 copolymer as surfactant in 

acidic media. Functionalization of SBA-15 with 3-aminopropyltriethoxysilane 

(APTES) via sol-gel reaction gave NH2-SBA-15 which was qualitatively confirmed 

with FTIR spectroscopy. Meanwhile, tetra-(p-chlorophenyl)porphyrin (TClPP) was 

synthesized using modified Alder-Longo method. Insertion of zinc(II) into metal-free 

TClPP was achieved using zinc(II) acetate to obtain ZnTClPP. The successful 

complexation of zinc(II) in porphyrin molecule was supported by the disappearance 

of two Q bands and the presence of Soret band in the UV-Vis spectra. ZnTClPP was 

also characterized using 1H NMR spectroscopy, MALDI-TOF MS and elemental 

CHN analysis. Heterogeneous catalyst NH2-SBA-15-ZnP was synthesized by 

incorporating various loadings of the ZnTClPP into NH2-SBA-15 and characterized 

by DR-UV Vis spectroscopy, N2 adsorption-desorption isotherm, SAXS, FESEM 

and TEM. The DR-UV Vis spectra of NH2-SBA-15-ZnP exhibit absorption peaks 

similar to free ZnClTPP indicating that porphyrin molecule is confined in the SBA-

15. Furthermore, the intensity of Soret and Q bands increases with increasing of 

ZnTClPP loading. The hexagonal mesopore structure of SBA-15 was still intact after 

the modification treatments as shown by the SAXS patterns, FESEM and TEM 

images. The catalytic activity of homogeneous catalysts ZnClTPP was compared 

with the heterogeneous NH2-SBA-15-ZnP in the epoxidation of limonene in the 

presence of H2O2 oxidant. GC-FID and GC-MS detection analysis showed that the 

activity of heterogeneous catalysts NH2-SBA-15-ZnP were active in the formation of 

limonene oxide as main product. The limonene conversion (34.72%) when catalyzed 

by free ZnTClPP is comparable to NH2-SBA-15-ZnP (26.24%) with ~95% 

selectivity. The catalytic activity of NH2-SBA-15-ZnP increases with the increase of 

ZnTClPP loading on the SBA-15 support. For the liquid-phase epoxidation of 

limonene over NH2-SBA-15-ZnP catalyst in acetonitrile, the optimum conditions for 

the highest percentage of limonene conversion was at reaction temperature of 80°C 

during 24 h and using H2O2 as oxidant. 
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 Silika mesoliang SBA-15 bertertib julat jauh dengan luas permukaan tinggi 

dan saiz liang yang seragam telah diperolehi secara sintesis hidroterma menggunakan 

tetraetilortosilikat (TEOS) sebagai sumber silika dan kopolimer Pluronic P123 

sebagai surfaktan dalam medium berasid. Pemfungsian SBA-15 dengan 3-

aminopropiltrietoksisilana (APTES) melalui tindak balas sol-gel menghasikan NH2-

SBA-15 yang disahkan secara kualitatif menggunakan spektroskopi FTIR. Manakala, 

tetra-(p-klorofenil)porfirin (TClPP) telah disintesis menggunakan kaedah Alder-

Longo terubahsuai. Penyelitan zink(II) ke dalam TClPP tanpa logam terhasil 

menggunakan zink(II) asetat untuk menghasilkan ZnTClPP. Kejayaan 

pengkompleksan zink(II) dengan molekul porfirin telah disokong oleh kehilangan 

dua jalur Q dan kehadiran jalur Soret pada spektrum UV-Vis. ZnTClPP juga telah 

diciri menggunakan spektroskopi 1H NMR, spektroskopi MALDI-TOF MS dan 

analisis unsur CHN. Mangkin heterogen NH2-SBA-15-ZnP telah disintesis dengan 

memasukkan pelbagai muatan ZnTClPP ke dalam NH2-SBA-15 berfungsikan amino 

dan dicirikan menggunakan spektroskopi DR-UV Vis, analisis isoterma penjerapan-

penyahjerapan N2, SAXS, FESEM dan TEM. Spektrum DR-UV-Vis bagi NH2-SBA-

15-ZnP mempamerkan puncak penyerapan yang serupa dengan ZnTClPP bebas yang 

menunjukkan molekul porfirin terkurung dalam SBA-15. Tambahan lagi, keamatan 

jalur Soret dan Q turut meningkat dengan peningkatan muatan ZnTClPP. Struktur 

heksagon mesoliang SBA-15 masih utuh selepas perawatan pengubahsuaian seperti 

yang ditunjukkan oleh pola SAXS, imej FESEM dan TEM. Aktiviti pemangkinan 

untuk mangkin homogen ZnTClPP telah dibandingkan dengan mangkin heterogen 

NH2-SBA-15-ZnP dalam pengepoksidaan limonena dengan kehadiran oksidan H2O2. 

Analisis pengesanan GC-FID dan GC-MS menunjukkan mangkin heterogen  NH2-

SBA-15-ZnP  adalah aktif dalam pembentukan oksida limonena sebagai produk 

utama. Penukaran limonena adalah lebih kurang sama (34.72%) apabila 

dimangkinkan oleh TClPP bebas jika dibandingkan dengan NH2-SBA-15-ZnP 

(26.24%) dengan ~95% kepilihan. Aktiviti pemangkinan NH2-SBA-15-ZnP 

bertambah  dengan pertambahan  muatan ZnTClPP ke atas penyokong SBA-15. Bagi 

pengoksidaan fasa cecair limonena menggunakan mangkin NH2-SBA-15-ZnP dalam 

pelarut asetonitril, keadaan optimum untuk menghasilkan peratus penukaran 

limonina tertinggi adalah pada suhu tindak balas  80°C dalam tempoh 24 jam dan 

menggunakan H2O2 sebagai oksidan  
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CHAPTER 1 

 

 

 

INTRODUCTION 

1.1  Background of the Study 

In the past recent years (Adam and Ooi, 2012; Madadi and Rahimi, 2012: 

Sabour et al., 2013), there are extensive researches on green and environmental 

friendly catalysts. Apart from being selective and effective, this type of catalyst will 

fulfil the needs from economic, political and environmental perspectives. Green 

catalyst would increase the efficiency of the reaction, and beneficiary to the 

environment through minimization of waste and dangerous byproducts (Anastas et 

al., 2000). One of the well-recognized environmental catalysts is biomimetic catalyst 

such as metalloporphyrins. Natural metalloporphyrins complexes were found in 

chlorophyll, heme and cytochrome P450 which play the major roles in oxygen and 

electron transport as well as for storage. They have been widely produced 

synthetically in mimicking the natural occurrence bio-system. 

Various types of metals such Co, Zn, Cu, Mn and Ru can be inserted into the 

porphyrin cavity by using various metal salts. The metalloporphyrin formed by 

removal of the inner NH protons that act as multidentate ligand, proficient enough to 

bind metal ions through multiple sites (Wijesekera and Dolphin, 1994). Zinc metal 

with d10 configuration could form a complex with the porphyrin because Zn2+ ion in 

medium size is suited well to the porphine core (Inamo et al,.1997). In addition, zinc 
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porphyrin possess an immobilized Lewis acid binding side at Zn2+ and four 

additional urea -NH group (Boa et al,. 2007).  

There have been many research on application of metalloporphyrin in this 

field such as enzyme mimicking catalyst, ion receptor (Bao et al., 2007), adsorbent 

for metal removal (Jeong et al,. 2010) and catalysis. In catalysis, these metal 

complexes provide competent environment for alkene epoxidation and alkane 

hydroxylation to react. Epoxidation of stibene and cyclooctane in the presence of 

iron(III)-(meso-tetrakis(fluorophenyl)porphyrin using various oxidants have been 

reported (Nam et al., 2000). The epoxidation with m-chloroperbenzoic acids 

(MCPBA) gave the highest conversion of the epoxides products but the reaction take 

place at very low temperature of -45°C.  

So far, metalloporphyrins have been widely studied as homogeneous catalyst. 

It is reported that the porphyrin ring is liable to oxidative self-destruction, and 

oxidation of hydrophobic organic substrates by these water-soluble complexes is 

difficult since the active catalytic species remains dissolved in the aqueous phase 

(Rosa et al., 2000). Moreover, it is difficult to separate the catalyst and the product of 

homogeneous catalysis, result in increasing the cost of production.  

In contrast, heterogenous catalyst has the advantage of easy separation of the 

catalyst and products by means of filtration. Therefore, in order to overcome this 

problem, the metalloporphyrins have to be transformed into heterogeneous catalyst. 

These metalloporphyrins can be heterogenized by immobilizing them to a solid 

support, hence directly tuning the liquid phase oxidation from homogeneous to 

heterogeneous. In heterogeneous catalysis, the metalloporphyrin acts as active site 

that can be adsorbed physically and bonded chemically to the surface active groups 

of the solid support.  

The immobilization of metalloporphyrin possibly can avoid molecular 

aggregation or molecular self-destruction reaction which leads to deactivation of 
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catalytic metalloporphyrin active species. In addition, the improvement to 

heterogeneous catalysts offers an easy way to recover them from reaction media and 

reused back (Nakagaki et. al., 2000).  

Many supports have been used for immobilization of metalloporphyrin. Some 

of them are clays, silica gel, resin, alumina and modified porous silica (Adam, and 

Ooi, 2012). In this study, modified mesoporous silica SBA-15 were utilized as the 

support for porphyrin molecule due to its large pore size (up to 30 nm) and high 

surface area (>1000 m2 g-1). This silicate material is thermally and hydrothermally 

stable, chemically resistant to organic solvent, possesses larger unit cell, well defined 

morphologies as well as thicker pore size compared to MCM-41 or MCM-48. 

Mesoporous material SBA-15 also possesses long range ordered structure that make 

it suitable for application as catalyst support (Zhang et al,. 2005).  

However, if the metalloporphyrin complex were to attach directly to SBA-15 

by weak physical adsorption such as hydrogen bonding, hydrophobic attraction or 

electrostatic interaction, the adsorbed complex would leach out of the mesoporous 

channels easily. By covalently bonding the metalloporphyrin on reactive group such 

as amine, epoxide or thiol group inside the pore, the immobilization stability can be 

significantly enhanced since it is solid, it can be recycled (Zhao et. al., 2012).  

Amino-modified mesoporous materials have attracted considerable attention 

among the variety of organo-functionalized meseporous materials. The amino- 

functionality is useful for many practical applications including heterogenous base 

catalysis, toxic arsenate ion trapping, biomolecule immobilization, as covalent spacer 

in the mobilization of catalytically active metal complexes and as a supports for 

metallic nanoparticles (Sujandi et al., 2006).  

In this research, the SBA-15 surface was modified using 3-

aminopropyltriethoxysilane (APTES) to produce a terminal amine group (-NH2). The 

proposed structure of zinc(II) porphyrin complex immobilized in amino-
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functionalized mesoporous silica SBA-15 is shown schematically in Figure 1.1. The 

amine groups were found to be beneficial for coupling of protein porphyrin to the 

surface of the silica materials. (Chong and Zhoa, 2003) (Serwika et al., 2004). The 

zinc porphyrin complex contains electron withdrawing group substituents on the 

meso-aryl rings, and it para-chloro substituent allow the immobilization via covalent 

bond with amines group from functionalized mesoporous silica (Nakagaki et al., 

2014). 

 
 

Figure 1.1 Proposed structure of zinc(II) porphyrin complex immobilized in 

amino-functionalized mesoporous silica SBA-15 

The epoxidation of alkene is an oxidation process whereby an oxygen atom is 

added into the compounds. The olefin epoxidation reaction has fascinated researchers 

because of the usefulness of epoxide as intermediate agents in organic synthesis, 
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since the epoxide can be further transformed by ring opening, to form highly 

functionalized products (Oliveira et al., 2009). Limonene epoxidation product, 1,2-

limonene oxide covered many purposes in synthetic chemistry. In addition, the 

oxygenated compounds derived from terpene and natural terpenoid are crucial in 

manufacture of fragrance, flavours and food additives (Casuscelli et al., 2004).  

Epoxidation have been studied extensively but the organic peracids like m-

chloroperbenzoic acid are still widely used as epoxidation agents. By using peracids 

as oxidants, the reaction produces acid waste directly as sub-product beside the 

desired oxidation products. The peracid is also a matter of concern in safety issues 

(Yi et al., 2009; Wade, 2006; Grigoropoulou et al., 2003). 

Therefore, the present work explores the potential of synthetic zinc(II) 

porphyrin complex immobilized into the amino functionalized SBA-15 as 

heterogeneous catalyst for liquid phase epoxidation of limonene. The catalytic 

activity and recyclability of the catalysts were investigated. Reaction parameter such 

as temperature, oxidant and reaction time were then optimized.  

1.2 Problem Statement 

Metalloporphyrins attract a great interest to the researchers in catalytic study 

since the establishment of the well-known iron porphyrin-based cyctochrome P450 

with high capability in catalyzing many oxidation transformations. However, 

synthetic metalloporphyrin are extensively used as homogenous catalyst. As 

compared to heterogeneous catalyst, homogeneous catalyst usually is more active, 

but it is often difficult to separate the catalyst from reaction mixture resulting in 

higher cost in commercial processes. Thus, it is highly desirable to improve the 

metalloporphyrin catalytic properties, which possess equally the high selectivity of 

homogeneous catalyst and convenience of heterogeneous catalyst. In order to 
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accomplish this goal, one of the ways is to immobilize the homogeneous catalyst in 

high surface area solid support. SBA-15 is chosen despite of MCM-41 because SBA-

15 has larger mesopore, from 3nm up to 15nm as reported by Zhao et al. (1998) 

compared to MCM-41 only 2nm to 3nm pore size (Schmidt et al., 1995). The large 

pore obtained from the copolymer surfactant used as the template. The larger pore 

size of SBA-15 assist porphyrin complex to easily immobilized into the pore of 

SBA-15. Therefore, in this research, [tetra(p-chlorophenyl)porphyrinato]Zn(II) 

(ZnTClPP) immobilized in amino-functionalized SBA-15 was synthesized as the 

recyclable heterogeneous epoxidation catalyst. 

In this study, the epoxidation of limonene was used as model reaction to 

evaluate the catalytic activity of zinc porphyrin supported functionalized SBA-15 

materials. This reaction is of interest because the product, 1,2-limonene oxide are 

essential in various fields such as the flavours and fragrance industries. In addition, 

most of the known oxidation reactions are not industrial tolerance due to its low 

selectivity and waste generation. A new trend involving the oxidation process is the 

use of environmentally friendly oxidant and catalyst. The recycled catalyst and clean 

H2O2 as oxidant will lead to safer and unpolluted oxidation procedures. Therefore, in 

this study the reactivity of synthesized ZnTClPP complex incorporated into amino 

functionalized SBA-15 was investigated in epoxidation of limonene. 

1.3 Objectives of Study 

The objectives of this study are: 

i. To synthesize [tetra-(p-chlorophenyl)porphyrinato] Zn(II) (ZnTClPP) 

complex. 

ii. To synthesize (3-aminopropyl)triethoxysilane (APTES) 

functionalized SBA-15. 
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iii. To immobilize ZnTClPP complex into APTES functionalized SBA-

15. 

iv. To evaluate and optimize the catalytic activity of ZnTClPP complex 

immobilized into APTES functionalized SBA-15 in liquid phase 

epoxidation of limonene using H2O2 as oxidant in acetonitrile.  

1.4 Scope of Study 

The zinc(II) porphyrin complex of ZnTClPP was first synthesized using 

Alder-Longo modified method and characterized using Fourier Transform Infrared 

(FTIR), Ultraviolet-Visible Spectroscopy (UV-Vis), 1H Nuclear Magnetic Resonance 

spectroscopy (NMR), CHN elemental analysis and Matrix-Assisted Laser Desorption 

Ionization Time-Of-Flight Mass Spectrometer (MALDI-TOF MS). 

Subsequently, SBA-15 was synthesized and functionalized with APTES 

before ZnTClPP was immobilized into functionalized SBA-15. The immobilized 

material then was characterized using Small-Angle X-ray Scattering (SAXS), 

Diffuse Reflectance UV- Vis Spectroscopy (DR UV-Vis), Field Emission Scanning 

Electron Spectroscopy (FESEM), Transmission Electron Microscopy (TEM) and N2 

Adsorption- Desorption Isotherm Analysis.  

The catalytic activity and reusability of the heterogenized zinc(II) porphyrin 

complex were compared with the homogeneous ZnTClPP in the epoxidation of 

limonene. Reaction parameters such as temperature, type of oxidant and reaction 

time were optimized. The products of limonene epoxidation were analyzed using Gas 

Chromatography- Flame Ionization Detector (GC-FID) and Gas Chromatography- 

Mass Spectrometry (GC-MS) 
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