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ABSTRACT 

The trend in applying unconventional aircraft configurations for aerodynamic 

efficiency has caused some problems in flight dynamics especially in aircraft stability. 

Although, the mathematical modelling of flight dynamics has been established, however the 

accuracy of aerodynamic data, normally in the form of aerodynamic derivatives may affect 

the actual motion responses of the aircraft in design process for stability and control 

simulation. The aerodynamic derivatives may differ from small to large aircraft motion 

amplitude and may also vary in transient conditions. Clear that it is important to establish 

methods in estimating the aerodynamic derivatives accurately. This research work presents 

the effort in introducing a reliable method in estimating the aerodynamic derivative for V-tail 

aircraft in lateral motions focusing on Dutch roll mode using wind tunnel testing technique. 

Two methods of estimation are presented, first the steady-state measurement by static wind 

tunnel test and second transient measurement by dynamic oscillatory test. CAMAR UTM-

UAV has been used in this study for several V-tail configurations with dihedral angles of 

35°, 47°, 55° (later use V35, V47, V55 respectively) including a conventional tail for 

reference. In static wind tunnel test, the static derivatives of 𝐶𝑦𝛽 , and 𝐶𝑛𝛽were measured for 

different tail configurations within ±25° yaw angle with range of wind speed from 10 m/s to 

40 m/s. Meanwhile in dynamic oscillatory test, the transient condition was simulated at range 

of reduced frequencies, 𝐾𝑚 of 0.05 - 0.25 by varying oscillation frequency through various 

spring stiffness, 𝐾𝑠. Hence, the dynamic oscillatory test was measured within yaw angle 

(±10°). Static wind tunnel test results showed that within ±10° yaw angle, all configurations 

possess positive yaw stability. When compare with conventional tail, found that V47 and 

V55 have higher degree of stability except for V35. For yaw angles more than ±10°, the V-

tail showed better stability as it reaches neutral stability later than the conventional tail. 

However, measurements by static wind tunnel tests indicated there are discrepancies in 

representing the derivatives during transient condition and unable to measure dynamic 

derivatives of 𝐶𝑦𝑟 and 𝐶𝑛𝑟. Meanwhile, aerodynamic derivatives of 𝐶𝑦𝛽, 𝐶𝑛𝛽, 𝐶𝑦𝑟 and 𝐶𝑛𝑟 

were measured in the dynamic oscillatory test. The result from the dynamic oscillatory test 

are then compared with static wind tunnel test results and presented in the form of 

amplification factor. Within tested reduced frequencies, 𝐶𝑛𝛽 measured dynamically for all V-

tail are more than static measured (amplification factor more than unity). This factor 

highlights the existence of the transient effects in the estimation of aerodynamic derivatives 

where it indicated the steady-state measurement underestimated the derivatives. At the same 

time, the steady-state derivative has also overestimated the aerodynamic damping in Dutch 

Roll simulation with crosswind input about 50%-90% depending on tail configurations. 

Meanwhile, through dynamic simulation using state-space equation of Dutch roll motion 

resulted the V55 has a higher sensitivity in response to crosswind followed by V47 and V35 

respectively.   
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ABSTRAK 

Tren penggunaan pesawat bukan konvensional untuk meningkatkan kecekapan 

aerodinamik telah menyebabkan masalah didalam dinamik penerbangan terutamanya 

kestabilan pesawat. Walaupun, model matematik telah diperkenalkan akan tetapi ketepatan 

data aerodinamik iaitu terbitan aerodinamik boleh memberi kesan kepada respon sebenar 

pesawat terutamanya semasa proses rekabentuk yang melibatkan kestabilan dan kawalan 

simulasi pesawat. Terbitan aerodinamik berbeza dari gerakan kecil ke gerakan amplitud 

besar dan juga berubah-ubah didalam keadaan fana. Ini menunjukkan kepentingan untuk 

memperkenalkan kaedah anggaran yang terbaik diperlukan untuk terbitan aerodinamik. 

Kajian ini akan memperkenalkan kaedah yang boleh diguna pakai untuk menganggarkan 

terbitan aerodinamik untuk pesawat berekor V semasa gerakan melintang terutamanya mod 

olengan Belanda menggunakan kaedah ujian terowong angin. Dua kaedah anggaran telah 

diperkenalkan iaitu pengukuran mantap melibatkan ujian terowong angin statik dan 

pengukuran fana oleh ujian dinamik berayun. Model CAMAR UTM-UAV telah digunakan 

dalam kajian ini yang melibatkan beberape konfigurasi berekor V dengan sudut dwisatah 

35°, 47°, 55°(kemudian dikenali V35, V47 dan V55) termasuk ekor konvensional sebagai 

rujukan. Didalam ujian terowong angin statik, terbitan statik iaitu 𝐶𝑦𝛽, and 𝐶𝑛𝛽 telah diukur 

untuk konfigurasi ekor yang berlainan dalam julat sudut rewang ±25° dengan kelajuan angin 

dari 10 m/s hingga 40 m/s. Sementara itu, semasa ujian dinamik berayun, keadaan fana telah 

disimulasikan dalam julat frekuensi setara, 𝐾𝑚 0.05 - 0.25 dengan mempelbagaikan 

frekuensi berayun melalui beberapa pemalar spring, 𝐾𝑠. Oleh itu, pengukuran ujian dinamik 

berayun diukur didalam julat sudut rewang (±10°). Ujian terowong angin statik mendapati 

kesemua konfigurasi ekor mempunyai kestabilan rewang yang positif untuk sudut rewang 

±10°. Apabila dibandingkan dengan ekor konvensional, didapati V47 dan V55 mempunyai 

darjah kestabilan yang tinggi kecuali V35. Untuk sudut rewang yang lebih daripada ±10°, 

ekor V menunjukkan kestabilan yang lebih baik kerana lewat mencecah kestabilan neutral 

berbanding ekor konvensional. Walaubagaimanapun, pengukuran oleh ujian terowong angin 

statik mendapati percanggahan dalam terbitan semasa keadaan fana dan tidak dapat 

mengukur terbitan dinamik seperti 𝐶𝑦𝑟dan 𝐶𝑛𝑟. Sementara itu, terbitan 𝐶𝑦𝛽, 𝐶𝑛𝛽, 𝐶𝑦𝑟 dan 𝐶𝑛𝑟 

telah diukur didalam ujian dinamik berayun. Perbandingan hasil dari ujian dinamik berayun 

dan statik dibentangkan dalam bentuk faktor amplifikasi. Didapati 𝐶𝑛𝛽 yang diukur secara 

dinamik untuk semua konfigurasi ekor adalah lebih tinggi dari pengukuran statik (faktor 

amplifikasi melebihi satu). Ini menunujukkan kewujudan kesan fana didalam pengangaran 

terbitan aerodinamik dimana pengukuran mantap terkurang anggaran. Pada masa yang sama, 

terbitan mantap juga terlebih mengangar redaman aerodinamik sebanyak 50%-90% 

bergantung kepada konfigurasi ekor. Sementara itu, melalui simulasi dinamik menggunakan 

persamaan keadaan ruang didapati V55 mempunyai kestabilan yang tinggi untuk respon 

kepada angin lintang diikuti V47 dan V35. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

The external shape of an aircraft general arrangement is known as aircraft 

configuration.  Aircraft configuration design evolves based on mission requirements. 

Most of the aircraft configurations were designed to satisfy its mission requirements, 

technology advancements, rules and regulations set by aviation authorities.  

Development of unconventional aircraft configurations had started as early as 1930s, 

where most of the attempts were considered unsuccessful due to poor flying and 

handling qualities with subject to dangerous flight characteristics and were unsafe to 

fly.  Then in mid-1970s, the development of fly by wire flight control system 

technology made it possible to design unconventional aircraft configurations that are 

safe to fly and even have excellent handling qualities (Colgren and Loschke, 2002).  

These had caused the aircraft configuration design to develop from time to time and 

had led to the development of unmanned aircrafts (UAV) with various configurations 

that were designed to fulfil their specific missions, operations and requirements.  For 

example, Figure 1.1 shows the variation in aircraft configuration designs related to 

UAV. 

Basically, aircraft configuration design can be divided into three major phases 

which is conceptual design, preliminary design and detail design. The conceptual and 

preliminary design phases are called configuration development, which is the process 

prior to the freeze of the external shape. During the development of a new aircraft 

concept, the entire aircraft design phase has to be considered as each component is 
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related to other components of the aircraft as shown in Figure 1.2. Clearly one of the 

important elements to be considered is the stability and control part. This is related to 

the estimation of accurate aerodynamic stability derivatives which directly affected 

by the aircraft configurations.  Getting the derivatives correct would result in good 

stability and control at the earliest possible time.  This is important to avoid major 

changes during detail design phase and reduce the development risk as much as 

possible.  

In the conceptual design, the basic configuration arrangement, the size and 

weight and performance are all being determined through the decision making 

process and a selection technique (Raymer, 1992; Raymer, 2002; Sadraey, 2013). 

During preliminary design, an aircraft design concept is subjected to a continued 

refinements and optimizations (Raymer, 2002). Hence, any new feature of the 

aircraft must be studied in more detail, including the new testing methods to produce 

a more comprehensive detailed and accurate data. This new data should increase 

confidence in the new design. Otherwise, modifications would have been conducted 

with full knowledge of the new data. Since, the main objective is to freeze the 

configuration and to improve the confidence level that the new aircraft configuration 

will work (Raymer, 1992; Sadraey, 2013). There are numbers of disciplines related 

to the preliminary phase and one of them is the flight mechanics (Torenbeek, 1976; 

Etkin and Reid, 1996). The flight mechanics can be divided into five areas which are 

analysis of aircraft performance, stability and control, aircraft sizing, flight 

simulation and flight testing (Hull, 2007).  

 
Figure 1.1 Unconventional Aircraft Configuration (Parsch, 2007; Mortimer, 

2011; Official United States Air Force Website, 2004; Gibbs, 2016) 

(a) General Atomics Gnat 750 

(b) The Outlaw UAS 

(c) RQ-4 Global Hawk 

(d) Boeing’s X-48B Blended Wing Body 

(b) (a) 

(d) 

(c) 
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Figure 1.2 Design Spiral (Fielding, 1999) 

The design process becomes more challenging if unconventional 

configuration is applied in aircraft design. This is due to the fact that changing the 

external shape will consequently change the aerodynamic conditions of the aircraft 

hence the aerodynamic stability derivatives as well. In addition, most of the available 

analysis methods are based on conventional aircraft configurations especially related 

to the estimation of aerodynamic stability derivatives in the aircraft equations of 

motion such as through the semi-empirical method as in USAF-DATCOM and 

ESDU (Greenwell, 1998; Murphy and Klein, 2003; Greenwell, 2004; Murphy and 

Klein, 2011). The formulation assumed the aerodynamic forces and moments could 

be represented by differentiable functions and therefore expanded into Taylor Series 

with only the first order linear terms and is applicable for small perturbations.  There 

are known as stability and control derivatives (Murphy and Klein, 2003).  A good 

prediction of the aerodynamic stability and control derivatives at the preliminary 

phase is significant in getting accurate stability and control derivatives which would 

lead to good flying qualities and safe flights. 

The stability of the aircraft can be divided into two categories which is static 

and dynamic stabilities. The static stability is the initial tendency of an aircraft to 

return to its initial equilibrium state after being disturbed from its trim values while 

the dynamic stability is describing by the time taken to damp to half of its amplitude 

of disturbances (Nelson, 1998; Sadraey, 2013).  The new aircraft configuration 
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should possess dynamically stable state in order to have a good static stability 

(Nelson, 1998). 

 

Figure 1.3 (a) V-tail Beechcraft Bonanza V35 (Flight Training Blog, 2012) and 

(b) Bonanza Conventional Aircraft (Aircraft in Focus, 2016) 

An aircraft configuration consists of several major components which are 

fuselage, wing and tail. Each component has different functions. For instance, the 

conventional tail configuration consists of horizontal tail and vertical tail as in Figure 

1.3(b).  Both were used to control and direct the aircraft attitude and flight directions. 

The primary function of horizontal tail is to trim the aircraft longitudinally while 

vertical tail is related to directional stability (Sadraey, 2013). This is true for 

unconventional tail designs which are required to cater for both functions as to 

provide stability to the aircraft during flight.  Due to that reason, the tail is designed 

based on stability, control and trim requirements.  

Ever since the invention in aircraft design configurations had evolved with 

many innovations in empennage design configurations such as the tail configuration 

like T, V, H, +, Y, and inverted V.  It has been the subject of interest for many years 

due to the visible feature that distinguish various aircraft designs and potentially 

improve their aerodynamic performance.  The main improvements are due to the 

reduction in wetted surface area and the corresponding decrease in drag (Carrier and 

Gebhardt, 2005; Hoover et al., 2013). On the others hand, the uniqueness in tail 

design had caused a major selling point for Beech Model 35 Bonanza. There are 

efforts to completely remove the tail part like the B-2 aircraft as removing the tail 

(a) (b) 



5 

 

   

 

part will also help reduce radar detection (Colgren and Loschke, 2002). Figure 1.4 

shows variations of aircraft aft tail designs.   

 

Figure 1.4 Example of Variation of Aft Tail design (Sadraey, 2013) 

In this research work, the V-tail empennage configuration is used as a case 

study since it has potential aerodynamic benefits and a best compromise between 

tailless and conventional tail design (Carrier and Gebhardt, 2005; DeLuca et al., 

2004).  

There are frequent reports of cases of pilot’s complaints on the difficulties of 

flying the V-tail aircrafts.  There are also several reports of fatal accidents due to loss 

of control during flight especially related with lateral motion in gusty conditions 

(unsteady condition) (Landsberg, 1994; Imperial Aviation, 2003; Kroo, 2005; 

Collins, 2012). This is due to the asymmetrical flow deflect the aircraft path. Hence, 

cause an aircraft may had been flying outside the tested flight envelope causing 

difficulties in controlling the aircraft (Murch, 2007; Stenfelt and Ringertz, 2013; 

Kwatny et al., 2013). 

The problem can be studied by proper modelling of the aerodynamic forces 

and moments in the aircraft equation of motions to describe the aircraft motions and 

responses.   This could be done with good predictions of aerodynamic stability and 

control derivatives.  That is a basic problem in flight dynamics. Consequently, it is 

prudent to consider the accurate aerodynamic stability derivatives as an input for 
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aircraft dynamic simulation at the earliest design phase. This is due to the changes in 

the aircraft configuration will influence aircraft dynamic response. At the same time, 

help to improve the flight control system design by provide an accurate aerodynamic 

stability derivatives input (Stenfelt and Ringertz, 2013). Since, the aerodynamic 

stability derivatives of an aircraft represent the vehicle’s handling and flying 

qualities. It is important to develop a reliable method to estimate aerodynamic 

stability derivatives. 

The conventional approach to estimate the aerodynamic stability derivatives 

is through semi-empirical method (i.e Datcom, ESDU).  This method has been used 

for a long time as a preliminary estimation of aerodynamic stability derivatives 

especially related with conventional aircraft shape configuration (Nelson, 1998; 

O’Neill, 2000: Cook, 2013). Although this approach has been quite useful to flight 

dynamicist in predicting the characteristic for conventional aircraft, there is still a 

gap in obtaining accurate and reliable aerodynamics derivatives for unconventional 

aircraft which requires a refinement through wind tunnel test.  As the research work 

is using unconventional configuration, the semi empirical method is not expected to 

be able to correctly estimate the aerodynamic characteristics of the aircraft with 

higher confident level. On the other hand, the computational method (i.e.: CFD) is 

widely used nowadays for estimating the aerodynamic stability derivatives provided 

the geometry of the aircraft can be described in sufficient detail. The main 

disadvantages are that it is time consuming to get one derivative and the correct 

choice of computational algorithm is necessary (O’Neill, 2000; McDaniel et al., 

2009). Due to these reasons, a wind tunnel test is considered the safest way to 

estimate the aerodynamic stability derivatives.  However, most of the available wind 

tunnel tests techniques to estimate aerodynamic stability derivatives are based on 

steady-state measurements.  There is also still some gap in obtaining a reliable 

method of estimation of aerodynamic stability derivatives in transient condition 

especially within linear region (Mansor, 2006).  This is because in this condition, 

unsteady aerodynamic phenomena such as flow separation and vortex formation 

dominate the air flow surround the body. In such situation, force acted on the body 

will be much different from static and steady condition. As a result, the result may be 

either under predicted or over predicted. 
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Based on the issues discussed above, there is a clear need to conduct a further 

research related to the estimation of aerodynamic stability derivatives especially in 

transient conditions for unconventional aircraft shapes. 

1.2 Problem Statement   

Recent studies had shown that V-tail aircrafts have lateral directional stability 

problem due to the V-tail dihedral effect (Sadraey, 2008; Hoover et al., 2013).  This 

is due to the fact that the vertical surface was removed from the empennage design. 

The V-tail configuration created a couple effects to the directional stability of an 

aircraft especially when encountering side flow disturbances. This has created 

problems in determining accurate aerodynamic stability derivatives which affect the 

prediction of aircraft stability during design stage. Previous research had confirmed 

that the accurate estimation of dynamic derivative is also becoming significant to 

predict aircraft motions (Murch and Foster, 2007).  

The semi-empirical method depended on the external shape of the aircraft and 

was developed mainly for conventional tail aircrafts.  The assumptions had to be 

made for unconventional aircraft configurations to determine the area of the tail 

(Phillips, Hansen, and Nelson, 2006). For instances for the V-tail configuration, the 

resulting derivatives of 𝐶𝑛𝛽 have to be normalised to vertical and horizontal tail as to 

estimate it.  On the other hand, the estimation of 𝐶𝑛𝑟 is based on steady data which is 

not accurate as the 𝐶𝑛𝑟 is a function of time (Murch et al., 2007).  These had caused 

problems in estimating the accurate aerodynamic derivatives. 

Many researchers had works to improve the estimations by conducting static 

wind tunnel test. This experimental method was capable to obtain a greater fidelity 

than semi-empirical methods due to measurements made from real aerodynamic flow 

conditions. However, the discrepancy in static wind tunnel test is due to the 

interpretations of the aerodynamic stability derivatives are taken from the gradient of 

the graph plotting.  But only linear region (i.e: small yaw angles) have been consider 

characterising the directional stability of the aircraft and this data is known as quasi-
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static aerodynamic derivatives. A quasi-static aerodynamic derivative is an 

evaluation of aerodynamic stability derivatives at steady equilibrium condition and 

for small perturbation motions only. This technique in many cases had caused the 

underestimation of the aircraft response when aircraft is faced with an abrupt change 

in gusts or any other disturbances. As the aircraft goes into transient conditions or in 

higher yaw angles (i.e: nonlinear region) where the aerodynamic derivatives 𝐶𝑛𝛽 is 

no longer valid as a constant value as defined by the gradient from linear region 

(Cook, 1987).   

Due to that the estimation of aerodynamic stability derivatives has now 

reached a stage that it is believed the transient effects may in some instances be 

significant as the magnitude of the perturbation is increased and is also subject to 

transient aerodynamic loads.  The problem in estimating aerodynamic stability 

derivatives are normally encountered in combat aircrafts with highly manoeuvrability 

(Greenwell, 1998; Murphy and Klein, 2001; Green, Spence and Murphy, 2004; de 

Oliveira Neto, 2007; Murphy and Klein, 2011).  However, this does not mean that 

transport aircrafts do not encounter these conditions. A transport aircraft would 

encounter such conditions when the aircraft lost its control due to weather or system 

failures or even flying at higher angles of attack, causing the aircraft to fly in 

transient or unsteady flight regimes which is not well understood (Murch and Foster, 

2007; Belcastro and Foster, 2010; Jacobson, 2010; Boeing, 2015; International Air 

Transport Association, 2015). 

All the above discussions had pointed that there is a clear need for better 

aerodynamic stability derivatives estimation technique in order to understand the 

aircraft dynamic response of V-tail configuration with variation of V-tail dihedral 

angles (V35, V47, and V55) especially its effect on the stability of the aircraft during 

transient conditions and in the region of higher yaw angles (i.e: nonlinear region) as 

to improve the aerodynamic derivatives as an input parameter in the aircraft 

simulations at preliminary design phase.   
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1.3 Objective of the Study 

The main objective of this research work is to develop a reliable method in 

estimating the aerodynamic stability derivatives (𝐶𝑛𝛽 and 𝐶𝑛𝑟) for unconventional 

aircraft especially V-tail configuration in transient flight conditions through dynamic 

wind tunnel tests.  

Another subsequent objective of the research work is to optimise the selection 

of dihedral angle for V-tail aircraft configurations through wind tunnel testing at 

different dihedral angles (V35, V47 and V55) compared to the standard conventional 

configuration.  The different dihedral angles have been chosen for investigation 

because the dihedral factor is known to be a strong determinant to the sensitivity of 

directional stability. 

Finally, the work would continue to simulate a Dutch roll mode of the aircraft 

with the disturbance input of crosswind and lateral gust for each tail configuration.  

This work would determine the aircraft flying qualities within disturbance 

conditions. 

The three objectives can be summarised as: 

1. Development of dynamic wind tunnel test for accurate estimation of 

aerodynamic stability derivatives of aircraft in transient case. 

2. Optimization of V-tail dihedral angle for steady-state and transient 

cases. 

3. Modelling and simulation of aircraft Dutch roll motion under 

crosswind and lateral gust effect. 

1.4  Scope of the Study 

In order to achieve the three main objectives, the scope has been devise as 

listed: 
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1. Design and fabrication of 1:5 CAMAR UTM-UAV scale model where 

the tail part can be removed and installed with different tail 

configurations (i.e.: V-tail 35°, 47°, 55°and a conventional tail). The 

same model will be used in conventional static wind tunnel tests and 

dynamic oscillatory test. 

2. Two types of tests are executed in this research work, which are 

conventional static wind tunnel tests and dynamic yaw oscillations 

tests. 

3. The static wind tunnel tests was conducted by yawing the wind tunnel 

model within ±25° yawing angles with increments of 5°. The yawing 

angles are expected to cover both linear and nonlinear regions in yaw.  

Two derivatives were derived from static wind tunnel tests which are 

static 𝐶𝑛𝛽 and 𝐶𝑦𝛽. The study of effect of Reynolds number on 

aerodynamics stability derivatives is also included. 

4. The special dynamic test rig was designed and fabricated to operate in 

one degree of freedom in which the model is allowed to freely 

oscillate in the yaw axis. The dynamic tests cover the specific 

frequency range 0.2 to 2.0 Hz which equivalent to reduced 

frequency,𝐾𝑚 of 0.0166 to 0.1656 Hz based on fuselage length,𝑙𝐹𝑆 of 

2.5m and wind speeds from 0 to 40m/s.   Then the pilot-tests were 

performed as to evaluate the performance of the rig. Due to the 

constraint of rig design, the dynamic oscillatory test is able to measure 

the lower yawed angles only (linear region). The aerodynamic 

stability derivatives are then estimated by analysing the oscillatory 

time response. The response from the dynamic oscillatory tests is 

governed by the aerodynamic stiffness and damping which then 

represented the aerodynamic stability derivatives.   

5. The aerodynamic stability derivatives involved in this research work 

are related to lateral-directional motion which are aerodynamic 

stiffness, 𝐶𝑛𝛽 and aerodynamic damping, 𝐶𝑛𝑟. By shifting the location 

of the pivot point either backward or forward from the previous pivot 
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point, the side force derivatives, 𝐶𝑦𝛽 and side damping derivatives, 

𝐶𝑦𝑟 can be measured. However, the static wind tunnel test unable to 

measure the dynamic derivatives (𝐶𝑛𝑟and 𝐶𝑦𝑟). Thus, they are roughly 

estimated by applying the formulation in Nelson which originated 

from USAF-DATCOM (known as semi-empirical method). 

6. The simulation model with an input disturbance (consist of 

combination between crosswind and lateral gust) was developed for 

both steady-state measurement and transient measurement. The 

simulation model in steady-state measurement will cover the lower to 

higher yaw angles.   Meanwhile, the lower yaw angle simulation is 

then compared to the simulation model using transient measurements. 

This is to highlight an improvement of the modelling and simulations 

due to transient effects in the estimation of the aerodynamic 

derivatives as input parameters into the aircraft simulation.  

1.5  Significance of the Study 

The accurate estimation of aerodynamic stability derivatives become a 

challenge due to the rapid growth in aircraft configuration design. At the same time, 

the estimation using conventional static wind tunnel test was found to be inaccurate 

to describe the transient aerodynamic stability derivatives. By understanding the 

needs of the flight dynamicists and benefit of accurate estimation of derivatives has 

justifies the need for consideration of estimation of aerodynamic stability derivatives 

within transient condition. The new testing technique using dynamic oscillatory rig 

will introduce to cater the problem.  The results of the research work will suggest a 

correlation between steady-state measurement and transient measurement through 

Amplification Factor (AF). This study also serves as a future references and 

guidelines for researchers to take into consideration the transient aerodynamic loads 

in estimation of derivatives. 
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