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ABSTRACT 

 

 

 

 

 Recently, the discharge of p-chloroaniline (PCA) into the environment has gained 

much concern due to the toxicity and danger that PCA poses to the aquatic and human life. 

Photocatalytic degradation is one of the promising techniques to degrade organic pollutants as 

it is safe and economical for solving environmental problems. In this study, an electrochemical 

method was used to load copper oxide (CuO) nanoparticles (1-90 wt%) onto multi-wall carbon 

nanotubes (MWCNT). The catalysts were characterized by X-ray diffraction, nitrogen 

adsorption-desorption, electron spin resonance, Raman spectroscopy, transmission electron 

microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. 

The effect of CuO loading on the photodegradation of PCA under ultraviolet (UV) and visible 

(VIS) light irradiation system was investigated. Under UV light, a low amount of CuO was 

sufficient to provide a synergistic effect with MWCNT in the system. However, a higher 

loading of CuO was required to shift the adsorption spectrum toward the VIS light region. The 

degradation of PCA over the CuO/MWCNT catalysts under UV light was in the following 

order: 3 wt% CuO/MWCNT (96%) > 1 wt% CuO/MWCNT (82%) > 5 wt% CuO/MWCNT 

(76%), while under VIS light was 50 wt% CuO/MWCNT (97%) > 10 wt% CuO/MWCNT 

(92%) 90 wt% CuO/MWCNT (82%). It is presumed that the C–N moieties of PCA were 

chemisorbed on the catalyst prior to photodegradation. Studies on the effect of scavengers 

showed that hole (h+) was the main active species under the UV system, and electron (e−) for 
the VIS system. Under the UV system, based on the highest occupied molecular orbital 

(HUMO) and the lowest unoccupied molecular orbital (LUMO) potentials of both CuO and 

MWCNT, the electron (e−)‒hole (h+) transfer occurred between their conduction band (CB) 

and valence band (VB) that reduced the e−‒h+ recombination and enhanced the degradation as 

compared to bare CuO photocatalyst. On the other hand, surface defects and oxygen vacancies 

lowered the band gap energy of the catalyst and allowed for more excitation of e- under VIS 

light to produce hydroxyl radicals for enhanced degradation of PCA. The Langmuir–

Hinshelwood model verified the transformation of first to zero order kinetics model under the 

UV system upon the increasing initial concentration of PCA, and vice versa for the VIS 

system. This supported the fact that the higher energy of UV light urged the h+ to directly react 

with the PCA at VB and resulted in the transition from kinetic control to mass transfer 

limitation by increasing PCA molecules while the opposite shift occurred under the lesser 

energy of VIS light. Optimization using response surface methodology gave the highest 

degradation of PCA at the optimum condition of 11.02 mg L−1 using 0.45 g L−1 50 wt% 

CuO/MWCNT at pH 7.26. The obtained condition was reasonably close to the predicted value 

with 0.26% error. Remarkable mineralization results of PCA were attained by total organic 

carbon (89.1%) and biological oxygen demand (50.7%). Reusability studies showed that the 

catalysts were still stable even after five cycles. It is believed that the CuO/MWCNT catalyst 

has a great potential to degrade various types of organic pollutants for wastewater treatment. 
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ABSTRAK 

 

 

 

 

 Kebelakangan ini, pelepasan p-kloroanilin (PCA) ke alam sekitar menimbulkan 

kebimbangan kerana ketoksikan dan kesan bahaya PCA ke atas hidupan akuatik dan manusia. 

Degradasi fotobermangkin ialah salah satu daripada teknik yang berpotensi dalam 

mendegradasi pencemar organik kerana ia selamat dan jimat bagi menyelesaikan masalah 

alam sekitar. Kajian ini menggunakan kaedah elektrokimia untuk endapan nanozarah CuO (1-

90 % berat) pada nanotiub karbon dinding berlapis (MWCNT). Mangkin dicirikan melalui 

pembelauan sinar‒X, penyerapan-nyahjerapan nitrogen, resonan putaran elektron, 

spektroskopi Raman, mikroskopi transmisi-elektron, spektroskopi inframerah jelmaan Fourier 

dan spektroskopi fotoelektron sinar‒X. Kesan endapan CuO ke atas fotodegradasi PCA di 

bawah sistem penyinaran cahaya sinar ultralembayung (UV) dan sinar tampak (VIS) dikaji. 

Di bawah sinar UV, hanya sedikit jumlah CuO diperlukan bagi membekalkan kesan sinergistik 

dengan MWCNT di dalam sistem. Namun, endapan CuO yang lebih banyak diperlukan untuk 

mengalihkan spektrum penyerapan ke arah rantau cahaya VIS. Degradasi PCA oleh mangkin 

CuO/MWCNT di bawah cahaya UV adalah seperti aturan berikut: 3 % berat CuO/MWCNT 

(96%) > 1 % berat CuO/MWCNT (82%) > 5 % berat CuO/MWCNT (76%), manakala di 

bawah VIS 50 % berat CuO/MWCNT (97%) > 10 % berat CuO/MWCNT (92%) > 90 % berat 

CuO/MWCNT (82%). Anggapan bahawa moiti C–N PCA diserapkimia di atas mangkin 

sebelum fotodegradasi. Kajian ke atas kesan penghapus-sisa menunjukkan lubang (h+) 

merupakan spesies aktif utama di bawah sistem UV dan elektron (e-) bagi sistem VIS. Di 

bawah sistem UV, berdasarkan potensi penghunian orbital molekul tertinggi dan tidak 

penghunian orbital molekul terendah bagi kedua-dua CuO dan MWCNT, pemindahan elektron 

(e-)‒lubang (h+) berlaku di antara jalur pengaliran (CB) dan jalur valens (VB) yang 

menurunkan kombinasi semula e-‒h+ dan meningkatkan degradasi berbanding fotomangkin 

CuO terdedah. Walau bagaimanapun, kecacatan permukaan dan kekosongan oksigen 

merendahkan tenaga jurang jalur mangkin dan membenarkan lebih banyak pengujaan e- di 

bawah cahaya VIS bagi menghasilkan radikal hidroksil untuk mempertingkatkan degradasi 

PCA. Model Langmuir-Hinshelwood mengesahkan transformasi model kinetik dari tertib 

pertama hingga tertib sifar di bawah sistem UV melalui peningkatan kepekatan awal PCA, dan 

sebaliknya bagi sistem VIS. Ini menyokong kenyataan bahawa lebih tinggi tenaga cahaya UV 

mendesak h+ untuk bertindakbalas secara terus dengan PCA pada VB dan menyebabkan 

peralihan daripada kawalan kinetik kepada pembatasan pindah jisim dengan meningkatkan 

molekul PCA, manakala peralihan bertentangan diperoleh di bawah tenaga VIS yang kurang. 

Pengoptimuman menggunakan metodologi permukaan gerak balas menyebabkan degradasi 

tertinggi PCA dalam keadaan optima 11.02 mg L-1 menggunakan 0.45 g L-1 50 % berat 

CuO/MWCNT pada pH 7.26. Keadaan yang diperoleh hampir dengan nilai jangkaan dengan 

ralat 0.26%. Hasil penghabluran PCA yang luar biasa diperolehi melalui jumlah karbon 

organik (89.1%) dan keperluan oksigen biologi (50.7%). Kajian kebolehgunaan semula 

menunjukkan mangkin masih stabil selepas lima kitaran. Mangkin CuO/MWCNT 

menunjukkan keupayaan besar bagi mengdegradasi pelbagai jenis pencemar organik bagi 

perawatan air sisa. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Chlorinated p-Chloroaniline (PCA) is widely used as an intermediate of 

reaction during a variety of chemical manufacture, including agricultural chemicals, 

plastic, azo dyes and pigments, production of synthetic organic chemicals and 

polymers like polyurethanes, rubber additives, pharmaceuticals, cosmetic products, 

pesticides and herbicides, and drugs (Hussain et al., 2012). The widespread use of 

these compounds has resulted in their ubiquity in industrial effluents, sludge, and 

agriculture soils. As one of the persistent organic pollutants (POPs) and being widely 

distributed in the environment, PCA is a priority toxic pollutant listed in US EPA and 

EU legislation and imposes a serious risk on public health and the environment (Zhang 

et al., 2010; Liang et al., 2013). Several technologies such as biodegradation (Zhang 

et al., 2010; Hongsawat &Vangnai, 2011), radiochemical methods (Sanchez et al., 

2001), and adsorption (Bakhaeva et al., 2001) have been developed to degrade this 

compound. However, their applications are limited due to high cost and time-

consuming use, as well as production of secondary wastes of some persistent organic 

pollutants such as aniline derivative. 
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Over the past three decades, advanced oxidation processes (AOPs) have gained 

increasing attention as promising benign environmental processes for the elimination 

of organic or inorganic contaminants in water and wastewater (Selvarajan et al., 2017). 

This process involves simultaneous use of more than one oxidation process to 

accelerate the production of reactive hydroxyl free radicals. However, incomplete 

mineralization and non-selective target pollutants, as well as inappropriate operating 

conditions have prompted their combination with other AOPs such as photocatalysis, 

the addition of H2O2 or membrane technologies (Gil et al. 2017). In fact, 

heterogeneous photocatalytic degradation under ultraviolet (UV) or visible (VIS) light 

irradiation is a popular and an economical process that converts the pollutants to less 

harmful final products, which are carbon dioxide and water (Derikvandi & 

Nezamzadeh-Ejhieh, 2017). Besides, its capability to destruct pollutants at ambient 

temperature and pressure also becomes the reason for the researchers to increase their 

focus on this area. 

 

 

Among the catalysts used, TiO2 is the most popular one but fast electron–hole 

recombination always suppresses its efficiency. Hybridization of TiO2 with other 

nanometal oxides such as ZnO, Fe2O3, CuO, ZrO2, CdS, and SnO2 as well as 

supporting TiO2 on several mesoporous materials such as silica, zeolite and alumina 

have been among the efforts to lower the band gap, as well as to suppress the fast 

electron –hole recombination rate. In the past few decades, the explorations of various 

suitable photocatalysts for the removal of organic pollutants from wastewater have 

been done using various types of photocatalyst (Jalil et al., 2007; Ma et al., 2008; Jalil 

et al., 2013; Jusoh et al., 2014). However, their relatively low activity and low 

efficiency under VIS light irradiation limited their practical use in water treatment.  

 

 

CuO is one of the important narrow band gap semiconductors, which acts under 

VIS light driven. However, CuO can only absorb a small amount of solar spectrum in 

the UV region, which results in low photocatalytic efficiency (Pandiyarajan et al., 

2017). To enhance the efficiency, many studies have been performed to modify this 

metal oxide. Generally, there are several ways to improve the photocatalytic activity 

of such semiconductor: (i) increasing the surface area of metal oxide by synthesizing 



3 

 

nanosized materials, (ii) adding a support such as silica, alumina, zeolite, CNT, etc., 

(iii) creating a defect structure, and (iv) adding other metals or semiconductors. On the 

other hand, in term of safety, the maximum contaminant limit threshold for CuO was 

1.3 mg/L. Although there is a limit, considerable amount of the CuO usage needs to 

be controlled appropriately. 

 

 

In parallel with the first techniques, electrochemical method has been reported 

to have many advantages, particularly in the synthesis of nanoparticles materials. 

Previously, some literature reported a simple in situ electrochemical method for 

preparing various metal nanoparticle such as a-Fe2O3, CuO, and ZnO supported on 

zeolites and silica (Jaafar et al., 2012; Jalil et al., 2013; Jusoh et al., 2015). Besides the 

formation of metallic nanoparticles, metal ions incorporated in the supports were also 

discovered during electrolysis, resulting in photocatalysts with high potential for 

efficient decolorization of various dyes. 

 

 

Recently, carbon materials, particularly multi-walled carbon nanotubes 

(MWCNT), have also been used as excellent catalyst supports for various 

semiconductor photocatalysts due to their interesting features: (1) MWCNT have a 

large specific surface area, generally > 150 m2/g (Peigney et al., 2001). Heterogeneous 

catalysis degradation of aqueous pollutants is best modeled by the Langmuir–

Hinshelwood mechanism, which requires the adsorption of chemicals before the 

chemicals are degraded on the catalyst. The large specific surface area is helpful for 

the adsorption of pollutants. It should be noted that the specific surface area of 

MWCNT is smaller than that of AC, so the following merits of MWCNT are more 

important; (2) MWCNT could be easily functionalized with carbonyl and hydroxyl 

moieties via acid treatment, and these groups could be further modified to improve the 

adsorption affinity toward some specific chemicals, leading to “selective degradation” 

processes, like degradation of pollutants over benign species, and highly-toxic 

pollutants over low-toxic pollutants; (3) the uniform porous structure of MWCNT 

reduces the mass-transfer limitations of reactants from solution to active sites on the 

catalyst; (4) MWCNT have good thermal stability and resistance to acidic and basic 

media thus could be used in severe conditions (Ana et al., 2011; Dong et al., 2006). 
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The loading of MWCNT onto metal oxides such as ZnO, TiO2, Fe3O4, and 

Al2O3 is also able to alter the physicochemical properties of the catalysts and enhance 

the photocatalytic degradation of organic pollutants. However, information on the 

most important aspects addressing the behavior of individual metal ions in or on 

MWCNT, particularly in possible chemical interactions between both, is still lacking 

and is of interest. Other than that, the investigations generally focus on the low 

MWCNT amounts, which is below 20% (Ahmed et al., 2008). The high cost and dark 

color of MWCNT are most probably the main constraints to use high amounts of 

MWCNT photocatalyst. Nevertheless, due to the high demand of MWCNT, 

particularly for other commercial applications, a large scale production using various 

synthetic methods has been developed, and a cost-effective production from wastes 

has become a popular route nowadays (Bazargan & McKay, 2012). A large-scale 

production is defined as the production of 10,000 tons of MWCNT per annum (See & 

Harris, 2007).  

 

 

Herein, the study report a synthesis of various loadings of CuO supported onto 

MWCNT nanoparticles via electrolysis method. The physicochemical properties of the 

catalysts were investigated and the performance on photocatalytic degradation of PCA 

were tested under both UV and VIS light irradiation. The optimization process was 

also carried out using response surface methodology (RSM). The kinetic studies, the 

proposed structure of the catalyst, and the mechanism of degradation are also 

discussed. The mineralization, biodegradability, stability test, and other potential 

application of the catalyst were also performed. In fact, there have been only a few 

reports on the degradation of PCA via basic AOPs, including the use of ozone, 

photoinduced iron (III), and persulfate-activated with zero-valent iron (Sanchez et al., 

2002;  Mailhot et al.,  2004; Liang et al.,  2013). The outcomes from this report are 

believed to lead to the design of superior CNT-based catalysts for various applications. 
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1.2 Problem Statement and Hypothesis 

 

 

 In the last two decades the interest for water health protection greatly increased, 

also due to the increasing amount of pollutants introduced into the environment. 

Particular interest is devoted to PCA because of their recently recognised toxicity 

associated to their ubiquitous discharge. PCA was indentified as the principal raw 

materials presents in effluents derived from several chemical manufacture such rubber, 

dyes and pigmens, pharmaceuticals and drugs industries. It is detected in high 

concentration in these wastewaters. It is highly toxic to aquatic life and US 

Environmental Protection Agency (US EPA) has suggested an ambient limit in water 

of 262 mg/L, based on health effects (Sarasa et al. 2002).  

 

 

Several techniques have been developed to remove PCA from the wastewater. 

Last few decades, photocatalysis has been a hot topic in the degradation of organic 

pollutant due to their safe in operation, easy to handle, and environmental friendly. 

Generally, metal oxide such as TiO2, CdS, ZnO, ZrO, WO3 and Fe2O3 were used as 

semiconductor and act as a catalyst during the photocatalysis. However, it has their 

own drawbacks such as higher electron-hole recombination and lower efficiency of 

degradation percentage under VL irradiation. This is most probably due to the higher 

band gap of the semiconductor and the agglomeration of the metal oxide itself 

increased the electron-hole recombination. In addition, the semiconductor itself was 

less active under VL irradiation due to higher band gap. 

 

 

Previously, many researcher have move forward to use narrow band 

semiconductor such as CuO (1.7 eV). However, CuO can only absorb a small amount 

of solar spectrum in the UV region, which resulted in low photocatalytic efficiency. 

Most recently, researchers used semiconductor oxide and support catalyst to overcome 

the problems. To date, MWCNT had been use as excellent support material due to 

several reasons such as high surface area, high thermal stability and resistance to acidic 

and alkaline media.  It also has been shown that coupling of semiconductor oxides and 

support can reduce their band gap, extend their absorption range to visible light region, 
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and consequently, achieve a higher photocatalytic activity under VIS light irradiation. 

Unfortunately, detailed studies on metal-support interaction and influence of the defect 

site are still lacking. Therefore, it is desirable to explore the structure of the synthesized 

catalysts, study the interaction between metal and support material as well as the 

formation of the defect sites which play significant roles in enhancing the 

photocatalytic efficiency.  

 

 

 In this study, it is hypothesized that the synthesis of copper oxide nanoparticles 

supported onto the MWCNT by electrochemical method gives a great advantage as a 

facile synthesis route. The introduction of CuO species onto the MWCNT is believed 

to lead to a synergistic effect between them which was anticipated to improve the 

photocatalytic activity. It is also expected to form an active site, Cu–O–C bond, surface 

defect, and oxygen vacancies which will enhance the photocatalytic activity under both 

UV and VIS light irradiation system.  

 

 

 

 

1.3 Objective of Study 

 

 

 The objectives of this study are:   

 

I. To synthesize and characterize the CuO supported onto MWCNT 

(CuO/MWCNT) photocatalysts.  

II. To evaluate the performance of the catalysts on the photodegradation of 

PCA 

III. To optimize the photocatalytic degradation by RSM. 

IV. To study the kinetics, mechanism of degradation, mineralization, 

biodegradability and stability of the catalyst toward degradation of PCA. 
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1.4 Scope of Study 

 

 

 The scopes of this study are: 

 

 

I. Synthesis and characterization of CuO/MWCNT photocatalysts. 

 

 

CuO supported on the carbon nanotubes were synthesized by electrochemical 

method under metal loadings of 1, 3, 5, 10, 50, and 90 wt %. The catalysts were 

characterized using X-ray diffraction (XRD), nitrogen (N2) adsorption–

desorption, electron spin resonance (ESR), Raman spectroscopy, transmission 

electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), 

and X-ray photoelectron spectroscopy (XPS). 

 

II. Performance of catalysts on the photodegradation of p-chloroaniline in 

aqueous solution. 

 

 

The screening process was conducted based on literature parameters to 

determine the optimum conditions including effect of pH of the solution (pH 

3–11), initial concentration of PCA (10–100 mg L−1), catalyst dosage (0.125–

0.625 g L−1), and metal oxide loading. The lower range of CuO loadings (1–3 

wt%) were tested under UV light irradiation, while the higher range of CuO 

loadings (10–90 wt%) were tested under VIS light irradiation. 

 

 

III. Optimization of the photocatalytic degradation by response surface 

methodology (RSM). 

 

 

Optimization of the photocatalytic degradation of PCA over the best 50 wt% 

CuO/MWCNT was performed using central composite design (CCD) by 
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response surface methodology (RSM) developed by Statistica 6.0 StatSoft. The 

factors affecting the photoactivity of catalyst included pH of solution (pH 3, 5, 

7, 9, and 11), catalyst dosage (0.125, 0.250, 0.375, 0.5, and 0.625 g L−1), initial 

PCA concentration (5, 10, and 15 mg L−1) and metal oxide weight loading (10, 

50, and 90 wt %). These parameters were chosen based on the results of 

preliminary studies that have been conducted. 

 

 

IV. Study the kinetics, mechanism of degradation, mineralization, biodegradability 

and stability of the catalyst toward degradation of PCA.  

 

The kinetic expression were described based on Langmuir–Hinshelwood 

kinetic model over the best catalyst for both UV and VIS light irradiation 

system. The mechanism of photocatalytic degradation of PCA over the 

catalysts were proposed by running out the effect of scavenger experiment to 

determine the important species such as photogenerated holes (h+), electrons 

(e–), and hydroxyl radicals (•OH) by using several scavengers (sodium oxalate, 

potassium peroxydisulfate, and sodium bicarbonate). Then, mechanism of the 

photocatalytic degradation of PCA were proposed. The mineralization and 

biodegradability studies were carried out by Total Organic Compoung (TOC) 

and Biological Oxygen Demand (BOD5), respectively over the best catalyst. 

Lastly, the stability was done by running five repetitions of the experiment 

under similar condition by using the best catalyst.  

 

 

 

 

1.5 Significance of Study  

 

 

 This study was conducted to synthesize MWCNT-based photocatalyst for 

photocatalytic degradation of organic pollutants. In recent approaches, this carbon 

material has been used to mitigate the support effect. Due to the one-dimensional 

nanostructure and high specific surface area of MWCNT, various inorganic 
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nanoparticles such as metals, metal oxides, and semiconducting nanoparticles were 

attached on the MWCNT surface to obtain nanotube/nanoparticle hybrid materials 

with useful properties.  

 

 

 Among the various types of semiconductors, the CuO nanoparticles 

experienced intensive advances due to their outstanding features such as low cost, 

narrow band gap, good chemical and thermal stability, and excellent optical properties. 

It was hypothesized that the synthesis of copper oxide nanoparticles loaded onto 

MWCNT will be achieved by electrochemical method. As a result, the combination of 

metal oxides and MWCNT will form an active site, Cu–O–C bond, surface defect, and 

oxygen vacancies, which enhance the photocatalytic activity under both UV and VIS 

light irradiation system. The catalyst is believed to show high potential in wastewater 

treatment. Additionally, this study may contribute for the knowledge in wastewater 

technology.  

 

 

1.6 Thesis Outline 

 

 

 The thesis is divided into five chapters. In Chapter 1, a general introduction is 

given about the environmental effects of organic pollutants such p-chloroaniline. 

Several methods for PCA removal are also mentioned. Besides that, the potential of 

metal oxides supported on MWCNT as photocatalysts for degradation of PCA are 

highlighted. The problem statement of the current research is stated to give the main 

objectives of the present study, while the scopes of study cover the research work to 

meet these objectives. 

 

 

 Chapter 2, which is literature review, covers detailed information regarding 

chlorinated compounds in wastewater, technologies of PCA removal, photocatalytic 

degradation process, as well as the studies on CuO, and CNT-based photocatalyst.  
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