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ABSTRACT 

 

 

 

 

Polyethersulfone (PES) has received tremendous attention in water treatment 

because it has excellent membrane-forming capability. However, PES is naturally 

hydrophobic which tends to increase the potential of fouling. Therefore, in this study, 

a modification was carried out by adding reduced graphene oxide (rGO) into the 

polymer matrix to improve the hydrophilicity of the membrane, thus reducing the 

fouling problem. The effect of reduction time on the properties of rGO was 

investigated. Graphene oxide (GO) was prepared via modified Hummer’s method and 

it was reduced using 0.5 M sodium borohydride (NaBH4). The effects of different 

reduction times (8, 16, 24 and 32 hours) were studied. The prepared rGO was then 

added into PES to produce membrane for ultrafiltration process. Polyvinylpyrrolidone 

(PVP) was added into the polymer matrix to study the effect of the material on the 

pores formation. The membrane was prepared using phase inversion method. X-ray 

diffraction (XRD), attenuated total reflectance Fourier-transform infrared 

spectroscopy (ATR FTIR), field emission scanning electron microscope (FESEM) and 

energy dispersive X-ray spectroscopy (EDX) were used to characterize the material. It 

was found that the interlayer spacing of GO was reduced from 7.87 to 3.68 Å after 

reduction process due to the removal of some of the functional groups from the 

material. The FTIR peak at 1718 cm-1, attributed to the carbonyl (C=O) group, was 

absent after GO was reduced. The morphology of GO showed that the surface was 

smooth and had wrinkles while rGO was rough and agglomerated. EDX results 

suggested that the percentage of oxygen was lower due to effective reduction process. 

All the membranes were characterized using scanning electron microscopy (SEM), 

water contact angle, water flux and humic acid (HA) rejection. Based on the SEM of 

membrane cross section, it was found that the addition of PVP greatly improved the 

formation of pores. When rGO was added, the finger-like porous sub-layer increased. 

Besides that, the hydrophilicity showed a significant improvement after rGO was 

introduced into the polymer matrix. PES/rGO 24 hour showed the greatest contact 

angle (32.99o). Meanwhile, PES/GO showed the highest water flux (174.29 L/m2h).  

Nevertheless, in terms of HA rejection, PES/rGO 24 hour showed the best performance 

where the rejection reached up to 46.88% as compared to that of PES/GO which was 

only 24.68%. 
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ABSTRAK 

 

 

 

 

Polietersulfon (PES) telah mendapat banyak perhatian dalam rawatan air 

kerana ia boleh membentuk membran yang sangat baik. Walau bagaimanapun, PES 

asli adalah hidrofobik yang cenderung meningkatkan potensi pembusukan. Oleh itu, 

dalam kajian ini, pengubahsuaian telah dijalankan dengan menambah grafin oksida 

terturun (rGO) ke dalam matriks polimer untuk memperbaiki sifat hidrofilik membran, 

dengan itu mengurangkan masalah pembusukan. Kesan masa penurunan terhadap sifat 

rGO telah dikaji. Grafin oksida (GO) telah dihasilkan melalui kaedah Hummer 

terubahsuai dan ia diturunkan menggunakan natrium borohidrida (NaBH4) 0.5 M. 

Kesan masa penurunan yang berlainan (8, 16, 24 dan 32 jam) telah dikaji. Bahan rGO 

yang terhasil kemudian ditambah kepada PES untuk menghasilkan membran bagi 

proses ultra-penapisan. Polivinilpyrrolidon (PVP) telah ditambah ke dalam matriks 

polimer untuk mengkaji kesan bahan tersebut terhadap pembentukan liang. Membran 

telah disediakan dengan kaedah penyongsangan fasa. Pembelauan sinar-X (XRD), 

spektroskopi inframerah transformasi Fourier pantulan total dilemahkan (ATR FTIR), 

mikroskopi elektron pengimbas pemancaran medan (FESEM) dan spektroskopi 

serakan tenaga sinar-X (EDX) telah digunakan untuk mencirikan bahan. Didapati jarak 

antara lapisan GO berkurang dari 7.87 Å ke 3.68 Å selepas proses penurunan kerana 

sebilangan kumpulan berfungsi telah terkeluar dari bahan. Puncak FTIR pada 1718 

cm-1 yang menunjukkan kumpulan karbonil (C=O) tidak hadir selepas GO terturun. 

Morfologi GO menunjukkan bahan tersebut mempunyai permukaan yang licin dan 

berkedut manakala rGO lebih kasar dan bergumpal. Hasil keputusan EDX 

mancadangkan bahawa peratusan oksigen telah berkurang oleh kerana proses 

penurunan yang berkesan. Semua membran dicirikan dengan menggunakan 

mikroskopi elektron pengimbas (SEM), sudut sentuh air, fluks air dan penolakan asid 

humik (HA). Berdasarkan SEM keratan rentas membran, didapati penambahan PVP 

telah meningkatkan pembentukan liang dengan baik. Apabila rGO ditambah, lapisan 

berliang seperti jejari telah meningkat. Selain itu, hidrofilik menunjukkan peningkatan 

yang ketara selepas rGO ditambah ke dalam matriks polimer. PES/rGO 24 jam 

menunjukkan sudut sentuh air yang terbesar (32.99o). Sementara itu, PES/GO 

menunjukkan fluks air yang tertinggi (174.29 L/m2h). Namun, dari segi penolakan HA, 

PES/rGO 24 jam menunjukkan prestasi terbaik di mana penolakan mencapai sehingga 

46.88% berbanding PES/GO dengan hanya 24.68%. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Natural organic matter can cause an unpleasant odor and taste in water 

(Shankar et al., 2017). The major species of NOM that has caught various attention 

from researchers are humic substances (HS). HS can be further categorised into three 

categories which are humin, humic acid (HA) and fulvic acid (FA) (Lowe and Hossain, 

2008; Hamid et al., 2011). Researchers always used HA in the studies of membrane 

performance in water treatment because it is the major species in NOM (Hamid et al., 

2011). HA is the main result of the degradation of plants and animals. This substance 

will then enter the water surface through rainwater run-off. HA is a very complicated 

mixture which it cannot be illustrated by any single formula. However, HA is believed 

to have a high level of carboxyl (– COOH) and phenolic hydroxyl (– OH) groups which 

attached to aromatic rings (Szymanski et al., 2016). HA does not contribute to severe 

problem until it reacts with chlorine during chlorination process in conventional water 

treatment process which forms carcinogenic by-products such as trihalomethane 

(THM) and haloacetic acid (HAA) (Lowe and Hossain, 2008). Exposure to the 

aforementioned by-products can lead to serious diseases like cancer, miscarriages and 

nervous system complications (Hamid et al., 2011). Hence, membrane treatment is an 

alternative water treatment process to remove the pollutants (Sathish et al., 2015). 

 

 

Thus, it is vital to make a suitable selection of polymer. Polyethersulfone (PES) 

has great membrane-forming and excellent physicochemical properties which lead it 

to be used widely as a membrane in water treatment (Forati et al., 2014). 
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Unfortunately, PES suffer from fouling that will affect the performance of the 

membrane (Zinadini et al., 2014). Therefore, it is suggested that PES can undergo a 

few modification to overcome the fouling problem such as blending with amphiphilic 

polymer (Forati et al., 2014), blending with hydrophilic polymers (Peyravi et al., 

2012), grafting with hydrophilic monomer or blending with inorganic nanoparticles 

(Zinadini et al., 2014). 

 

 

Graphene oxide (GO) is a hydrophilic material as it has hydrophilic groups 

attached to it. Furthermore, GO also able to improve the roughness as well as 

mechanical strength of the host polymer (Zinadini et al., 2014). Meanwhile, reduced 

graphene oxide has hydrophobic characteristics. Therefore, PES is suggested to 

undergo modification with GO and rGO to improve the hydrophilicity of the 

membrane. 

 

 

 

 

1.2 Problem Statement 

 

 

Currently, there are a lot of conventional methods to eliminate HA from water 

which includes coagulation, adsorption, Fenton oxidation, TiO2 photocatalysis, 

biological treatment, membrane filtration, UV-photolysis and ozonation (Zhang et al., 

2017). Nevertheless, some of this process suffers from several disadvantages. For 

example, in coagulation process, some metal ions from the metallic compounds used 

might enter the treated water and lead to health risk (Zhang et al., 2017). Nowadays, 

membrane technology has been accepted globally as an alternative for potable water 

production and wastewater reuse (Guiying et al., 2016). The interest in the use of 

membranes for microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF) has 

increased in the water treatment process due to the need for potable drinking water 

supply (Lowe and Hossain, 2008). In this process, pressure is used as the driving force 

to separate contaminants from water supplies (Lowe and Hossain, 2008). 

Unfortunately, fouling has been a significant problem for membrane filtration 

technologies (Guiying et al., 2016). Thus, a right choice of polymer host is essential. 
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PES has great thermal and hydrolytic stabilities with superior mechanical and 

film-forming properties (Cao et al., 2009). Therefore, it has been used widely as a 

membrane for water treatment (Sadeghi et al., 2013; Susanto and Ulbricht, 2009). 

However, the low hydrophilicity characteristics of PES will lead the membrane to 

fouling problem and deteriorates the final performance (Rahimpour et al., 2008). 

Fouling will have a strong adhesion on the surface as well as in the pores of 

hydrophobic membrane. Thus, foulants will give rise to fouling in membrane which 

then deteriorates the selectivity and flux (Kumar et al., 2016). Besides foulants, surface 

characteristics (roughness and hydrophilicity), feed solution chemistry and process 

conditions also lead to fouling. Therefore, to avoid membrane fouling many 

approaches are proposed such as a proper selection of polymer host, modification of 

operating parameters and process fluid pretreatment (Vatanpour et al., 2014). Study 

shows that the major factor of membrane fouling is affected by the surface 

characteristics. To reduce fouling, the hydrophilicity of the membrane need some 

enhancements because most foulants are hydrophobic in nature (Rana and Matsuura, 

2010). 

 

 

Graphene promises that it can improve the physicochemical properties of 

polymers by forming interfacial bonding between graphene layers and the polymer 

matrix. This bonding will determine the final properties of graphene/polymer 

composites (Kuilla et al., 2010). Unfortunately, pristine graphene is not suitable in 

forming homogeneous composite because it agglomerates during the process (Shah et 

al., 2015). Therefore, it is expected that the modified graphene can be dispersed easily 

to form nanocomposites (Shah et al., 2015). For instance, GO has hydrophilic 

characteristics which causing them to readily swell and disperse in water. However, 

there are few factors which affect the dispersion of graphene which includes composite 

preparation technique, type of modification and the presence of polar groups in 

polymer and filler (Shah et al., 2015).  

 

 

Since PES is hydrophobic, GO is recommended to undergo chemical reduction 

to decrease the oxygen functional groups. The reduction process will cause the surface 

of rGO become hydrophobic (Liu et al., 2011). Therefore, this property is compatible 

with the polymer. However, it is believed that the residual oxygen functional groups 
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on rGO will give hydrophilic property in the polymer matrix which is important for 

the membrane performance and forming a hydrogen bond with PES (Prince et al., 

2016). Many approaches have been taken out to produce a good quality of rGO. This 

includes the different methods and reducing agents used. However, even enormous 

efforts have been taken the final product is still in doubt. This is because, residual 

functional groups and defects greatly change the structure of the carbon plane (Pei & 

Cheng, 2012). In order to produce rGO, top-down approach via chemical reduction 

will be chosen (Chua & Pumera, 2014). Therefore, in this study NaBH4 will be chosen 

as reductant because it is a strong reducing agent (Pei and Cheng, 2012) and 

environmental friendly (Yang et al., 2015) to reduce GO. NaBH4 is known to be as a 

good reductant to reduce aldehydes and ketones to alcohol on the surface of GO (Yang 

et al., 2015). Therefore, the oxygen-containing groups will be less and the insulating 

properties of GO can be decreased. Hence, the rGO is able to form interfacial bonding 

with polymers easier. Then, it will be blended with PES polymer to form polymer 

composites membrane. PES is chosen in this study because it has been used in water 

treatment extensively (Rana et al., 2005; Qu et al., 2010; Ahmad et al., 2013; Jin et 

al., 2013; Zhang et al., 2013, 2014; Zhao et al., 2013; Forati et al., 2014; Vatanpour et 

al., 2014). 

 

 

 

 

1.3 Objectives of Study 

 

 

The aim of this work is to study the relationship between the reduction time of 

rGO on the hydrophilicity of the membrane composites and the formation of pores for 

HA rejection. The objectives of this study are: 

 

1. To study the effect of reduction time on the properties of rGO. 

2. To produce rGO/polymer composites for ultrafiltration process and to 

evaluate the performance of the membrane for HA rejection. 

3. To study the effect of PVP on the formation of pores in the membrane. 
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