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ABSTRACT 

 

 

 

 

Environmental concerns in fossil fuel depletion intensified the search for 

alternative fuel from renewable resources. Biodiesel is commonly produced by 

transesterification of vegetable oil in the presence of homogeneous catalyst. These 

catalysts, however, dissolve into the vegetable oil and large amount of water is 

required to clean the biodiesel that can cause saponification. Previously, extensive 

studies have been conducted on alkaline earth metal oxides such as calcium and 

magnesium oxides with manganese, iron, zirconium and cerium as the dopants. This 

research thus focused on the use of heterogeneous base catalysts that are easily 

separated and environmentally friendly for the biodiesel production. Zinc and calcium 

oxides-based supported on alumina were used as catalysts for the transesterification 

reaction of refined used cooking oil due to their highly basic characteristic. In order to 

improve the catalytic activity, the bimetallic and trimetallic oxides catalysts with 

copper, nickel, chromium and titanium as their co-catalysts were investigated. All the 

alumina supported catalysts were prepared by wetness impregnation method. The 

screening of biodiesel production using synthesized catalysts was monitored by gas 

chromatography-flame ionization detector (GC-FID). The two most potential catalysts 

were selected for the optimization and characterization study. Cu/Zn/γ-Al2O3 catalyst 

calcined at 800°C with 10:90 wt.% dopant ratio to based and 3 times of alumina 

coating, exhibited the highest biodiesel production (89.50%) at mild reaction 

conditions (65°C, 10 wt.% catalyst loading, 1:20 oil:methanol mole ratio and 2 hours 

of reaction time). Cr/Ca/γ-Al2O3 catalyst calcined at 700°C with 10:90 wt.% dopant 

ratio to based and 3 times number of alumina coating gave 86.64% of biodiesel 

production at 65°C, 6 wt.% catalyst loading, 1:18 oil:methanol mole ratio and 3 hours 

of reaction time. The physicochemical properties of the potential catalysts were 

accomplished using nitrogen analysis (NA) and CO2-temperature programmed 

desorption (CO2-TPD) that indicated high surface area (>140 m2/g) and high basicity 

(>3 mmol/g). X-ray diffraction (XRD) and field emission scanning electron 

microscopy (FESEM) analysis showed the polycrystalline structure with small 

particles sizes (<50 nm). Energy dispersive X-ray (EDX) spectroscopy, X-ray 

fluorescence (XRF), transmission electron microscopy (TEM) and X-ray 

photoelectron spectroscopy (XPS) analyses confirmed the existence of Al, O, Zn, Cu, 

Ca and Cr species in each potential catalyst. The optimization of catalyst preparation 

conditions and biodiesel production parameters were verified by response surface 

methodology (RSM) method and they were in good agreement with the experimental 

values. The mechanistic study on both potential catalysts follows the Langmuir-

Hinshelwood (LH) model which involves the initial adsorption of reactants molecules 

on active sites of the catalyst surface. The specification analysis of produced biodiesel 

utilizing Cu/Zn/γ-Al2O3 and Cr/Ca/γ-Al2O3 catalysts showed that the refined used 

cooking oil has potential to be used in large-scale biodiesel production using reaction 

conditions found in the present study. 
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ABSTRAK 

 

 

 

 

Kebimbangan alam sekitar dalam kekurangan bahan api fosil telah 

meningkatkan pencarian bahan bakar alternatif dari sumber yang boleh diperbaharui. 

Biodiesel biasanya dihasilkan melalui transesterifikasi minyak sayuran dengan 

kehadiran mangkin homogen. Mangkin ini, walau bagaimanapun, terlarut di dalam 

minyak sayuran dan sejumlah besar air diperlukan untuk membersihkan biodiesel yang 

boleh menyebabkan saponifikasi. Sebelum ini, kajian menyeluruh telah dijalankan ke 

atas oksida logam alkali bumi seperti kalsium dan magnesium oksida dengan mangan, 

ferum, zirkonium dan serium sebagai dopan. Dengan itu, kajian ini memberi tumpuan 

kepada penggunaan mangkin bes heterogen yang mudah dipisahkan dan mesra alam 

untuk penghasilan biodiesel. Mangkin berasaskan zink oksida dan kalsium oksida 

berpenyokong alumina telah digunakan sebagai mangkin untuk tindak balas 

transesterifikasi minyak masak terpakai yang ditapis disebabkan oleh ciri kebesannya 

yang tinggi. Untuk meningkatkan aktiviti pemangkinan, mangkin oksida dwilogam 

dan trilogam dengan kuprum, nikel, kromium and titanium sebagai ko-mangkinnya 

telah disiasat. Kesemua mangkin berpenyokong alumina telah disediakan dengan 

kaedah pengisitepuan basah. Penyaringan penghasilan biodiesel menggunakan 

mangkin yang disintesis telah dipantau menggunakan kromatografi gas-pengesan 

pengionan nyala (GC-FID). Dua mangkin yang paling berpotensi telah dipilih bagi 

kajian pengoptimuman dan pencirian. Mangkin Cu/Zn/γ-Al2O3 yang dikalsinkan pada 

800°C dengan nisbah dopan terhadap bahan asas 10:90 wt.% dan 3 kali salutan 

alumina telah menunjukkan penghasilan biodiesel tertinggi (89.50%) pada keadaan 

tindak balas sederhana (65°C, muatan mangkin 10 wt.%, nisbah mol minyak:metanol 

1:20 and 2 jam masa tindak balas). Mangkin Cr/Ca/γ-Al2O3 yang dikalsinkan pada 

700°C dengan nisbah dopan terhadap bahan asas 10:90 wt.% dan 3 kali salutan 

alumina memberikan penghasilan biodiesel 86.64% pada 65°C, muatan mangkin 6 

wt.%, nisbah mol minyak:metanol 1:18 dan 3 jam masa tindak balas. Sifat fisikokimia 

mangkin berpotensi tersebut telah dikaji menggunakan analisis nitrogen (NA) dan 

penyahjerapan pengaturcaraan CO2 (CO2-TPD) yang menunjukkan luas permukaan 

yang tinggi (>140 m2/g) dan kebesan yang tinggi (>3 mmol/g). Pembelauan sinar-X 

(XRD) dan analisis mikroskopi electron pengimbas pemancaran medan (FESEM) 

menunjukkan struktur polihablur dengan saiz zarah yang kecil (<50 nm). Analisis 

spektroskopi serakan tenaga sinar-X (EDX), pendarfluor sinar-X (XRF), mikroskopi 

elektron penghantaran (TEM) and spektroskopi fotoelektron sinar-X (XPS) 

mengesahkan kewujudan spesies Al, O, Zn, Cu, Ca dan Cr di dalam setiap mangkin 

yang berpotensi. Pengoptimuman keadaan persediaan mangkin dan parameter 

penghasilan biodiesel telah disahkan melalui kaedah permukaan gerak balas (RSM) 

dan ia menunjukkan persetujuan yang baik dengan nilai eksperimen. Kajian 

mekanistik ke atas kedua-dua mangkin yang berpotensi adalah mengikuti model 

Langmuir-Hinshelwood (LH) yang melibatkan penjerapan awal molekul reaktan pada 

tapak aktif permukaan mangkin. Analisis spesifikasi bagi biodiesel yang dihasilkan 

menggunakan mangkin Cu/Zn/γ-Al2O3 and Cr/Ca/γ-Al2O3 menunjukkan bahawa 

minyak masak terpakai yang ditapis berpotensi untuk digunakan dalam penghasilan 

skala besar biodiesel menggunakan keadaan tindak balas yang ditemukan dalam kajian 

ini.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

The world was facing an acute energy crisis due to the fact that high energy 

demand from the fossil fuels such as coal, petroleum and natural gas at present and 

compete with the feedstocks requirement for chemical industries.  The demand of 

these non-renewable sources of energy which are getting consumed by us at an 

extraordinary rate is increasing rapidly.  Since 1850’s, petroleum has been the most 

main fuel and energy source which is about 90% of vehicular fuels need are met by 

oil.  Petroleum also is becoming as raw material for many chemical products 

including pharmaceuticals, solvents, fertilizers, pesticides, plastics and others.  In any 

case, there has been increasing concern about an energy crisis caused by potential 

petroleum depletion since petroleum is non-renewable. 

 

 

The need for increased energy security and concern about high oil costs drove 

researchers to seek for renewable and sustainable energy sources to overcome the 

reliance on petroleum.  Besides, the effect of gas emissions from fossil fuels and the 

environmental is another factor to seek for green and ecologically benign fuels.  

Emissions of carbon dioxide, CO2 to the atmosphere from the combustion of fossil 

fuels have ended up a worldwide concern due to the related climate change, which 

has unfavorable impacts on human society.  In order to overcome this crisis in 

depending on a fossil fuels, increasing the renewable energy capacity that can 

reduces greenhouse gases emissions is very important.  As stated by Anuar and 

Abdullah, (2016), the renewable energy should ensure a cleaner environment that can 



2 
 

reduce the impact of any future energy crisis on fossil fuel-constrained economies.  

Attention continues to be focused on biomass-derived fuels or known as biofuels for 

energy production.  One of the liquid biofuels considered for this application is 

biodiesel.  

 

 

 

 

1.2 Biodiesel 

 

 

Biodiesel has become the world’s attention as one of a very promising 

alternative energy as a substitute for fossil diesels because it has similar properties to 

fossil diesels.  Biodiesel is the most commonly used liquid biofuels in the transport 

sector, representing about 82% of biofuels production in European Union (Mardhiah 

et al., 2017).  The advantages of the biodiesel compared with the conventional fossil 

diesels are their renewability, biodegradability, non-toxicity and low exhaust 

emissions due to the free of sulphur and aromatics in biodiesel (Hassan and Rahman, 

2017).  In this 21st century, biodiesel has experienced a major surge worldwide due 

to these advantages.   Figure 1.1 shows the global biodiesel production from 2000 to 

2016 in 1000 metric tons of oil equivalent.  Meanwhile, Figure 1.2 illustrates 

Malaysia biodiesel production and consumption by year.  From this statistic in 2016, 

biodiesel production amounted to approximately 82 billion metric tons of oil 

equivalent worldwide.   

 

 

Figure 1.1 Global biodiesel production from 2000 to 2016 in 1000 metric tons of 

oil equivalent from The Statistics Portal (Hajjari et al., 2017) 
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Figure 1.2 Malaysia biodiesel production and consumption by year from United 

States Energy Information Administration (Mahmudul et al., 2017) 

 

 

The name of biodiesel (bio-means life (Greek) and diesel from Rudolf diesel/ 

petro-diesel) has been given from transesterification of vegetable oil that use as a 

diesel fuel and renewable nature.  Technically, the term “biodiesel” refers to 

mixtures of fatty acid alkyl esters (FAAE) produced by transesterification of 

vegetable oils or animal fats with alcohols or via esterification of free fatty acids 

(FFA) with alcohols.  Transesterification is a process where triglyceride reacts with 

an alcohol such as methanol to give methyl ester of fatty acids (FAME) and glycerol.  

The overall transesterification reaction is presented by the stoichiometric equation 

shown in Figure 1.3.   

 

 
  

Figure 1.3 Generalized schematic representation of transesterification reaction 
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Biodiesel can be produced from variety of feedstocks including soybean, 

cottonseed, palm, peanut, rapeseed, sunflower and rice bran from vegetable oils with 

tallow, chicken fat and fish oils from animal fats as well as waste cooking oil and 

grease.  Biodiesel is commonly used in conventional compression-ignition engines 

without any modifications, either in pure form or blended with petro-diesel.  

According to Knothe and Razon, (2017), the similarity in fuel properties between 

biodiesel and petro-diesel was the reason of the direct application of biodiesel in 

diesel engines.  Table 1.1 listed the fuel properties of biodiesel compared to petro-

diesel.  Based on Table 1.1, biodiesel possess viscosity much closer to the petro-

diesel and it has higher flash point, higher lubricity and smaller carbon footprint 

(Agarwal et al., 2017).  Therefore, this research had focused on producing biodiesel 

with similar fuel properties as petro-diesel via transesterification of refined used 

cooking oil.   

 

 

Table 1.1: The American Society for Testing Materials (ASTM) standards for 

petro-diesel and biodiesel fuel properties 

Fuel properties 

specification 
Petro-diesel Biodiesel 

Standard ASTM D975 ASTM D6751 

Composition HC (C10-C21) FAME (C12-C22) 

Kinematic viscosity @ 

40ºC (mm2/s) 
1.9-4.1 1.9-6.0 

Specific gravity (g/mL) 0.85 0.88 

Flash point (ºC) 60 to 180 100 to 190 

Cloud point (ºC) -15 to 5 -3 to 12 

Pour point (ºC) -35 to -15 -15 to 16 

Water content, vol.% 0.05 0.05 

Carbon content, wt.% 87 77 

Hydrogen content, wt.% 13 12 

Oxygen content, wt.% 0 11 

Sulphur content, wt.% 0.05 0.05 

Cetane number 40 to 55 48 to 60 

HC: Hydrocarbon; FAME: Fatty acid methyl ester 
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1.3 Catalysis in Biodiesel Production 

 

 

Catalysis plays an important role in numerous industrial processes which 

incorporates food production, energy production, chemical production and 

environmental protection.  Basically, the catalyst is needed in any of the reaction in 

order to increase the rate performance of the process.  In this transesterification 

reaction, both acid and base catalysts can be used to enhance the biodiesel 

production.  Lately, much research has been reported relating to the development of 

heterogeneous catalysts for transesterification of various vegetable oils with 

methanol (Baskar and Aiswarya, 2016; Verma and Sharma, 2016).   

 

 

Many researchers have pointed out the drawback related with the use of 

homogeneous catalysts in biodiesel production (Pukale et al., 2015; Abdullah et 

al., 2017).  Conventional biodiesel production had used base-catalyzed homogeneous 

reaction such as sodium hydroxide and potassium hydroxide and the process are 

illustrated in Figure 1.4.  This requires various operating procedures in order to 

recover the catalyst for further use.  The large amount of water and energy was 

needed for washing and drying the biodiesel product, thus it will form soap as 

unwanted by-product.  

 

 

Therefore, there is currently a shift toward the development of industrial 

processes for biodiesel production using solid catalysts.  The major benefit of using 

heterogeneous catalysts is that no polluting by-products are formed and the 

catalysts do not mix with biodiesel.   Furthermore, the heterogeneous catalyst 

would reduce the extra operating costs from the catalyst neutralization, product 

washing and continual replacement of catalyst, thus producing higher purity of 

biodiesel.  There is no requirement for catalyst neutralization since the solid catalyst 

could easily be removed from the reaction mixture by simple filtration.  Figure 1.5 

represents a typical heterogeneously base-catalyzed biodiesel process.  Meanwhile, 

Table 1.2 depicts the comparison of homogeneous and heterogeneous catalyzed 

transesterification reaction.   
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Figure 1.4 A typical homogeneous base-catalyzed biodiesel process 

 

 

 

 

Figure 1.5 A typical heterogeneous base-catalyzed biodiesel process 
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Table 1.2: Comparison of homogeneous and heterogeneously catalyzed 

transesterification 

 

Factors Homogeneously 

catalysis 

Heterogeneously 

catalysis 

Reaction rate Fast and high conversion Fast and high conversion 

After treatment Catalyst cannot be 

recovered, must be 

neutralized 

Can be recovered 

Processing methodology Limited use of continuous 

methodology 

Continuous fixed 

operation is possible 

Presence of water/ free 

fatty acids 

Sensitive Not sensitive 

Catalyst reuse Not possible Possible 

Cost Comparatively costly Potentially cheaper 

 

 

Physicochemical properties of solid base catalyst are dependent on their 

preparation methods, pretreatment process and the way of handling the catalyst itself.  

There are numbers of preparation methods for producing solid base catalyst such as 

co-precipitation method (Lee et al., 2015), hydration dehydration method (Mijan et 

al., 2015), sol gel (Mohadesi et al., 2014) and chemical vapor deposition (CVD) 

methods (You et al., 2017).  Physicochemical properties such as morphology, surface 

area, particle size and basicity normally could influence the catalytic activity.  The 

importance of solid base catalysts has come to be known for their environmental 

friendly qualities.  Much significant progress has been made over the past two 

decades in catalytic materials and solid base-catalyzed reactions (Hattori, 2001).   

 

 

Typically, metal oxides are identified as the most significant and extensively 

used as catalyst.  As described by Hattori, (2015), metal oxides had both proton and 

electron transfer abilities, thus can be used in redox catalysis as well as acid-base 

reactions.  A strong basic strength can be formed after a high temperature treatment 

applied in order to obtain a carbonate free metal oxide surface.  Surface defect which 

can be detected using surface area analysis display the significant sites for 
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heterogeneous catalysis that can change the reactivity of any reaction (Aransiola et 

al., 2014).  Hence, the higher the surface area indicates higher reactivity. 

 

 

Alkaline earth metal oxides such as calcium oxide, CaO possess a rock-salt 

structure with alternating metal cations and oxygen anions.  An alkaline earth metal 

oxide exposing more of electron rich planes, thus give a greater number of defect 

sites (Marinković et al., 2016).  From alkaline earth metal oxide group, CaO has 

been widely used as a catalyst in the transesterification reaction due to its high 

basicity, low solubility in organic solvents and low price.  On the other hand, zinc 

oxide, ZnO is a cheap, re-usable, stable and environmentally catalyst that used in 

many catalytic reactions.  Nanoparticles of ZnO comprises a good optical, electrical 

and chemical properties.  Furthermore, ZnO is one of the most extensively studied 

materials due to its outstanding optoelectronic properties with potential applications 

in many different fields of technology (Downs et al., 2017).  ZnO is generally used 

as catalyst support and it has been established that impregnation with alkaline metals 

gives a good basic solid catalyst for the transesterification of vegetable oils (Alba-

Rubio et al., 2010).  

 

 

 Despite of high catalytic activity by using single metal oxides catalyst in 

biodiesel production, the addition of dopants offers a route to achieve better 

performance due to the increased surface basic properties.  There is a demand to 

develop desirable solid base catalysts from mixed metal oxide with a high activity.  

The important use of transition metals as co-catalysts are the ability to be in a variety 

of oxidation state, interchange between the oxidation states and formation of 

complexes with the reagents.  The availability and lower costs are additional factors 

for the consideration.   

 

 

 Supporting metal oxides on high surface area materials is another alternative 

of increasing their stability as catalysts and reducing the cost in preparing the 

catalysts.  The high surface area of supported material allows good dispersion of the 

catalytically active metal and easily recovered after the reaction (Matsubu et al., 

2017).  Furthermore, supports are a good way of minimizing in mass transfer 

limitations for heterogeneous catalysts in liquid phase reaction by providing greater 
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accessibility through the existence of pores.  Gamma aluminium oxide (γ-Al2O3) has 

been widely used as a support of active species in industrial processes due to its high 

thermal stability and surface area of 300 m2/g, mesopore size of 5 to 15 nm, pore 

volume of 0.60 cm3/g and ability to be shaped into pallets (Evangelista et al., 2016).   

 

 

 Therefore, in this study, the modification with more active substance in order 

to prepare a base heterogeneous catalyst was introduced in biodiesel production due 

to the simplifications in the existing process.  To the best of our knowledge, the 

utilization of wetness impregnation method to synthesize zinc and calcium oxides 

based catalyst with addition of transition metals (Cr, Ti, Ni, Cu) as co-catalysts in 

alumina supported for the transesterification of biodiesel has not been revealed yet.   

 

 

 

 

1.4 Response Surface Methodology (RSM) 

 

 

 RSM is a collection of mathematical and statistical techniques based on the 

fit of a polynomial equation to the experimental data.  It describes the behavior of a 

data set with the objective of making statistical previsions.  RSM can be applied 

when a response of interest is influenced by several independent variables. The main 

objective of RSM application is to optimize the levels of independent variables in 

order to achieve the best system performance. 

 

 

Toward this objective, linear or square polynomial function is employed to 

describe the experimental design and thus, explored the modeling for the 

optimization.  The stages in the application of RSM as an optimization technique are 

as follows: (1) the selection of the independent variables from the screening studied; 

(2) the choice of the experimental design and carrying out according to the 

experimental matrix; (3) the mathematic-statistical analysis through the fit of a 

polynomial function; (4) the evaluation of the model’s fitness; (5) the verification of 

the predicted value from experimental design and (6) the determination of the 

optimum values for each variable.  
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RSM has been successfully applied in the study on optimization of biodiesel 

production from rapeseed oil, soybean oil, cotton seed oil and other vegetable oils 

(Silva et al., 2011; Dwivedi and Sharma, 2015; Kostić et al., 2016; Onukwuli et al., 

2017; Baskar et al., 2018).  However, there is no literature reported on the 

optimization of the transesterification reaction from refined used cooking oil over 

potential catalyst in this research.  Therefore, RSM modelling coupled with Box-

Behnken design was used to determine the optimum catalyst conditions and biodiesel 

production parameters that could lead to the maximum biodiesel yield.   

 

 

 

 

1.5 Mechanistic Study 

 

 

In heterogeneous catalysis, adsorption of reactants and desorption of products 

take place on the surface of a solid catalyst.  Two hypotheses have been proposed for 

solid acid catalyzed transesterification reaction mechanisms which are Eley–Rideal 

(ER) and Langmuir-Hinshelwood (LH), represent the foundation of modern 

heterogeneous transesterification mechanisms.  According to the ER mechanism, it is 

performed by a direct pickup of species from the surface by a liquid phase molecule.  

Meanwhile, in the LH mechanism, there are three main steps that occurred on the 

catalyst surface which are adsorption of reactants, surface reaction and desorption of 

products.  Therefore, this present study might provide an understanding on the 

mechanism of heterogeneous base-catalyzed transesterification reaction. 

 

 

 

 

1.6 Problem Statement 

 

 

 Concerns about greenhouse gas emissions, global warming and limitation of 

crude oil resources have encouraged researchers to develop an alternative fuel.  The 

depleting fossil oil reserves give big influence in the interest in finding alternative 

source of energy.  In order to overcome those problems and to further enhance the 

awareness of the environment, the biomass has become the global attention as one of 

a great promising substitute and sustainable energy.  Biodiesel derived from 
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renewable resources such as vegetable oil or animal fats is expected to be one of the 

biomass-base alternative fuel to substitute the diesel oil.  

 

 

 Conventional biodiesel production is commercially synthesized in the 

presence of homogeneous base catalysts mainly alkali-metal hydroxides and 

methoxides (NaOH, KOH and NaOCH3) as reported by Konwar et al., (2014).  

However, it should be noted that this conventional process has several drawbacks.  

This requires various operating and capital costs downstream arising from the 

inability to recover the catalyst.  Particularly, these catalysts are sensitive to the 

presence of water and free fatty acid (FFA).  Homogeneous base catalyst dissolved 

into the vegetable oil or animal fat.  Thus, large amount of water is required for 

washing purpose.  On the other hand, the presence of water leads to the soap 

formation.  As a result, the saponification could lower the biodiesel quality and 

makes the biodiesel production becomes difficult, time consuming, expensive and 

complicated.   

 

 

 Moreover, the acid-catalyzed transesterification process typically uses 

hydrochloric acid and phosphoric acid as catalysts.  However, the reaction process 

needed longer time, higher oil to methanol ratio, higher reaction temperature and 

pressure (Veljković et al., 2015; Melero et al., 2015).  As the acid catalysts are more 

corrosive, it is not preferable due to the large operation costs in industrial process.  

Furthermore, several solid base catalysts have been investigated for 

transesterification including alkaline earth oxides, alkaline earth metal oxides, rare 

earth oxides, basic zeolite, hydrotalcites and organic base catalysts (Hattori, 2015). 

Despite showing higher activity than acid catalysts, solid base catalyst was 

unfavorable for feedstock containing high free fatty acids.  These catalysts deactivate 

faster in the presence of air and moisture, thus free fatty acids would react with the 

catalyst forming soap.  Therefore, in this study, base heterogeneous catalytic reaction 

was introduced in biodiesel production under mild reaction conditions.  The process 

of heterogeneous base-catalyzed transesterification is expected to be effective as it 

can reduce the extra operating costs and gives minimal impact into the environment.   
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This research work focused on the mixed metal oxides catalyst with the 

incorporation of transition metal as co-catalysts supported on alumina for the 

transesterification in biodiesel production.  The supported catalyst can be used in 

direct applications for the automotive and petroleum industries due to its stability and 

reusability (Wefers, 1990; Zabeti et al., 2009).  The advantage of this mixed metal 

oxides can be traced to a favorable combination of its textural properties such as 

surface area, pore size distribution, pore volume and its base characteristics which 

are related to surface chemical composition and phase composition (Teo et al., 2014; 

Joshi et al., 2015).  The use of mixed metal oxides would reduce the leaching 

properties and the reaction time in the biodiesel production as proved by Wong et al., 

(2015).  

 

 

Previous studies by Wang et al., (2007) and Patil et al., (2010) reported a 

two-step catalytic transesterification of biodiesel process. However, the two-step 

method faces the problem in catalyst removal and time consuming, thus would 

increase the cost of biodiesel production.  In order to overcome this situation, single 

step transesterification reaction using heterogeneous mixed metal oxides catalyst was 

introduced.  In addition, another factor that affect the cost of biodiesel production is 

based on the raw materials that used as a feedstock.  Most of the biodiesel is widely 

produced from the costly edible oils like soybean oil, sunflower oil, rapeseed oil and 

rice bran oil (Baskar and Aiswarya, 2016; Arora et al., 2014; Anuar and Abdullah, 

2016).  However, the application of such feedstocks in biodiesel production could 

maximize competition between demand of vegetable oils with human consumption.  

This research had introduced refined used cooking oil as an alternative feedstock 

which has not been investigated.   

 

 

 

 

1.7  Aim and Objectives of Study 

 

 

The main aim of this research is to develop the most effective catalyst in the 

transesterification of refined used cooking oil to biodiesel under mild conditions.  

Thus, the objectives of this research are: 
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i) To synthesize zinc and calcium oxides-based catalysts supported on 

alumina with different series of dopants. 

ii) To test and measure the catalytic activity of the prepared catalysts in 

the transesterification of refined used cooking oil by using gas 

chromatography-flame ionization detector (GC-FID). 

iii) To characterize the potential prepared catalysts using various 

analytical technique in order to understand the physicochemical 

properties of the catalysts. 

iv) To optimize the catalyst preparation parameters and biodiesel 

production conditions using response surface methodology (RSM)- 

Box-Behnken design (BBD). 

v) To postulate the mechanism over potential catalysts.  

vi) To verify the fuel properties of synthesized biodiesel according to 

ASTM D6751 and EN14214 standards.  

 

 

 

 

1.8 Scope of Study 

 

 

 This research was emphasized on base-catalyzed transesterification of 

biodiesel from refined used cooking oil by using alumina supported zinc (Zn) and 

calcium (Ca) with addition of nickel (Ni), copper (Cu), titanium (Ti) and chromium 

(Cr) as co-catalysts.  Three types of catalysts including monometallic, bimetallic and 

trimetallic oxides catalysts were synthesized via wetness impregnation method.  

Then, the catalytic activity of the prepared catalysts was tested and monitored by 

using gas chromatography (GC-FID).  From the screening stages, the both potential 

catalysts from each based were optimized on different calcination temperatures, 

dopant ratios to based and number of alumina coatings and further validated by 

response surface methodology (RSM) via Box-Behnken design (BBD).   

 

 

Next, the both potential catalysts were characterized in order to explore its 

physicochemical properties.  The surface characteristics of the prepared catalysts 

were analyzed using nitrogen adsorption (NA).  X-Ray diffraction (XRD) was used 
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to determine the degree of crystallinity, particle shape and sizes for the prepared 

catalysts.  X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray (EDX), 

X-ray Fluorescence (XRF) and transmission electron microcopy (TEM) were used to 

study the chemical state and the elemental composition of the catalysts.  The surface 

morphology was examined using field emission scanning electron microscopy 

(FESEM), while CO2-TPD was used to measure the basicity and basic site 

distributions of the catalysts. Thermogravimetric analysis–differential thermal 

analysis (TGA-DTA) was conducted to study the weight loss of the catalyst with 

change of temperature. 

 

 

From the characterization analysis, the both potential catalysts were further 

investigated in the optimization of biodiesel parameters including percentage catalyst 

loadings, oil to methanol ratios and reaction times and verified by RSM.  The both 

potential catalysts were also studied on reusability and reliability testing as well as 

regeneration activity under optimum conditions.  The mechanistic study of 

transesterification reaction on the catalyst surface was conducted via attenuated total 

reflection-Fourier transform infrared (ATR-FTIR) and the product was analyzed 

using GC-FID.  Lastly, the verification of fuel properties on product was examined 

according to ASTM D6751 and EN14214 standards.   

 

 

 

 

1.9 Significance of Study 

 

 

 The harmful effect of global warming, depletion of fossil fuel resources and 

the rising numbers of environmental related problems had become the main factors 

that contribute to the global transformation in the development of biodiesel.  The 

used of biodiesel as a source of fuel offers several advantages including renewable 

and sustainable resources, non-toxic and environmental friendly where it reduces the 

emission of CO2 and hazardous compound such as aromatic, sulfur, particulate 

matter and NOx.  Hence, the use of biodiesel will significantly reduce the effect of 

global warming and utilizes a green chemistry concept.  Generally, biodiesel displays 

good oil qualities with higher cetane number and higher combustion efficiency.  In 

addition, no sulfur content in biodiesel provides greater lubricity than conventional 
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diesel fuel, thus improves the durability of the engine.  The advantage of biodiesel 

production from this study is easily to operate because it only required to process at 

low temperature in order to give optimum performance. 

 

 

In addition, the application of a heterogeneous or solid catalyst has gained 

interest in the biodiesel production.  The catalysts are not dissolved in the reaction 

mixture which made it easier to be separated from the product.  On top of that, the 

base heterogeneous catalyst has several advantages including reusability, easier 

operational procedures, effortless catalyst separation and reduction of environmental 

pollutions.  All the materials in the fabrication of the catalyst are cheap, stable and 

easily available.  The catalysts are safe to handle because it can be used at low 

reaction temperature.   

 

 

Accordingly, the novelties of this research study are as follows: 

 

 

1. The development of highly basic metal oxide catalysts from alkaline earth 

metal (Ca) and transition metal (Zn) as based catalysts with the use of 

alumina beads as a support in order to increase the stability of the catalyst.  

The addition of second and third metal as co-catalysts were carried out in 

order to increase the performance on transesterification for biodiesel 

production. 

2. The invention of a simple method that only required low temperature for the 

biodiesel production from refined used cooking oil. 

3. The optimization on the catalyst preparation conditions and biodiesel 

production parameters over two potential catalysts by using response surface 

methodology (RSM) via Box-Behnken design (BBD).  

4. The mechanistic study on the catalyst surface of triglyceride model 

substitution using attenuated total reflection-Fourier transform infrared 

(ATR-FTIR). 
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