IMPROVING WATER METER READING OPERATIONS USING OPTIMIZATION TECHNIQUES FOR SYARIKAT AIR JOHOR

NURHASYIMAH BINTI MOHAMAD ALI

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Industrial Engineering)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > JUNE 2015

This study is humbly dedicated to Allah, the Almighty, for granting me the opportunity to serve the believers, those who seek the Truth.

ACKNOWLEDGEMENTS

In the name of Allah, Most Gracious, Most Merciful, I thank Allah for granting me perseverance and strength I needed to complete this study.

Appreciation and gratitude to Prof. Madya Dr. Adnan Bin Hassan for his advice, encouragement, criticism, guidance and friendship while completing this study. Without continued support and interest, this study would not have been the same as presented here. I appreciate the patience of Prof. Madya Dr. Adnan Bin Hassan who is willing to share information and expertise, accessibility and spend his time every week to supervise me. The spirit of patience, careful reading, interest in this study and feedback is very helpful to enhance the study.

I am also very much indebted to En.Nasarudin Bin Selamat for giving me permission to conduct my research in Syarikat Air Johor Kota Tinggi. In addition, many thanks to Mr. Mohamad Yusuf B Panji for guidance and explaining in detail about the meter-reading operations. I would like to convey my appreciation here to En. Azfar Bin Hussin for he set aside time to explain how meter reader implement their task from the first reading process until the end.

I am grateful to all my family members, especially my parents Mohamad Ali Bin Mahidin and Marsilah Binti Chik for their prayers and moral support during my study. In addition, I would like to thank Omar Fariz, for showing patience and giving moral support and last not least I would like to say thanks to those involved directly or indirectly in completing this study.

ABSTRACT

Water meter distribution network is a challenge for decision makers to choose the best route during water bill distribution to ensure all places are visited without skipping any consumer's house. In particular, rural areas are more challenging as compared to urban areas because there are a lot of barriers or challenges faced by meter reader during water bill reading process. Based on observation and interview session there are four factors causing the problem during meter reading process which are geographic factor, human factor, machine factor and external factor. Furthermore, meter reading department needs to complete their task within a specific time frame which is in between 29 to 30 days for all consumers (58587 registered accounts). If billing days are less than 29 days the effect is profit to Syarikat Air Johor (SAJ), if more than 30 days SAJ will lose the profit. Win-win situation for SAJ and customers will happen if the billing days are exactly 30 days. Currently SAJ Kota Tinggi is unable to comply with this requirement. Overdue cycle is a financial lost to the company and early reading is a financial lost to the customers. The purpose of this study is to propose an optimum assignment and route for meter readers. Technique based on travelling salesman problem and assignment problem were used in this study. Evaluations were made using travelling salesman problem method and minimum spanning tree as a comparison for total time, sequence path and estimation time analysis. The findings suggest that the travelling salesman problem provided a minimum total time compared with minimum spanning tree and the current practice for both rural and urban areas covered in this study. In terms of estimated reading time, the result suggests 99% probability that meter reading task can be completed in 205 minutes for 175 rural areas consumers and 126 minutes for 167 urban areas consumers.

ABSTRAK

Rangkaian pengedaran bil air adalah satu cabaran kepada pembuat keputusan untuk memilih laluan yang terbaik semasa proses pengagihan bil air untuk memastikan semua tempat dikunjungi tanpa meninggalkan mana-mana rumah pengguna. Kawasan luar bandar khususnya, lebih mencabar berbanding dengan kawasan bandar kerana banyak halangan atau cabaran yang dihadapi oleh pembaca meter. Berdasarkan sesi pemerhatian dan temu duga terdapat empat faktor yang menyebabkan masalah semasa proses bacaan meter iaitu faktor geografi, faktor manusia, mesin dan faktor luaran. Tambahan pula, jabatan bacaan meter perlu menyelesaikan tugas mereka dalam tempoh masa tertentu iaitu di antara 29 sehingga30 hari untuk semua pengguna (58587 akaun berdaftar). Jika tarikh bil kurang dari 29 hari kesannya adalah memberi keuntungan kepada Syarikat Air Johor (SAJ), jika lebih daripada 30 hari SAJ akan mengalami kerugian. Situasi yang memihak kepada SAJ dan pelanggan akan berlaku jika tarikh bil adalah tepat pada 30 hari. Pada masa ini SAJ Kota Tinggi tidak dapat memenuhi sepenuh keperluan tersebut. Kitaran bacaan air tertunggak memberi menyebabkan kerugian kepada syarikat, dan bacaan awal akan merugikan pelanggan. Tujuan kajian ini adalah untuk mencadangkan rangkaian dan laluan pengedaran optimum untuk pembaca meter air. Teknik "Travelling Salesman Problem" dan "Assignment Problem" telah digunakan dalam kajian ini. Penilaian telah dilakukan menggunakan "Travelling Salesman Problem" dan "Minimum Spanning Tree" dari segi jumlah masa, laluan urutan dan analisis masa anggaran. Hasil kajian menunjukkan bahawa "Travelling Salesman Problem" menyediakan jumlah masa minimum berbanding dengan "Minimum Spanning Tree" dan amalan semasa bagi kedua-dua kawasan bandar dan luar bandar dalam kajian ini. Berbeza dari segi anggaran masa, hasil kajian menunjukkan, 99% kebarangkalian tugas bacaan meter tamat ialah 205 minit bagi 175 pengguna di kawasan luar bandar dan 126 minit bagi 167 pengguna di kawasan bandar.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
1	TABLE OF CONTENTS	vii
	LIST OF TABLE	xii
	LIST OF FIGURE	xiv
	LIST OF APPENDICES	xvi

1 INT		RODUCTION	1
	1.1	Background of the Study	1
	1.2	Problem Statement	4
	1.3	Objectives	4
	1.4	Research Questions	4
	1.5	Scopes	5
	1.6	Important of the Study	5

2	LIT	ERATU	RE REVIEW	6
	2.1	Introd	uction	6
	2.2	Transp	portation	6
	2.3	Netwo	ork Models	8
		2.3.1	Routes Delivery Services	8
		2.3.2	Public Transportation	12
		2.3.3	Supply Chain	13
		2.3.4	Network in Factories	13
		2.3.5	Telecommunication Networks	14
		2.3.6	Transportation Networks	15
		2.3.7	Water Distribution Network	15
	2.4	Techn	iques to Solve Network Problems	18
		2.4.1	Minimum Cost	20
		2.4.2	Routing	21
		2.4.3	Integer Programming	21
		2.4.4	Heuristic	22
		2.4.5	Intelligence Tools	22
		2.4.6	Statistical Method	22
		2.4.7	Metaheuristic	23
		2.4.8	Mathematical Model	23
	2.5	Summ	ary	23
3	ME	THODO	DLOGY	26
	3.1	Introdu	iction	26
	3.2	Backgr	ound of Case Study	26
		3.2.1	Organization Structure for Syarikat Air Johor	
			Kota Tinggi	27
		3.2.2	Process Flow for Management Procedure	29

xiii

	3.2.3	Process Flow for Meter Reading	30
	3.2.4	Process Activities During Reading Water Bill	31
	3.2.5	Existing Problem	31
		3.2.5.1 An Example of Water Bill Calculation	34
	3.2.6	Root Causes of the Problem	36
3.3	Soluti	on Procedure	38
	3.3.1	Data Collection	41
3.4	Propo	sed Method for Improvement	41
	3.4.1	Assignment of Meter Reader based on Route	
		Listing	41
	3.4.2	Travelling Salesman Problem	42
	3.4.3	Minimum Spanning Tree	43
3.5	Analy	sis and Validation of Results	44
	3.5.1	Analysis of Results	44
	3.5.2	Validation of Results	44
3.6	Summ	nary	45
OPT	гіллі 7 л	TION MODEL FOR WATER METER	
		OPERATION	46
4.1		uction	46
4.2	Devel	opment of Model	46
	4.2.1	Assignment of Meter Reader to Location	46
	4.2.2	Water Meter Route	47
4.3	Propo	sed Model	49
	4.3.1	Assignment Problem Model and Assumption	49
	4.3.2	Travelling Salesman Problem Model	52
		4.3.2.1 Graphical Network Representation	
		for Rural Areas	52

4

			4.3.2.2 Matrix Representation for Rural Areas	54
			4.3.2.3 Equation Model using Travelling	
			Salesman Problem for Rural Areas	54
			4.3.2.4 Graphical Network Representation	
			for Urban Areas	56
			4.3.2.5 Matrix Representation for Urban Areas	57
			4.3.2.6 Equation Model using Travelling	
			Salesman Problem for Urban Areas	58
	4.4	Uncert	ainty Consideration in Estimated Data	59
	4.5	Summ	ary	61
5	ASSIGN	MENT (OF READER TO LOCALITY	62
	5.1	Introdu	uction	62
	5.2	Selecti	on of Reader to Locality and Water Meter Route	62
		5.2.1	Selection of Reader to Locality Results	62
		5.2.2	Route Assignment using Travelling	
			Salesman Problem for Rural Areas	64
		5.2.3	Route Assignment using Travelling	
			Salesman Problem for Urban Areas	69
	5.3	Expect	ted Completion Time Analysis using	
		Travel	ling Salesman Problem	74
	5.4	Summ	ary	79
6	DISCUSS	SION AN	ND CONCLUSION	80
	6.1	Introdu	action	80
	6.2	Compa	arison between Previous Research and the	
		Author	r's Study	80
	6.3	Justific	cation for using Travelling Salesman Problem	
		Techni	ique	82

6.4	Limitation of the Study	82
6.5	Study Implications and Practical Applications	83
	6.5.1 Study Implication	83
	6.5.2 Practical Applications	84
6.6	Conclusion	84
6.7	Recommendation for Further Study	85
REFERENCES		87

Appendices A- NB	91-160
II	-

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	Summary of account holder	28
3.2	Process activities for meter reading	31
3.3	Code for Water Meter Reader	32
3.4	Payment rate for one meter cubic of water usage	34
3.5	Calculation of water consumption (30 days) for 53 m^3	34
3.6	Calculation of water consumption (33 days) for 53 m^3	35
3.7	Total house based on billing days from August 2014 to	
	December 2014	36
4.1	Over time cost for different workers to different locations	50
4.2	Nodes descriptions for rural areas	53
4.3	Network representation in tableau format for rural areas	54
4.4	Nodes descriptions for urban areas	56
4.5	Network representation in tableau format for urban areas	58
5.1	Meter readers assignment based on location	63
5.2	Comparison between assignment problem and current	
	practice	64
5.3	Total time to complete reading process for rural areas	65
5.4	Network comparison for rural areas	68
5.5	Total time to complete reading process for urban areas	70
5.6	Network comparison for urban areas	73

5.7	Expected completion time for rural area	75
5.8	Expected completion time for urban area	75

LIST OF FIGURES

FIGURE NO). TITLE	PAGE
2.1	Problem domain for transportation	7
2.2	Examples on (N,A) network	8
2.3	A Prize-Collecting arc routing problems	9
2.4	Optimal solution	9
2.5	The schematic of alternative stop points	10
2.6	94 centers for natural clusters in large Presov region	
	served by cars and routes for twenty cars	11
2.7	The optimal collection sub-district for a solid waste	
	collection	12
2.8	Serial network	16
2.9	Branched – tree type	16
2.10	Looped network	17
2.11	Combined network	17
2.12	Classification based on techniques	19
3.1	Organization structure for Kota Tinggi Agency	27
3.2	Management process flow	29
3.3	Current practice water meter reading process flow	30
3.4	Sample of SAJ water bill	33
3.5	Root cases diagram ti identify major problem for meter	
	reading	37
3.6	Geographical location of rural consumers in Sedili Besar	
	Kota Tinggi Johor	38

3.7	Geographical location of urban consumers in Taman	
	Kota Jaya 2 Kota Tinggi Johor	39
3.8	Work flow of activities to conduct the study	40
4.1	Graphical network representation for water bill	
	distribution to customers in rural areas	53
4.2	Graphical network representation for water bill	
	distribution to customers in urban areas	57
4.3	Time taken during meter reading process in rural areas	60
5.1	Travelling salesman problem method for rural areas	65
5.2	Sequence path network for rural areas using travelling	
	salesman problem	66
5.3	Network comparison between before and after (rural)	67
5.4	Network comparison for rural area	69
5.5	Travelling salesman problem method for urban areas	70
5.6	Sequence path network for urban areas using travelling	
	salesman problem	71
5.7	Network comparison between before and after (urban)	72
5.8	Network comparison design between travelling salesman	
	problem, current practice and minimum spanning tree	74
5.7	Confidence Level for rural area	78

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A1	Examples of equipment used for water meter reading tasks	91
A2	Examples of equipment used for water meter reading tasks	92
A3	Examples of equipment used for water meter reading tasks	93
A4	Examples of equipment used for water meter reading tasks	94
A5	Examples of equipment used for water meter reading tasks	95
A6	Examples of equipment used for water meter reading tasks	96
A7	Examples of equipment used for water meter reading tasks	97
A8	Examples of equipment used for water meter reading tasks	98
A9	Examples of equipment used for water meter reading tasks	99
В	Daily meter reading schedule	100
С	Standardized code for meter reading reference during work	
	flow process	101
D1	Examples of barriers on water meter process	102
D2	Examples of barriers on water meter process	103
D3	Examples of barriers on water meter process	104
D4	Examples of barriers on water meter process	105
D5	Examples of barriers on water meter process	106
D6	Examples of barriers on water meter process	107
E	Comparison table for previous researchers	108

F	Examples of preliminary for Taman Kota Jaya using minimal spanning tree	139
G	Gantt chart for semester 1 2014/2015 and semester	
	2 2014/2015	140
H1	Examples of preliminary study for minimum spanning tree	141
H2	Examples of preliminary study comparison between current	
	practice and minimum spanning tree for urban areas	142
H3	Examples of preliminary study comparison between current	
	practice and minimum spanning tree for rural areas	143
I1	Data collection in rural areas based on time taken to	
	complete reading process	144
I2	Data collection in rural areas based on travel time to	
	complete reading process	145
I3	Data collection in urban areas based on time taken to	
	complete reading process	146
I4	Data collection in urban areas based on travel time to	
	complete reading process	147
J1	Results for rural areas using travelling salesman problem	148
J2	Results for rural areas minimum spanning tree without	
	dummy variables	152
J3	Results for urban areas using travelling salesman problem	153
J4	Results for urban areas minimum spanning tree without	
	dummy variables	155
К	Types of water bill tariff in Syarikat Air Johor	156
L	Water consumption calculation formula	157
Μ	Z table to calculate estimation time analysis	158
NA	Expected time analysis for rural areas	159
NB	Expected time analysis for urban areas	160

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Network design refers to a repeated process, overall topological design, network syntheses and network realization to ensure that a new telecommunication network or service fulfill customers' and operators' needs. The implementation process is used to arrange new network or services. Classical network planning methodology contributes to five different fields which are business planning, long term and network planning, short term planning, IT asset sourcing, and operation and maintenance.

This network process involves external information on forecasting of a new network or services as well as the economic condition that focus on the cost and technical details of network capabilities in terms of geography or structure. The network planning contributes to three main steps which are topology design, network syntheses and network realization as the following descriptions:

 Topology design: Identify the best place of the component and how to connect each of these components. A mathematical method called Graph Theory can be utilized during these steps where it focus on cost of transmission and optimum connection between two paths or more.

- b) Network synthesis: This step contributes to the size of component and involves the topology to calculate a routing plan or size
- c) Network realization: These step define how to meet capacity requirement which is similar to the concept of customer and demand, beside to ensure the reliability within the network

In reality, there are many examples of distribution networks such as newspaper delivery problems. These problems include route optimization where the focus is to minimize total cost of routes. Newspapers are based on current situation. This is why it cannot be printed early. In this situation, distribution centres play a critical role to ensure that customers receive newspaper before 6.00 am. The distribution process starts at midnight which is based on 6 hours time frames. The process will start from the printing facility, the distribution centre which will send them to the home delivery carrier routes which will be following with drop off point. Then, the newspaper will be sent to the customers' home (Hurter and Buer, 1996).

Second related problem is the school bus services. The bus needs to pick up children at their houses. Thus, the problems of this situation occurs as the total of the routes and distances which is based on children's houses is less than the total distances from a single house to school (Bock et al, 2013). The variables in this research are distance travelled, number of routes or number of bus used and coverage house used based on the optimized routes. In this problem, the bus needs to pick up children from house to school and make sure that the travel time is less than the time taken for parents to send their children by car.

A waste collection or garbage collection system, which relates to public health and environment quality is similar. Vehicles routing and scheduling program in garbage collection requires a lot of evaluation to ensure the vehicles and labor are fully utilized and optimal. If the company fails to use minimum routes, the company will be facing a high cost of operation. Garbage collector will pick up garbage from one house to another without skipping. This require network design for garbage collection using minimum routes and specific time to complete their task (Chang et al, 2012). The main objective of these researches is to minimize total operating cost based on management resources and operational requirement. Travelling postmen method is one of the related network problems in terms of distribution of mails to customers. Basically, the objective for this study is to maximize number of services and minimize the travelling cost. Postmen need to sort all mails based on the address and routes used. Basically, rural areas were challenging compared to urban area because of the geographic nature, structure of roads and distances of houses. At times, they might need to walk instead of using a vehicle which requires postmen to park their vehicle at a strategic place (Matis, 2010). This application is also the same as the meter reading task where meter readers need to park their vehicles and start reading water meter from one house to another (walking distances).

Water Meter reading is another daily occurring activity and representative of route optimization problem. Meter reading has a specific time to ensure the distribution of water bill ranges from 29 days to 30 days for each of the customers. Meter reader need to walk house to house during reading process and distribute water bill to customer on the spot. The total time to read all meter is expected to be reduced as the meter reader has an efficient route along the household. There are two types of location that will be visited by meter readers, rural and urban areas. Rural areas are considered more challenging because of the structure of the roads and the location of meter are not standardized as in urban area.

Water Meter reading at Syarikat Air Johor (SAJ) Kota Tinggi has a standard procedure, which will be discussed in Chapter Four. A meter reader travels by using a motorcycle from SAJ Kota Tinggi agency to the designated location based on specified schedule. The meter reader will observe the area and park the motorcycle at a strategic place before reading the first house. In rural areas, the challenging part is usually the location of meter or the far distance between houses which requires a longer time to be completed compared to urban areas. Besides, a repeated step to park a motorcycle when moving to a new block of houses is also time consuming. In lean manufacturing, repeated process is considered as a waste and needs to be reduced or eliminated. In addition, it is a challenge to find a save and strategic place for motorcycle parking which needs to corroborate end of the routes to complete the reading process. This challenge needs to be studied to overcome the problem and to help meter reader identify the shorter routes and shorter time to complete their task.

1.2 Problem Statement

Syarikat Air Johor (SAJ) Kota Tinggi Johor needs to complete reading water meters for its customers within a specific time frame which is in between 29 to 30 days for all consumers (58587 register account). If the billing days are less than 29 days, the effect is profit to SAJ but if it is more than 30 days, SAJ will lose the profit. A winwin situation between SAJ and customers will happen if the billing days is exactly within 30 days. Currently, SAJ Kota Tinggi is unable to fully comply with this requirement. Overdue cycle is a financial lost to the company, and early reading is a financial lost to the customers.

1.3 Objectives

There are two objectives to achieve during this project, which are as follows:

- a) To propose an optimum route for water meter reading operation to minimize the monthly total completion reading time
- b) To propose an assignment plan for water meter readers to different localities to achieve minimum total cost.

1.4 Research Questions

There are several questions need to be considered during this project as the following:

- a) Which path should be made priority for meter reading?
- b) What is the shortest path routes to distribute water bill?
- c) How to reduce meter reading time?
- d) Where should be the last routes?
- e) How to minimize over time claimed by meter readers?

Scopes are an important part that needs to be highlighted during this project process to ensure that we have guidelines to start the project. The scope for this project is as follows:

- a) Study the current practice of water meter reading network distribution at SAJ Kota Tinggi.
- b) Mode of transportation used in this case study is motorcycles and walking.
- c) The location of this study focus on Taman Kota Jaya 2 (urban areas) and Sedili Besar (rural areas).
- d) The measurement of routes distance will be conducted in minutes
- e) Using mathematical modelling techniques, travelling salesmen problem (TSP) and assignment problem method to analyze the data
- f) Validate the result based on QM software, LINDO, TORA and a comparison with the current practice at SAJ.
- g) Propose the best solution and analyze the effective techniques to solve problems and a comparison with previous works.

1.6 Important of the Study

This study is important to reduce total billing days that exceeds 30 days and reduce the total time by using an optimum network distribution to help SAJ improve on efficiency of services. Additional importance for this study is as follows:

- a) Minimize operating cost
- b) Minimize total time
- c) Minimize total distances
- d) Fulfill customer demand
- e) Use reliable routes
- f) Distribute water bills without hiring new meter readers as the preparation for the next population growth.

REFERENCES

- Ambrosino, D., & Sciomachen, A. (2014). Location of Mid-Range Dry Ports in Multimodal Logistic Networks. Social and Behavioral Sciences, 108, 118-128.
- Behnamian, J., & Fatemi, G. S. (2012). Incorporating Transportation Time in Multi-Agent Production Network Scheduling. *International Journal of Computer Integrated*, 25(12), 1111-1128.
- Ben Arieh, D., Gutin, G., Penn, M., Yeo, A., & Zverovitch, A. (2003). Process Planning for Rotational Parts using the Generalized Travelling Salesman Problem. *International Journal of Production Research*, 41(11), 2581–2596.
- Bock, A., Grant, E., Konemann, J., & Sanita, L. (2013). The School Bus Problem on Trees. *Algorithmica*, 67, 49-64.
- Bouzembrak, Y., Allaoui, H., goncalves, G., Bouchriha, H., & Baklouti, M. (2013).
 A Possibilistic Linear Programming Model for Supply Chain Network Design Under Uncertainty. *IMA Journal of Management Mathematics*, 24, 209-229.
- Brauers, W. K., Zavadskas, E. K., Peldschus, F., & Turskis, Z. (2008). Multi-Objective Decision-Making for Road Design. *Transport*, 23, 183-193.
- Cao, C., Gao, Z., & Li, K. (2012). Optimal Rail Container Shipment Planning Problem in Multimodal Transportation. *Engineering Optimization*, 44(9), 1057-1071.
- Chang, N.-B., & Y.L.Wei. (2012). Comparative Study between the Heuristic Algorithm and the Optimization Techniques for Vehicles Routing and Sheduling in a Solid Waste Collection System. *Civil Engineering and Environmental System*, 19(1), 41-65.
- Finkey, G. (2008). *Operation Research and Network* (1st ed.). Hoboken: John Wiley & Sons, Inc.
- Galloa, M., D'Acierno, L., & Montella, B. (2012). A Meta-Heuristic Algorithm for Solving the Road Network Design Problem in Regional Contexts. Social and Behavioral Science, 54, 84-95.

- Haizer, J., & Render, B. (2014). *Operations Management Sustainability and Supply Chain Management* (11th ed ed.). Boston: Pearson
- He, X., Hu, W., Wu, J. H., & Wanga, C. (2013). Improving Emergency Goods Transportation Performance in Metropolitan Areas Under Multi-Echelon Queuing Conditions. *Social and Behavioral Science*, 96, 2466-2479.
- Hurter, A. P., & Buer, M. G. (1996). The Newspaper Production Distribution Problem. *Journal of Business Logistic*, 17(1), 85-107.
- Jayaraman, V. (1998). Transportation, Facility Location and Inventory issues In Distribution Network Design An Investigation. International Journal of Operations and Production Management, 18(5), 471-494.
- Khisty, C. J., & Lall, B. K. (2003). *Transportation Engineering An Introduction* (3rd ed ed.). Upper Saddle River, New Jersey: Pearson Education.
- Kira, E., Milburn, A. B., & III, C. W. (2015). The traveling salesman problem with imperfect information with application in disaster relief tour planning. *IIE Transactions*, 47, 783–799.
- Korošec, P., & Papa, G. (2013). Metaheuristic Approach to Transportation Scheduling in Emergency Situation. *Transportation*, 28(1), 46-59.
- Küçükoğlu, İ., & Öztürk, N. (2014). Simulated Annealing Approach for Transportation Problem of Cross-Docking Network Design. Social and Behavioral Sciences, 109, 1180-1184.
- Lang, Z., Yao, E., Hu, W., & Pan, Z. (2014). A Vehicle Routing Problem Solution Considering Alternative Stop Points. *Procedia - Social and Behavioral Sciences*, 138, 584-591.
- Larson, E. W., & Gray, C. F. (2014). *Project Management The Managerial Process* (6th ed.). New York: Mc Graw Hill Education.
- Lau, K. H. (2012). Distribution Network Rationalisation Through Benchmarking with DEA. *International Journal*, *19*(6), 668-689.
- Lin, J., & Ban, Y. (2013). Complex Network Topology of Transportation Systems. *Transportation Review*, 33(6), 658-685.
- LINDO. (2006). *Optimization Modeling with LINGO* (6th ed.). North Dayton Street: LINDO Systems, Inc.
- Loy, J. J., Bardi, E. J., & Novack, R. A. (2006). *Transportation* (6th ed ed.). South-Western: Thomson.
- Matis, P. (2010). Finding a Solution for a Complex Street Routing Problem Using Mixed Transportation Mode. *Transportation*, 25(1), 29-35.

- Palma, G. (2011). A Tabu Search Heuristic for the Prize-collecting Rural Postman Problem. *Electronic Notes in Theoretical Computer Science*, 281, 85-100.
- Pearn, W., & Chiu, W. (2005). Approximate Solutions for the Maximum Benefit Chinese Postman Problem. *International Journal of Systems Science, 36*(13), 815-822.Ramli, M. A., Monterola, C. P., Khoon, G. L., & Guang, T. H. (2014). A Method to Ascertain Rapid Transit Systems' Throughput Distribution Using Network Analysis. *Procedia Computer Science, 29*, 1621-1630.
- SAJ Holdings Sdn Bhd. (2012). SAJ. Retrieved November 18, 2014, from SAJ: http://saj.com.my/
- Simpson, B. J. (1994). Urban Public Transportation Today. London: E & FN Spon.
- Sussman, J. (2000). *Introduction to Transportation System* (1st ed ed.). Boston London: Artech House.
- Taha, H. A. (2007). *Operation Research: An Introduction* (8th ed ed.). Upper Saddle River: Pearson.
- Taylor, B. W. (2007). *Introduction to Management Science* (9th ed ed.). Upper Saddle River: Pearson Education.
- Tompkins, White, Bozer, & Tanchoco. (2010). *Facilities Planning* (4th ed.). United States of America: John Wiley & Sons, Inc.
- Trifunovic, N. (2006). *Introduction to Urban Water Distribution* (1st ed.). London: Taylor & Francis.
- Vaidyanathan, B. S., Matson, J. O., Miller, D. M., & Matson, J. E. (1999). A Capacitated Vehicle routing Problem for Just-In- Time Delivery. *IIE Transactions*, 31(11), 1083-1092.
- Wikipedia. (2014, November 12). *Routing*. Retrieved from Wikipedia The Free Encyclopedia: http://en.wikipedia.org/
- Zheng, L., Ao, Y., Liang, Y., & Liu, X. (2012). Frequency-Domain Modelling and Analysis of Stochastic Flows in Transportation Network. System Engineering Procedia, 2, 259-271.