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ABSTRACT 
 

 

 

 

The synthesis of one-dimensional-like titania (TiO2) and the elucidation of its shape-

photocatalytic activity relationship remain a big challenge today. It is hypothesized that this 

kind of material can be synthesized under magnetic field with the presence of magnetically 

responsive liquid crystals. This research is considered as a novel work since comprehensive 

studies have been carried out for the one-dimensional-like TiO2 and its photocatalytic activity. 

The importance of the one-dimensional-like TiO2 should be related to the electronic structures 

that affect the electron-hole recombination, and hence, photocatalytic activity. In this research, 

the synthesis of well-aligned one-dimensional-like TiO2 using liquid crystals as the structure 

aligning-agent was demonstrated via sol-gel method under a magnetic field. The 4-cyano-4’-

pentylbiphenyl (5CB) and 4-cyano-4’-octylbiphenyl (8CB) liquid crystals have been used as 

the structure aligning-agents. Each of the liquid crystals have been mixed with tetra-n-butyl 

orthotitanate (TBOT), 2-propanol and water, and the mixtures underwent slow hydrolysis in a 

magnetic field (0.3 T) under ambient conditions in the open atmosphere. The obtained TiO2 

composite samples were characterized by scanning electron microscope (SEM), X-ray 

diffraction (XRD), Fourier transform infrared (FTIR) spectrometer, photoluminescence 

spectrometer, direct current  electrical conductometer and Hall effect analyzer. Interesting 

results were observed when an external magnetic field was applied during the hydrolysis of 

TBOT in the presence of the liquid crystals. The TiO2-5CB composite was more well-aligned 

in the shape of whiskers compared to the TiO2-8CB composite when the reaction mixtures 

were placed under the magnetic field. This is due to the steric size of 8CB which is larger than 

5CB. Meanwhile, the TiO2-5CB and TiO2-8CB composites have irregular, spherical shape 

when no magnetic field was applied. Other than that, it is quite surprising that the well-aligned 

one-dimensional-like TiO2-5CB showed the anatase peak, considering that no further 

treatment such as calcination was required. The intensity of the emission peaks in the 

photoluminescence spectrum of well-aligned one-dimensional-like TiO2-5CB composite was 

lower compared to the other composites. This might be caused by electrons transferring from 

5CB to TiO2 in the well-aligned one-dimensional-like TiO2-5CB during ultraviolet irradiation. 

The plausible mechanism of electron charge transfer was elucidated by density functional 

theory (DFT) calculation. Based on these results, the interfacial interaction between the liquid 

crystal and TiO2 is the key factor to control the shape of TiO2 during the hydrolysis process. 

Furthermore, direct current electrical conductivity and Hall effect studies showed that the well-

aligned one-dimensional-like TiO2 enhanced the electron mobility. Therefore, due to the 

increasing of electron mobility, the recombination of electrons and holes could be delayed, and 

hence, the photocatalytic activity of the well-aligned one-dimensional-like TiO2 in the 

oxidation of styrene was enhanced. Based on the above results, the structure-photocatalytic 

activity relationship of well-aligned one-dimensional-like TiO2 composite, synthesized under 

magnetic field was clarified in this research. 
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ABSTRAK 
 

 

 

 

Sintesis titania (TiO2) yang berbentuk bahan satu-dimensi dan penjelasan mengenai 

hubungan di antara bentuk dengan aktiviti fotopemangkinan masih menjadi cabaran yang besar 

pada masa kini. Bahan ini dihipotesiskan dapat disintesis di bawah medan magnet dengan 

kehadiran cecair hablur yang bergerak balas terhadap magnet. Kajian ini dapat dianggap 

sebagai penyelidikan yang baharu kerana kajian yang menyeluruh telah dijalankan terhadap 

bahan TiO2 satu-dimensi dan aktiviti fotopemangkinannya. Kepentingan TiO2 yang berbentuk 

bahan satu-dimensi seharusnya dikaitkan dengan struktur elektronik yang mempengaruhi 

penggabungan semula elektron-lubang, dan dengan itu, aktiviti fotopemangkinan. Dalam 

penyelidikan ini, sintesis TiO2 berbentuk bahan satu-dimensi yang sejajar rapi menggunakan 

cecair hablur sebagai ejen penjajaran struktur telah dihasilkan melalui kaedah sol-gel di bawah 

medan magnet. Cecair hablur 4-siano-4’-pentilbifenil (5CB) dan 4-siano-4’-oktilbifenil (8CB) 

telah digunakan sebagai ejen penjajaran struktur. Setiap cecair hablur telah dicampurkan 

dengan tetra-n-butil ortotitanat (TBOT), 2-propanol dan air, dan campuran ini melalui proses 

hidrolisis secara perlahan dalam medan magnet (0.3 T) pada keadaan ambien dan terbuka ke 

atmosfera. Sampel komposit TiO2 yang diperoleh telah dicirikan dengan mikroskop pengimbas 

elektron (SEM), pembelauan sinar-X (XRD), spektrometer inframerah transformasi Fourier 

(FTIR), spektrometer fotopendarcahaya, konduktometer elektrik arus terus  dan penganalisis 

kesan Hall. Hasil yang menarik telah dicerap ketika medan magnet luar digunakan semasa 

proses hidrolisis TBOT dengan kehadiran cecair hablur. Komposit TiO2-5CB yang dihasilkan 

adalah lebih sejajar rapi dalam bentuk misai berbanding dengan komposit TiO2-8CB apabila 

campuran tindak balas diletakkan di bawah medan magnet. Hal ini disebabkan oleh saiz sterik 

8CB yang lebih besar berbanding 5CB. Sementara itu, komposit TiO2-5CB dan TiO2-8CB 

mempunyai bentuk sfera yang tidak teratur apabila tiada medan magnet digunakan. Selain itu, 

suatu hal yang agak menghairankan ialah TiO2-5CB yang berbentuk bahan satu dimensi yang 

sejajar rapi menunjukkan puncak anatas memandangkan bahawa tiada rawatan lanjut seperti 

pengkalsinan diperlukan. Keamatan puncak pancaran dalam spektrum fotopendarcahaya bagi 

komposit TiO2-5CB berbentuk bahan satu-dimensi yang sejajar rapi adalah lebih rendah 

berbanding komposit lain. Hal ini berkemungkinan disebabkan pemindahan elektron dari 5CB 

ke TiO2 dalam TiO2-5CB berbentuk bahan satu-dimensi yang sejajar rapi semasa penyinaran 

ultralembayung. Mekanisme yang sesuai yang boleh dikaitkan dengan pemindahan cas 

elektron ini dapat dijelaskan dengan pengiraan teori fungsi ketumpatan (DFT). Berdasarkan 

keputusan kajian, interaksi antara muka di antara cecair hablur dan TiO2 merupakan faktor 

utama untuk mengawal bentuk TiO2 semasa proses hidrolisis. Tambahan lagi, kekonduksian 

elektrik arus terus dan kajian kesan Hall menunjukkan bahawa TiO2 berbentuk bahan satu-

dimensi yang sejajar rapi dapat meningkatkan keupayaan mobiliti elektron. Oleh itu, 

peningkatan mobiliti elektron ini dapat menangguhkan penggabungan semula elektron dan 

lubang dan seterusnya meningkatkan aktiviti fotopemangkinan dalam pengoksidaan stirena. 

Berdasarkan hasil kajian di atas, hubungan di antara struktur dengan aktiviti fotopemangkinan 

bagi komposit TiO2 berbentuk bahan satu-dimensi yang sejajar rapi, yang disintesis di bawah 

medan magnet telah diperjelas dengan lebih terperinci dalam kajian ini. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Research 

 

 

Photocatalysis is a composite word which consists of two parts, “photo” and 

“catalysis”. The photo is known as light, whereas the catalysis is a process of when a 

substance contributes in modifying the rate of a chemical conversion of reactants 

without being altered or consumed in the end (Hermann, 1999; Linsebigler et al., 1995; 

Ohtani, 2017). The substance is identified as the catalyst, which increases the rate of 

reaction by reducing the activation energy. Meanwhile, photocatalysis is the process 

where a photocatalyst could be activated under light source, modifies the rate of 

chemical reaction without being involved itself (Ohtani, 2017). Both catalysis and 

photocatalysis are commonly studied with the aim to achieve higher activity and 

product selectivity in chemical reactions (Ohtani, 2017). There is a distinct difference 

in term of principle between catalysis and photocatalysis. For catalysis, a chemical 

reaction is accelerated by reducing the activation energy with the presence of active 

sites in the catalyst (Ohtani, 2010; Ohtani, 2017). On the other hand, photocatalysis is 

driven by the photoexcitation of a photocatalyst followed by the electron-hole transfer 

to reactants without involving the active sites in the photocatalysts (Ohtani, 2017). 

 

 

Among all the photocatalysts, titania/titanium dioxide (TiO2) has been 

intensively studied and used in many applications. TiO2 has been reported to shows 

the best photostability and highest sustained photocatalytic activity (Fox and Dulay, 

1993). Nevertheless, TiO2 also have strong oxidizing abilities (Nosaka et al., 2004; 
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Jańczyk et al., 2006) for decomposition of organic pollutants (Fujishima and Zhang, 

2006). The properties of low cost and environment friendliness make TiO2 a suitable 

material for many practical applications (Gupta and Tripathi, 2011). 

 

 

To the best of our knowledge, there are no rigid conclusion on the factors that 

affect the photocatalytic activity, although many studies have been carried out to 

modify the surface area (Shah et al., 2015; Nikhil et al., 2015), pore structure in terms 

of size, volume and shape (Rasalingam et al., 2015; He et al., 2015), band gap energy 

(Shah et al., 2015) and crystalline phase (Ouzzine et al., 2014) of TiO2. The 

enhancement of photocatalytic activity by adjusting these factors remains the focus in 

the field of TiO2 photocatalyst (Nakata and Fujishima, 2012). However, the main 

factor that affects the photocatalystic activity of TiO2 still remained unclear and 

becomes the grand challenge in the research field of TiO2 (Ohtani, 2017). In fact, there 

is one factor that most of the researchers agree with, which is the electron-hole 

recombination rate of TiO2 photocatalyst. When the light of appropriate energy is 

irradiated to a sensitizer, an electron (e-) from the valence band will be promoted to the 

conduction band, leaving an electron deficiency or hole (h+) in the valence band. Both 

h+ and e-, which are equivalently oxidizing and reducing in properties, respectively, 

will play the main roles in the redox reactions (Ohama and Gemert, 2011). 

 

 

Figure 1.1 shows the illustration of the electron-hole recombination in TiO2 

photocatalyst. The highest occupied molecular orbital (HOMO) and lowest unoccupied 

molecular orbital (LUMO) in TiO2 is termed as the valence band and conduction band, 

respectively (Asahi et al., 2001; Bahnemann, 2004). Focusing on the electronic 

process, irradiation of ultraviolet (UV) light will promote the electron to the 

conduction band leaving a hole in the valence band. This results in the excitation of 

electron-hole that will be used for next reaction, which is the reduction and oxidation 

process before the electron-hole recombination is occur. 
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Figure 1.1: Schematic illustration of the formation of photogenerated charge carrier 

(electron-hole) occurs upon absorption of ultraviolet (UV) light. 

 

 

 Many efforts have been done to decreases the rate of electron-hole 

recombination in TiO2 photocatalyst, i.e, addition of noble metals (Rupa et al., 2009; 

Papp et al., 1993; Wu and Lee, 2004), doping with transition metal cations (Choi et 

al., 1994; Fox and Dulay, 1993; and Prasad et al., 2009), anions (Diwald et al., 2004; 

Ao et al., 2010; Yu et al., 2002), metalloids (Xu et al, 2009) and structural 

dimensionality (Feng et al., 2014; Mingzheng et al., 2016; and Xia et al., 2003). As 

reported by Niu et al., the noble metals such as Ag, Au, Rh and Pt, have been used as 

co-catalyst of TiO2. This slightly affects the crystal phase and particle size of TiO2 

(Niu et al., 2016). Xin et al. also reported that doping TiO2 with Fe3+
 is able to reduce 

the electron-hole recombination rate, resulting in high photocatalytic activity. 

 

 

Another example would be the usage of one-dimensional structures, which are 

in the form of the tubes or fibers. In these structures, the low recombination is caused 

by the short diffusion of charge carrier (Nakata et al., 2011). Two-dimensional sheets 

have smooth surfaces and high adhesion (Katsumata et al., 2010). This led to the 
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potential application of self-cleaning coatings (Katsumata et al., 2010; Shichi et al., 

2010). Meanwhile, three-dimensional has the interconnected structure with pores, 

which provides a significant benefit for efficient diffusion pathways for reactants, such 

as organic pollutants (Nakata and Fujishima, 2012). Based on the above 

considerations, it can be considered that the photocatalytic activity of TiO2 is affected 

by the shape of the photocatalyst. Figure 1.2 shows the illustration of structural 

dimensionalities; one-dimensional, two-dimensional and three-dimensional with their 

properties. 

 

 
 

Fiber/Tube 

Sheet 

Reduce recombination of 

electron-hole 

High adhesion 

Bulk 

Interconnected 

structure 

 

Figure 1.2: Schematic illustration of the structural dimensionality of materials with 

their properties (Nakata and Fujishima, 2012). 

 

 

 In the past few decades, the one-dimensional structure of TiO2 has attracted 

more attention compared to the two-dimensional and three-dimensional structures. It 

has been reported that the fiber, rod, wire and tube-like materials were considered as 

the one-dimensional structure (Xia et al., 2003, Nakata and Fujishima, 2012; 

Mingzheng et al., 2016). The one-dimensional structure of materials has unique 

electronic properties since it has been reported that the structure of one-dimensional 
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materials can decrease the electron-hole recombination (Mingzheng et al., 2016; Xia 

et al., 2003). In comparison with three-dimensional structure of materials, the 

probability of electron to recombine with hole reduced ca. 33% since one-dimensional 

structure has one degree of freedom compared to the three-dimensional structure, 

which have three degree of freedom. One explains that the density of state for one-

dimensional materials, which can be referred as quantum wires, is in such a way, hence 

the electron and hole are less likely to recombine compared to the two-dimensional 

and three-dimensional materials since there is no steps in density of state as an increase 

in the energy of electron (Hicks, 1996; Mao et al., 2016). 

 

 

As stated by Feng et al., and Mingzheng et al., the one-dimensional TiO2 

showed excellence photocatalytic activity performance and the phenomenon was 

explained by the electron-hole recombination (Feng et al., 2014; Mingzheng et al., 

2016). Apart from that, various strategies have been designed for the preparation of 

one-dimensional structure, such as sol-gel template method, chemical vapor deposition 

(CVD) and hydrothermal method (Lia et al., 2009, Wu and Yu, 2004; Attar et al., 

2009). Hence, this study has been focused on the one-dimensional structure of TiO2 

photocatalyst and its photocatalytic performance in order to clarify the effect of the 

shape.  

 

 

 In this study, well-aligned one-dimensional-like TiO2 composite has been 

synthesized, which possesses one-dimensional-like structure by sol-gel method under 

magnetic field (0.3 T) with the aid of liquid crystals as the structure-aligning agent. 

The aim is to prove that the well-aligned one-dimensional-like TiO2 composite affects 

the electron-hole recombination’s rate, as well as the photocatalytic performance. The 

well-aligned one-dimensional-like TiO2 composite possesses unique properties and 

advantages to the photocatalytic activity due to the higher surface to volume ratio that 

enables a reduction in the electron-hole recombination rate and high interfacial charge 

carrier transfer rate, which in-return gave benefit for the photocatalytic activity (Nakata 

and Fujishima, 2012). The well-aligned one-dimensional-like TiO2 composite can 

effectively reduce the recombination rate of electron-hole and distance for charge 

carrier diffusion (Nakata and Fujishima, 2012). 
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The magnetic field (MF) technique is used to synthesize well-aligned one-

dimensional-like TiO2 composite since as stated by Yamaguchi and Tanimoto works, 

all of the materials can be aligned via the magnetic field included diamagnetic 

materials (Yamaguchi and Tanimoto, 2006). Therefore, this study hypothesized that 

the well-aligned one-dimensional-like TiO2 composite can be synthesized under 

magnetic field using liquid crystal as the structure aligning-agent and this photocatalyst 

can enhance the photocatalytic activity due to the lower recombination rate of electron-

hole. 

 

 

 

 

1.2 Problem Statement 

 

 

To date, many efforts have been carried out to study the main factor that affects 

the photocatalytic activity of TiO2 even though many studies have been carried out on 

modification of TiO2. This is the grand challenge in the research field of TiO2 where 

the main factors that affect the photocatalytic activity of TiO2 still remained unclear 

and discussed until nowadays. In previous study, there are many study on the synthesis 

of one-dimensional-like material has been done, however, the comprehensive study on 

the correlation between the material and the photocatalytic performance was not 

discussed. Therefore, in this study was focused on proving the concept that the aligned 

structure affects the performance of photocatalytic activity due to the several factors, 

such as electron-hole recombination rate, surface area and structural phase, and it was 

clarified using calculation in order to obtain the possible mechanism.  

 

 

In order to prove this concept, well-aligned one-dimensional-like TiO2 

composite, which has a one-dimensional-like structure has been synthesized. The well-

aligned one-dimensional-like TiO2 composite was synthesized via sol-gel method in 

magnetic field (0.3 T) with the aid of liquid crystals as the structure aligning-agent. 

The sol-gel method under the magnetic field is the simplest and cheapest method. The 

TiO2 was chosen as the photocatalyst because it has good photocatalytic properties and 

has being widely studied in photocatalysis field. Liquid crystals was used as the 
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structure aligning-agent since it has magnetic properties and can be aligned under 

magnetic field.  

 

 

After the well-aligned one-dimensional-like TiO2 composite has been 

successfully synthesized, the photocatalyst was subsequently characterized by several 

instruments to study their morphology, thermal, structural, interaction and optical 

properties. These characterizations are important for discussing the relationship of the 

shape of TiO2 with its properties. Then, the photocatalytic activity of the well-aligned 

one-dimensional-like TiO2 composite was tested out in the oxidation reaction. The 

testing was carried out to examine the effect of well-aligned one-dimensional-like TiO2 

towards the photocatalytic activity, as well as to prove that the one-dimensional-like 

structure affects the electron-hole recombination. Figure 1.3 shows the flow of the 

strategies in this study to overcome the problem. 
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Synthesis of well-aligned titania using liquid crystals as structure aligning-

agent under magnetic field 

 
Concept 

 Well-aligned TiO2 (one-dimensional-like structure) 

affected the photocatalytic performance due to the 

less recombination rate of electron-hole. 

 
 
 
 
 

Prove of concept 

 Synthesis the well-aligned TiO2 with the aid of liquid 

crystals as structure aligning-agent under magnetic 

field. 

 Characterizations : 

• Morphology 

• Thermal 

• Structural 

• Functional group 

• Interfacial interaction TiO2/5CB 

 Photocatalytic activity testing – study the relationship 

with the well-aligned TiO2 with the aid of liquid crystals 

as structure aligning-agent. 

 

Hypothesis 
 

 Well-aligned TiO2 with the aid of liquid crystals as structure aligning-agent 

synthesized under magnetic field affected the photocatalytic activity through 

decrease the recombination rate of electron-hole via plausible mechanism of 

electron charge transfer. 

 

 

Figure 1.3: The schematic flow of conceptual study and the hypothesis. 
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1.3 Objective of Research 

 

 

This study provides comprehensive discussion about the correlation between 

the physicochemical properties of well-aligned one-dimensional-like TiO2 composites 

with its photocatalytic activity. Hence, the main objectives of this study are: 

 to synthesize well-aligned one-dimensional-like TiO2 composites under 

magnetic field using liquid crystals as structure aligning-agent by sol-gel 

method.  

 to characterize the physicochemical properties of well-aligned one-

dimensional-like TiO2 composites. 

 to evaluate the photocatalytic activity of well-aligned one-dimensional-like 

TiO2 composites in the oxidation of styrene. 

 

 

 

 

1.4 Scope of Research 

 

 

 In this study, magnetic field was applied to synthesize the well-aligned one-

dimensional-like TiO2 composites with liquid crystal as the structure aligning-agent. 

The well-aligned one-dimensional-like TiO2 composites were successfully synthesized 

by sol-gel method under magnetic field using tetra-n-butyl orthotitanate (TBOT) as the 

TiO2 precursor in the presence of liquid crystals, with slow hydrolysis process. The 

liquid crystals used were 4-cyano-4’-pentylcarbonitrile (5CB) and 4-cyano-4’-

octylcarbonitrile (8CB), which are in nematic and smectic A phase, respectively 

(Matsuhashi et al., 2002). The liquid crystals acted as structure- aligning-agent since 

these materials have magnetic properties and can be aligned under magnetic field. The 

synthesis process was performed with and without magnetic field (up to 0.3 Tesla).  

 

 

 Several techniques were used to characterize the composites sample, such as 

scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), 

X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, 

photoluminescence (PL) spectroscopy, thermal gravimetric analysis (TGA), nitrogen 

adsorption-desorption analysis, diffuse reflectance ultraviolet visible (DR UV-Vis) 
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spectroscopy, Hall effect studies and direct current (DC) electrical conductivity. The 

physicochemical properties were examined from the aspects of morphology, surface 

area, thermal stability, structural analysis and the interactions properties of well-

aligned one-dimensional-like TiO2 composites. The gas chromatography (GC) were 

used to examine the photocatalytic activity in oxidation of styrene. Besides that, 

photoluminescence (PL) spectroscopy was used to investigate the recombination rate 

of electron-hole. Through this PL characterization, the mechanism of the electron 

charge transfer during the photocatalytic oxidation of styrene could be derived by 

differential functional theory (DFT) calculation. Therefore, the physicochemical 

properties of well-aligned one-dimensional-like TiO2 composites can be correlated to 

enhance the performance of photocatalytic activity. 

 

 

 

 

1.5 Significance of Research 

 

 

This study highlighted two significances. First, a new technique to synthesize 

well-aligned one-dimensional-like TiO2 using sol-gel method under magnetic field 

(0.3 T) with liquid crystal as the structure aligning-agent has been developed. This 

strength of magnetic field was used since the liquid crystals can aligned very well 

under this strength of magnetic field. Second, the shape dependence of TiO2 

photocatalyst was explored. The novelty of this study is the synthesis of well-aligned 

one-dimensional-like TiO2 using a framework of both inorganic precursor and organic 

aligning-agent under magnetic field effect. From the well-aligned one-dimensional-

like TiO2, it can be examined whether the one-dimensional-like structure affects the 

performance photocatalytic activity due to the electron-hole recombination. 
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