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ABSTRACT  

 

 

 

Evolving Spiking Neural Network (ESNN) is widely used in classification 

problem. However, ESNN like any other neural networks is incapable to find its own 

parameter optimum values, which are crucial for classification accuracy. Thus, in this 

study, ESNN is integrated with an improved Particle Swarm Optimization (PSO) 

known as Dynamic Population Particle Swarm Optimization (DPPSO) to optimize the 

ESNN parameters:  the modulation factor (Mod), similarity factor (Sim) and threshold 

factor (C). To find the optimum ESNN parameter value, DPPSO uses a dynamic 

population that removes the lowest particle value in every pre-defined iteration.  The 

integration of ESNN-DPPSO facilitates the ESNN parameter optimization searching 

during the training stage. The performance analysis is measured by classification 

accuracy and is compared with the existing method. Five datasets gained from 

University of California Irvine (UCI) Machine Learning Repository are used for this 

study. The experimental result presents better accuracy compared to the existing 

technique and thus improves the ESNN method in optimising its parameter values.  
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ABSTRAK 

 

Rangkaian Neural Pakuan Berevolusi (ESNN) digunakan secara meluas dalam 

masalah mengklasifikasi. Walau bagaimanapun, ESNN seperti mana rangkaian saraf 

lain tidak mampu untuk mencari nilai optimum parameter sendiri, untuk ketepatan 

klasifikasi. Oleh itu, dalam kajian ini, ESNN digabungkan dengan Pengoptimuman 

Kelompok Partikel (PSO) yang lebih baik yang dikenali sebagai Pengoptimuman 

Kelompok Partikel Dinamik (DPPSO) untuk mengoptimumkan parameter ESNN: 

faktor modulasi (Mod), faktor kesamaan (Sim) dan faktor ambang (C). Untuk mencari 

nilai parameter ESNN optimum, DPPSO menggunakan populasi yang dinamik yang 

menghilangkan nilai zarah terendah dalam setiap lelaran yang telah ditentukan 

sebelumnya. Penyepaduan ESNN-DPPSO memudahkan pencarian pengoptimuman 

parameter ESNN semasa proses latihan. Analisis prestasi diukur dengan ketepatan 

klasifikasi dan dibandingkan dengan kaedah yang sedia ada. Lima dataset yang 

diperoleh dari Repositori Pembelajaran Mesin University of California Irvine (UCI) 

digunakan untuk kajian ini. Hasil kajian menjelaskan ketepatan yang lebih baik 

berbanding dengan teknik sedia ada dan dengan itu meningkatkan kaedah ESNN 

dalam mengoptimumkan nilai parameternya 
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CHAPTER 1 

 

 

 

INTRODUCTION 

1.1 Overview 

Neural networks have influence many researchers in solving problems related 

to classification, speech recognition and prediction. Neural network is dependent on 

its parameter to establish the best result. Neural networks, inspired by the human 

brain, are gaining popularity nowadays due to their capability in solving various 

problems. The prominent model of the neural network is the Artificial Neural 

Network (ANN); a group of processing components in a collective network which 

resembles the features of a biological neural network (Sedghi et al., 2014). In ANN, 

training a network is the process of varying the weights in between layers of a network 

to obtain the preferred output (Gautam, 2016). The Mcculloch and Pitts Artificial 

Neuron Model (MPAN) introduced in 1943 is the basic form of the neural network 

(Narain et al., 2007).  

 

The Spiking Neural Network (SNN) is the recent and in the third generation of 

neural network. Evolving Spiking Neural Network (ESNN) is a well-known SNN 

architecture. ESNN has latest spiking neuron that evolves (Hamed, 2012). ESNN has 

the ability to fast learning where it studies a new pattern that comes from the incoming 

data in one pass-mode that will form a new network without retraining (Dhoble et al., 

2012). ESNN is widely applied to solve classification issue (Hamed, 2012; Saleh et 

al., 2014; Dora et al., 2018), prediction problem (Arya et al., 2016) and pattern 

recognition (Wang et al., 2015). 
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ESNN is useful for data processing; however, the main issue arises is in 

deciding the optimum parameter values for a dataset (Saleh et al., 2014). For every 

neural network there are parameters involved and some approaches are employed for 

parameter setting such as manual tuning or an automated process using an optimizer 

(Silva et al., 2014). The parameter refinement in ESNN is important since its 

influence the output result. Thus, an optimizer algorithm helps ESNN to find its 

parameter optimum value. There are many types of optimizer algorithm such as 

Dynamic Population Particle Swarm Optimization, Genetic Algorithm, Evolutionary 

Algorithm, Particle Swarm Optimization and much more. Hence, a new approach is 

proposed in this research to solve the data classification problem using an Evolving 

Spiking Neural Network (ESNN) with Dynamic Population Particle Swarm 

Optimization (DPPSO) as an optimizer 

1.2 Problem Background 

Spiking Neural Network (SNN) falls into the third generation of Artificial 

Neural Networks (ANN). The Evolving Spiking Neural Network is one of the 

prominent SNN architecture. This model is believed to be an auspicious technique due 

to its simplicity, a competent neural model and rapid one-pass learning. However, 

according to Saleh et al. (2014) the fundamental problem encountered in ESNN is that 

the manual tuning of the parameters needs to be done since deciding the optimum 

value for the parameters for a dataset is crucial.  

 

 ESNN consist of three parameters where its value can be changed accordingly, 

these are known as the modulation factor (Mod), the threshold (C) and the similarity 

factor (Sim). According to Hamed et al. (2009) similar to other neural network models, 

ESNN also needs the right parameter mixture for the network execution. Since these 

parameters influence the segregation outcome, the ESNN capability and is reliant on 

data to be categorized, further improvement of the model is necessary in terms of 

optimizing its parameter (Schliebs et al., 2010). 
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ESNN model is unable to find its own parameter optimal value. Therefore, an 

optimizer algorithm helps the ESNN to optimize its parameter. Several ESNN 

integrated with an optimizer algorithm has been done previously to cater the issue 

(Schliebs et al., 2009; Hamed et al., 2009; Saleh et al., 2014). The previous works 

demonstrate an improvement in ESNN performance. However, there are many 

potential optimizers that are worth explored in order to solve this issue more 

efficiently. One of the optimizer algorithms notable by many to solve parameter setting 

is Particle Swarm Optimization (He et al., 2017; Harrison et al., 2017; Zhu et al., 

2017). 

 

PSO was introduced by Kennedy and Eberhart and was inspired by the nature 

of bird flocking (Kennedy, 2010; Eberhart and Kennedy 1995). PSO is easy to apply, 

has less parameter to regulate and proven to be robust in resolving optimization issue 

(M’hamdi et al., 2016). However, according to Saxena et al., 2015, the PSO has 

disadvantages such as trap in local optima. Thus, recent studies have shown that PSO 

need improvement to enhance the quality of the objective function by manipulating 

the particle population and known as Dynamic Population Particle Swarm 

Optimization (DPPSO) (M’hamdi et al., 2016; Saxena et al., 2015; Leong and Yen, 

2008).  

 

DPPSO has the ability to dynamically manipulate its population to find the best 

fitness value. The manipulation of the DPPSO population can increase or decreasing. 

Previous work has proven that by removing or adding a single particle can improve 

the performance of the algorithm (Soudan and Saad, 2008; Sun et al., 2007; Tundong 

et al., 2012). However, according to Soudan and Saad, 2008, iteratively decreasing the 

population size is better in terms of accuracy. Previous work has shown that the 

dynamic PSO is used for parameter estimation (Liu, te al., 2017; M’hamdi et al., 2016; 

Khan et al., 2016; He et al., 2017). Thus, DPPSO is a promising candidate to integrate 

with ESNN to automate the parameter setting. 
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1.3 Problem Statement 

ESNN architecture that has spiking neuron, one pass learning where the ability 

to process data is faster since it eliminates retraining data. It has shown promising 

result in data processing (Saleh et al., 2014). However, similar to other neural network, 

ESNN needs parameter refining and incapable to find its parameter optimum value 

(Silva, et al., 2014). The process of parameter setting in manual tuning by trial and 

error approach is a challenging task. Based on previous work by (Hamed, 2012; Saleh 

et al., 2014, Schliebs and Kasabov, 2013) shows that ESNN model is integrated with 

an optimizer algorithm to enhance its performance result. However, no previous work 

has applied dynamic population PSO with ESNN model to solve classification 

problem. Thus, for this research, an integration of dynamic population PSO (DPPSO) 

with ESNN is proposed in resolving classification issue. 

1.4 Aim of Study 

The aim of this study is to enhance the Evolving Spiking Neural Network 

learning for classification problems with the help of the parameter optimization 

technique called new Dynamic Population Particle Swarm Optimization algorithm. 

1.5 Research Question 

The research questions to address the research objective are as follows:. 

i) How to optimize ESNN for best performance in solving classification 

problem? 

ii) How to enhance PSO as a new and effective Evolving Spiking Neural 

Network parameter optimizer? 

iii) What is the optimum value of ESNN parameters?  
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1.6 Research Objectives 

The objectives of the study are as follows: 

 

i) To develop an integrated ESNN and DPPSO model to solve 

classification problem. 

ii) To introduce new dynamic-population-PSO (DPPSO) as an effective 

parameter optimizer for ESNN. 

iii) To discover the optimum values of ESNN parameters 

1.7 Research Scope 

In this research, the following scope will be covered to achieve the stated goals:  

 

i) The proposed algorithm is to solve classification problems. 

ii) The proposed architecture will optimize three ESNN parameters 

namely the Modulation Factor, Similarity Factor and the Threshold.  

iii) Testing of the algorithm will use five benchmark datasets, specifically 

the Iris, Breast Cancer, Pima Indian Diabetes, Heart and Wine datasets 

from UCI Machine Learning. 

iv) Performance will be measured based on classification accuracy as 

implemented by other researchers in the same field.  

1.8 Research Significance 

The significance of the research is as follows. Firstly, utilize DPPSO with 

evolving spiking neural network to optimize ESNN parameter. The ESNN model is 

dependent on parameter tuning. Thus, an optimizer is needed to help automate the 

process of determining the ESNN’s parameter optimum value (Saleh et al., 2014). The 

proposed DPPSO implement dynamic population where a lowest fitness particle is 
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removed in every 20% of the cycle. This in returns will create a population that has 

only good fitness value. Thus, an optimum value for ESNN parameter can be selected 

easily by using DPPSO. 

 

Secondly, DPPSO has not been applied yet to optimize ESNN parameter. 

Previous studies using an optimizer algorithm for the evolving spiking neural network 

include the use of the Differential Evolution Algorithm (Saleh et al., 2014), Particle 

Swarm Optimization (Hamed et al., 2011), Rank Order Learning (Dhoble et al., 2012) 

and Quantum Inspired SNN (Schliebs et al., 2010).  

1.9 Research Outline 

This part describes the organization of the research outline: 

 

Chapter 1: This chapter presents the introduction to the research that includes 

the introduction, problem background, problem statement and the aim of the study, 

objectives, research scope and the research significance.  

 

Chapter 2: This chapter provides the literature review relating to the research. 

This comprises the overview of the neural network which includes types of neural 

network, the architecture and the applications of the neural network.  

 

Chapter 3: This chapter describes the research methodology of the research. It 

presents the research framework, data description and algorithm overview of the 

Evolving Spiking Neural Network and Dynamic Population Particle Swarm 

Optimization.  

 

Chapter 4: This chapter provides the results of the proposed ESNN-DPPSO for 

classification issue. Also, the empirical analysis of the existing optimization technique 

is discussed.  

 



7 

 

Chapter 5: This chapter presents the conclusion and future work. 

1.10 Publication 

Throughout the two years of study, the following publications have been 

accepted to be published: 

v) Said, N. N. M., Hamed, H. N. A., and Abdullah, A (2017). The 

Enhancement of Evolving Spiking Neural Network with Dynamic 

Population Particle Swarm Optimization. Communications in 

Computer and Information Science, 752, 95-103. Springer. (Scopus 

indexed) 

 

vi) Said, N. N. M., Hamed, H. N. A., and Abdullah, A (2017). The 

Integration of Evolving Spiking Neural Network with Dynamic 

Population Particle Swarm Optimization. Accepted in ICEEI2017 and 

to be published in Scopus indexed journal (IJEECS or IJEEI). 

1.11 . Summary 

This chapter first describes the introduction to the research. Next, the problem 

background to the research is presented. Then, the aim of the study is described and 

the objectives of the research are explained. Later, the scope and also the significance 

of the study are addressed. The research outlines are then further reviewed. The next 

chapter will present the literature review relating to the research. 
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