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Laser-induced plasma spectroscopy (LIPS) is a spectroscopy that utilizes laser 

induced plasma as an emission source. The most challenging part in dealing with emission 

lines is the self-absorption (SA) which distorts the profile and reduces emission intensity of 

the spectrum. Resonant lines are most prominent lines of an element in the spectrum and at 

the same time most prone to SA. This project focuses on the impact of experimental 

parameters; laser energy and gate delay on the SA coefficient of emission lines which depends 

on two plasma parameter namely electron temperature, Te and electron density, Ne. A sample 

made of Al, Mn and Zn embedded in KBr matrix was irradiated with Nd:YAG laser and the 

plasma signals were recorded using optical spectrometer attached to a delay unit. The atomic 

and ionic spectral lines of Al, Mn and Zn were observed in the spectra. The lines were verified 

using references and National Institute of Standards and Technology (NIST) database. 

Resonant lines are Al I 256.4 nm, Al I 265.6 nm, Al I 308.2 nm, Mn I 403.3 nm, Mn II 259.4 

nm and Mn II 260.1 nm. The laser energy was varied from 5 to 650 mJ at a fixed gate delay 

of 3.75 μs, meanwhile, the gate delay was varied from 0 to 23.75 μs at a fixed laser energy of 

650 mJ. The intensity of the emission lines was found increasing in response to higher laser 

energy. The emission lines of Al, Mn and Zn was found initially increased in intensity within 

first 1 µs, but then it decreased as the increasing delay time. Te was calculated using the 

intensity ratio method applied on Mn I 257.6 nm and Mn I 422.5 nm emission lines and Ne 

was determined using Stark broadening method of Hα-line 656.3 nm. The SA coefficient was 

calculated for both experimental parameters, by using resonant lines Al I 308.2 nm and Mn II 

259.4 nm, and non-resonant lines; Al I 309.1 nm and Mn I 257.6 nm. SA coefficient has 

variation from 0 to 1. The maximum value of the coefficient indicates that the emission lines 

is free from SA. The SA coefficient was found to increase from 0.3 to 0.9 as the laser energy 

increased resulting from rise in Te and Ne of the plasma. Meanwhile, the increasing gate delay 

caused the SA coefficient to decrease from 0.9 to 0.1, where the emission lines are more prone 

to SA. This is due to the decreasing of Te and Ne. This work has emphasized on implementation 

of higher laser energy and shorter gate delay of LIPS experimental parameters as response to 

SA coefficient. It will save time and effort and lead to reliable plasma diagnostics, as well as 

pioneers in studying plasma opacity. 
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Spektroskopi plasma aruhan laser (LIPS) ialah satu spektroskopi yang menggunakan 

plasma aruhan laser sebagai sumber pancaran. Bahagian paling mencabar berkaitan garis 

pancaran ialah penswaserapan (SA) yang mana merencatkan profil dan mengurangkan 

intensiti pancaran spektrum. Garis resonans adalah garis yang paling menonjol bagi unsur 

dalam spektrum dan pada masa yang sama paling cenderung kepada SA. Projek ini 

memfokuskan impak parameter eksperimen; tenaga laser dan pintu penangguhan terhadap 

koefisien SA garis pancaran yang bergantung kepada dua parameter plasma iaitu suhu 

elektron, Te dan ketumpatan elektron, Ne. Satu sampel diperbuat daripada Al, Mn dan Zn 

tertanam di dalam matriks KBr telah dipancarkan dengan laser Nd: YAG dan signal plasma 

direkodkan menggunakan spektrometer optik yang disambungkan kepada satu unit 

penangguhan. Garis spektrum atom dan ion Al, Mn dan Zn diperhatikan dalam spektrum. 

Garis ini disahkan menggunakan rujukan dan pangkalan data National Institute of Standards 

and Technology (NIST). Garis resonans adalah Al I 256.4 nm, Al I 265.6 nm, Al I 308.2 nm, 

Mn I 403.3 nm, Mn II 259.4 nm dan Mn II 260.1 nm. Tenaga laser berubah daripada 5 kepada 

650 mJ pada pintu penangguhan tetap 3.75 μs, sementara itu, pintu penangguhan diubah 

daripada 0 kepada 23.75 μs pada tenaga laser tetap 650 mJ. Intensiti garis pancaran didapati 

semakin meningkat sebagai tindak balas kepada peningkatan tenaga laser. Garis pancaran Al, 

Mn dan Zn didapati pada mulanya meningkat dalam 1 μs yang pertama tetapi selepas itu ia 

menurun sebagaimana pintu penangguhan meningkat. Te dikira menggunakan kaedah nisbah 

intensiti yang digunakan pada garis pancaran Mn I 257.6 nm dan Mn I 422.5 nm dan Ne telah 

ditentukan menggunakan kaedah perluasan Stark bagi garis pancaran Hα 656.3 nm. Koefisien 

SA dihitung untuk kedua-dua parameter eksperimen dengan menggunakan garis resonans; Al 

I 308.2 nm dan Mn II 259.4, dan garis tidak resonans; Al I 209.1 nm dan Mn II 257.6 nm. 

Koefisien SA mempunyai variasi daripada 0 hingga 1. Nilai maksimum koefisien 

menunjukkan bahawa garis pancaran bebas daripada SA. Koefisien SA didapati meningkat 

apabila tenaga laser meningkat daripada 0.3 kepada 0.9 berikutan peningkatan Te dan Ne 

plasma. Sementara itu, penangguhan pintu yang semakin meningkat menyebabkan koefisien 

SA menurun,daripada 0.9 kepada 0.1 dengan garis pancaran lebih cenderung kepada SA. Ini 

disebabkan oleh penurunan Te dan Ne. Kerja ini telah memberi penekanan kepada pelaksanaan 

tenaga laser yang lebih tinggi dan pintu penangguhan yang singkat dalam eksperimen 

parameter LIPS sebagai tindak balas kepada koefisien SA. Ia akan menjimatkan masa dan 

ABSTRAK 
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usaha dan membawa kepada diagnostik plasma yang boleh dipercayai, serta perintis dalam 

mengkaji kelegapan plasma.  
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INTRODUCTION 

1.0 Introduction 

This chapter consists of the introduction to thesis, overview of the study, 

problem statement, objectives, scope, and research significance which are explained 

in respective sections.  

1.1 Overview of Study 

Laser-induced plasma spectroscopy (LIPS), also known as laser-induced 

breakdown spectroscopy (LIBS), is a spectroscopy that utilizes laser induced plasma 

as an emission source. LIPS reported to be a future plasma diagnostic tool as compared 

to established analytical atomic spectrometry. [1] It is a technique commonly used in 

identification of constituents of unknown sample by ablating a small amount of the 

sample into hot dense plasma and capturing its emission line spectrum. [1-5] The 

contribution of LIPS has been expanded to various applications, for instance, remote 

material assessment in nuclear power stations, [2,3] high-tech textile industry, [4] 

space exploration, [5,6] archaeological objects, [7,8] biomedical [9,10], forensic 

purposes, [11–16] agricultural development, [17–19] and so forth. Today, LIPS is 
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considered as an attractive and effective technique as it is a simple and offers fast multi-

elemental analysis. 

LIPS operates as an energetic laser pulse is focused onto a sample surface and 

a small amount of the material is ablated, vaporized and ionized into a plasma plume 

which radiates characteristic spectral lines. The ablated material compresses the 

surrounding atmosphere and leads to formation of a shock wave.  During this process, 

a wide variety of phenomena including rapid local heating, melting and intense 

evaporation involved. Plasma plume formed above the sample surface due to the 

expansion of evaporated material. At initial stage of plasma evolution, Bremsstrahlung 

process is predominant, where the free electrons release energy upon deceleration 

while passing through the electric fields generated by nuclei. A significant amount of 

energy is transferred to the atoms and ions by collisions and hence collisional 

ionization takes place. Those electrons absorbed more energy from laser pulse 

producing more ions. It results in the formation of plasma, also known as breakdown 

plasma. The breakdown process is a threshold process which strongly depends on 

physical parameters such as ambient pressure and environment, laser parameters 

(including wavelength, pulse energy, pulse duration and irradiance) and the nature of 

material. These parameters can contribute towards the dynamical behaviour of the 

plasma. The emitted light from the excited species have distinguished spectral 

signatures of the matter that provides information to the plasma and the sample 

composition. Optical emission spectrometer is used to measure the emitting radiation. 

The light emission is characterized by a continuum spectrum containing discrete 

atomic/ionic lines. Neutral lines, ionic lines and the continuum emission decay with 

time. Generally, the continuum spectrum decay faster than the atomic lines allowing 

the possibility of detecting atomic lines with a good signal strength by varying the 

delay and the integration time of the detector gate. [1,2,19-24] 

LIPS is an appealing technique in optical emission spectrometry (OES) due to 

its ability to perform multi-elemental analysis of a wide variety of samples as liquid, 

solid, gas and aerosols. [2,22,23] From the aspect of spectrochemical analysis of 

elements, LIPS has many advantages over other conventional spectroscopic techniques 



3 

because the plasma is formed by focused optical radiation. [24] LIPS signals can give 

out the elemental composition in multi-elemental samples. Generally, the advantage 

of LIPS highlights that the sample preparation is either not necessary or very minimal. 

[25–27] It is also an almost non-destructive [28,29] and contactless technique [23] that 

provides direct characterization of the sample. LIPS has powerful capability in 

carrying out remote on line and in-situ analysis of the samples particularly situated in 

the hostile and harsh environments. [23] 

Some of the disadvantages of LIPS technique is due to current hardware and 

software restrictions and fundamental physical processes. It has low precision and 

depends on operational parameters and ambient conditions. [22,30,31] In addition, 

self-absorption (SA) poses a big challenge in LIPS analysis. It is the absorption of 

radiation within the plasma which results in weaker signal than the original emission 

intensity. It can cause large error or even wrong estimations from the results more 

specifically when dealing with quantitative investigations. SA occurred as the plasma 

reabsorbs the light photons generated in prior emissions. [21-23] Thus, the results may 

not reflect the true condition of the plasma i.e., its composition, temperature and 

density. .  

 There has been much activity on investigating the influencers of SA in laser 

induced plasmas in recent years.  [18,20,30–54] The published works reports on 

exploring various conditions such as different elemental concentrations and samples, 

[19,41,42] ambient conditions i.e gas environment and pressure, [43–48] optimized 

laser parameters i.e type of laser, laser energies, and gate delay. [27,32,34,49,50] New 

approaches on reducing and correcting SA are also proposed by researchers [39,40,51–

55] but these are not being widely utilized. Instead, researchers tend to work within 

the conditions which do not significantly favor self absorption. 

Therefore, this study investigates the impact of experimental parameters; i.e., 

gate delay and laser energy on the self-absorption of emission lines and plotting 

calibration curves of aluminum (Al), manganese (Mn) and zinc (Zn) for a range of 

concentrations. A series of samples with known concentrations of aluminium (Al), 
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manganese (Mn) and zinc (Zn) are selected for the purpose of this study. Powders of 

these elements are mixed with KBr pressed to form  hard pellets. The effect of variation 

in experimental parameters is then studied on plasma parameter and self-absorption of 

the emission lines.  

1.2 Problem Statement 

LIPS has more advantages compared to other contemporary analytical 

techniques for elemental analysis of a material. It is simple, fast and flexible, 

particularly useful for in-situ applications beyond laboratories. The selected emission 

lines from LIPS spectra have significant role in the quality of measurements. The most 

challenging part in dealing with emission lines is the self-absorption (SA). The actual 

spectrum might be affected by the self-absorption by distorting the profile and showing 

less emission intensity than the actual.  Generally, resonant lines are most prominent 

lines of an element in the spectrum and at the same time most prone to SA. If such 

lines are utilized for investigations, the results will not be reflecting the actual value. 

This will affect the authenticity and reliability of LIPS measurements. In addition, 

these lines can provide vital information about SA of rest of the emission lines of the 

same element. The SA varies in response to the variation in experimental parameters 

such as time window of measurement, laser energy and ambient environment. The 

knowledge about optical thickness of emission lines under various experimental 

conditions is therefore of significant importance. Thus, this research is aimed to study 

the impact of gate delay and laser energy on self-absorption of resonant and non-

resonant emission lines of Mn, Al and Zn from laboratory prepared samples in order 

to find out experimental conditions which are most favourable in obtaining signal with 

minimal self-absorption.  
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1.3 Objectives 

The general objective of this research is the investigation of the effect of 

experimental conditions on SA of emission lines in response to experimental 

parameters. The impact of laser energy and temporal window measurements will be 

studied. 

Specific objectives of the study are;  

1. To identify and select resonant and non-resonant spectral lines of 

aluminium (Al), manganese (Mn) and zinc (Zn) in LIPS spectra. 

2. Optimization of experimental parameters for quantitative measurements  

3. To calculate electron temperature and electron density of plasma as 

response to laser energy and gate delay 

4. To calculate SA coefficient of selected spectral lines at different laser 

energies and gate delays. 

5. To plot and improve the linearity of calibration curves of Al, Mn and Zn 

at optimized experimental parameters. 

1.4 Scope of Study 

This study is focusing on the self-absorption of emission lines of Al, Mn and Zn 

from the LIPS spectra of laboratory prepared samples. Pelletized samples were 

prepared in the laboratory with known concentrations of Al, Mn and Zn in potassium 

bromide (KBr) matrix. Experiments were performed to study the influence of temporal 

window of measurement (0 – 23.75 μs) and laser energy (0 - 650 mJ). These 

parameters are of fundamental importance for LIPS investigations in natural 

environment.    



6 

 

Most suitable mathematical procedures (found in literature) applied to the 

experimental data for estimation of plasma conditions and self-absorption in spectral 

lines. For spectroscopic data of emission lines, our main source was NIST atomic 

spectral database besides published literature. Resonans and non-resonans lines from 

the spectra are identified. Plasma parameters (electron density, plasma temperature) 

are calculated to acquire knowledge about plasma conditions that also influence the 

SA of emission lines. Electron temperature is calculated using Intensity Ratio Method 

and electron density is calculated using Stark broadening Method. SA coefficient is 

calculated as response to different laser energies and gate delays. Calibration curves 

are plotted using intensity of spectral lines of each of the elements and the effect of 

standard and local normalization is investigated on linearity of the plots. 

 

1.5 Significance of Study 

This research is significant from both fundamental and application perspective. 

Self-absorption of emission lines raises issues in fundamental investigations of plasma 

and also makes the quantitative estimation of sample composition difficult. This work 

will contribute to the understanding of SA as response to laser energy and date delay. 

Special emphasis is on resonant lines which are most prone to self-absorption, if 

resonant lines are free from self-absorption under certain experimental conditions, 

other lines (non-resonant) can safely be considered optically thin. By estimating the 

magnitude of self-absorption, one can easily select suitable experimental to expect 

acceptable results for specific investigations. With the knowledge of SA coefficient, a 

correction factor can be introduced for accurate plasma diagnostics. It will save 

significant amount of precious time and efforts to produce reliable plasma diagnostics. 
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This will open up doors in studying plasma opacity from various unexplored 

perspectives.  

 

1.6 Thesis Structure and Organization 

This thesis is divided into five chapters. Chapter 2 will furnish a review on 

relevant published literature. The description of this LIPS technique includes its 

history, pros and cons, and prominent applications. In the next section, working 

principle of LIPS is discussed, which includes laser ablation, plasma formation, 

spectral emission lines and self-absorption phenomenon. In the following section, 

experimental parameters that would affect the investigation are explained, which 

consists of laser energy, gate delay, target material and ambient environment. In the 

last section of Chapter 2, plasma parameters i.e. electron temperature and electron 

density are discussed. Various researches on the determination of self-absorption are 

included. 

In Chapter 3, methodology used in this research is explained in detail. It includes 

details on sample preparation and experimental procedures. 

Chapter 4 provides the results obtained from this investigation. The influence of 

experimental parameters i.e. gate delay and laser energy on SA of spectral lines is 

discussed in detail. Plasma parameters are also calculated and their relationship with 

variation in experimental parameters and effects on SA is also explained. Calibration 

curves are drawn using intensity of spectral lines of Al, Zn and Mn against respective 

elemental concentration. Prominent improvement in linearity of plots is demonstrated 

by applying local normalization which is developed during this investigation. 
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