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ABSTRACT 

 

 

 

 

Free vibration of layered truncated conical and circular cylindrical shells filled with 

fluid based on Love’s first approximation theory are analysed in this research.  In addition, 

investigation regarding the free vibration of laminated composite circular cylindrical shells 

filled with fluid using the first order shear deformation theory also presented.  In this study, 

the shell is filled with quiescent fluid and analysed using the spline method.  The shell 

equations are assumed to be in a separable form, which hence a set of coupled ordinary 

differential equations in the term of displacement functions is obtained for the case of the 

Love’s first approximation theory.  For the case under first order of shear deformation 

theory, the rotational functions are included.  These functions are approximated using the 

spline function, bringing into a set of field equations together with boundary conditions, 

that reduce to a system of homogeneous simultaneous algebraic equations on the assumed 

spline coefficients.  The resulting generalised eigenvalue problem is solved to get as many 

eigen frequencies as required by starting from the least.  From the eigenvectors on the 

spline coefficients, the mode shapes can be constructed.  In the first case, the effects of the 

relative layer thickness, cone angle, length ratio, and boundary conditions on the 

frequencies of truncated conical shell filled with fluid are presented. Through the 

application of the same theory, the effect of the relative layer thickness, length-to-radius 

ratio, thickness-to-radius ratio, circumferential node number, and boundary conditions on 

the frequencies of circular cylindrical shell filled with fluid are investigated.  In the case of 

first order shear deformation theory; a cross-ply, anti-symmetric angle-ply, and symmetric 

angle-ply laminated composite circular cylindrical shell filled with fluid are analysed.  

Parametric studies have been conducted with respect to the length-to-radius ratio, 

thickness-to-radius ratio, material properties, ply orientations, number of layers, and 

boundary conditions on the frequencies. The contribution of this research is to provide 

solutions for free vibration of laminated composite conical and cylindrical shells filled with 

fluid using spline method.  The frequency of the shell filled with fluid is found to be lower 

than the frequency of the shell without fluid due to the effect of fluid in the shell that acts 

as the added mass to it.  Material properties, ply orientations, number of layers, boundary 

conditions, relative layer thickness, length-to-radius ratio, thickness-to-radius ratio, 

circumferential node number, cone angle, and length ratio significantly affect the 

frequencies of the shell.  Furthermore, simply supported boundary conditions are found to 

have the lowest frequency followed by clamped-free and clamped-clamped boundary 

conditions. 
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ABSTRAK 

 

 

 

 
Getaran bebas bagi lapisan cengkerang kon separuh dan lapisan cengkerang silinder 

bulat yang dipenuhi bendalir berdasarkan teori penghampiran pertama Love dianalisis dalam 

kajian ini.  Tambahan pula, kajian mengenai getaran bebas bagi cengkerang silinder bulat 

komposit berlamina yang dipenuhi bendalir menggunakan teori ubah bentuk pemotongan 

tertib pertama juga dibentangkan.  Dalam kajian ini, cengkerang yang dipenuhi bendalir 

statik dianalisis menggunakan kaedah spline.  Persamaan cengkerang diandaikan dalam 

bentuk bolehpisah, yang mana, satu set persamaan perbezaan biasa berganding dalam 

sebutan fungsi-fungsi anjakan diperolehi untuk kes teori penghampiran pertama Love.  Bagi 

kes dibawah teori ubah bentuk pemotongan tertib pertama, fungsi-fungsi putaran 

dimasukkan.  Fungsi-fungsi ini dihampirkan dengan menggunakan fungsi spline, seterusnya 

membawa kepada satu set persamaan bidang bersama-sama dengan syarat-syarat sempadan, 

yang diturunkan kepada sistem persamaan homogen algebra serentak pada pekali spline yang 

diandaikan.  Masalah nilai eigen teritlak yang terhasil diselesaikan bagi mendapatkan 

seberapa banyak frekuensi eigen seperti yang dikehendaki bermula dari yang paling kecil.  

Daripada vektor eigen bagi pekali spline, bentuk mod boleh dibina.  Dalam kes pertama, 

kesan-kesan bagi ketebalan lapisan relatif, sudut kon, nisbah panjang, dan syarat-syarat 

sempadan terhadap frekuensi-frekuensi cengkerang kon separuh yang dipenuhi bendalir 

dibentangkan.  Menggunakan aplikasi teori yang sama, kesan bagi ketebalan lapisan relatif, 

nisbah panjang-jejari, nisbah ketebalan-jejari, bilangan nod lilitan, dan syarat-syarat 

sempadan terhadap frequensi-frekuensi cengkerang silinder bulat yang dipenuhi bendalir 

dikaji.  Dalam kes teori ubah bentuk pemotongan tertib pertama; lapis silang, antisimetri 

lapis sudut, dan simetri lapis sudut cengkerang silinder bulat komposit berlamina yang 

dipenuhi bendalir dianalisis.  Kajian secara parameter terhadap nisbah panjang-jejari, nisbah 

ketebalan-jejari, sifat-sifat bahan, orientasi lapis, bilangan lapisan, dan syarat-syarat 

sempadan terhadap frekuensi-frekuensi telah dijalankan.  Sumbangan penyelidikan ini 

adalah untuk menyediakan penyelesaian untuk getaran bebas bagi komposit berlamina 

cengkerang kon dan cengkerang silinder yang dipenuhi bendalir mengunakan kaedah spline.  

Frekuensi cengkerang yang dipenuhi bendalir didapati lebih rendah daripada frekuensi 

cengkerang tanpa bendalir yang disebabkan oleh kesan bendalir di dalam cengkerang yang 

bertindak sebagai penambah jisim kepadanya.  Sifat-sifat bahan, orientasi lapis, bilangan 

lapisan, syarat-syarat sempadan, ketebalan lapisan relatif, nisbah panjang-jejari, nisbah 

ketebalan-jejari, bilangan nod lilitan, sudut kon, dan nisbah panjang memberi kesan yang 

bermakna kepada frekuensi-frekuensi cengkerang.  Tambahan pula, syarat-syarat sempadan 

yang disokong mudah didapati mempunyai frekuensi yang paling rendah diikuti oleh syarat-

syarat sempadan yang bebas-apit dan yang diapit-apit. 
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CHAPTER 1  
 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Study 

 

 

A composite structure consists of two or more constituent materials with 

different physical or chemical properties combined which results into a material with 

the characteristics that is definitely different from the individual components.  

Composite structures are commonly composed of reinforcing and matrix materials 

(Soedel, 2004).  

 

 

The reinforcing materials mostly exist in the form of fibres and act as 

reinforcer or load-carrying agent.  Fibre materials can be metals like iron, aluminum, 

copper, titanium, steel, and nickel, or organic materials such as graphite, glass, 

carbon, and boron.  The functions of matrix materials are important to support and 

seal the fibres.  The matrix can be among of organic, ceramic, or metallic materials 

(George, 1999). 

 

 

Composite plays an important role throughout human history.  The concept of 

composite is very ancient.  Back in the ancient Egypt, it was recorded that straw was 

added to mud in order to strengthen bricks.  It was also recorded that wood strips 

were glued at different angles in order to create plywood.  In addition, Eskimos 

applied moss into the ice to build up an igloo.  Besides, swords and armours were 

layered to add up strength as per shown by samurai swords; which was produced 
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through repeated processes of folding and reshaping in order to form a multi-layered 

composite (George, 1999).  

 

 

Composite structures offer high strength and stiffness as well as lightweight 

characteristics as major advantageous.  Composite structure can be designed to be far 

stronger than steel as it can be engineered to be strong in a specific direction.  Light 

in weight is also one of the factor for composite structure as to be used in many 

industries such as automotive and aircraft since lightweight indicates better fuel 

efficiency.  In addition, composite structures also have the characteristics of 

corrosion resistance as well as better damping and shock absorbance.  Swimming 

pool and bathtub are two other examples related to composite materials application.  

 

 

In general, composite materials can be classified into three categories, namely 

fibre, particle, and laminated composites.  If the reinforcement is made of fibre, then 

it is called as fibre composite.  The reinforcement is in the form of particle for 

particle composites.  Concrete is one familiar example of particle composites.  

Laminated composite consists of layers that is combined together to form a laminate, 

in which each of the layer is made from the first two types of composites.  Each layer 

is called a ply or lamina.  The lamina is the fundamental building block of laminated 

composite materials (Reddy, 2004; Ye, 2002).  Figure 1.1 illustrates the laminated 

composite material. 

 

 

 

Figure 1.1 Laminated composite material (Ye, 2002) 
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A fibre-reinforced composite lamina consists of many fibres embedded in a 

matrix material. The fibre usually comes in the form of continuous and 

discontinuous, woven, unidirectional, bidirectional, or randomly distributed.  The 

laminated composite has an interesting criteria which enables users to choose and 

design the right material combination and fibre orientation for an optimum design.  

Variation of fibre direction in each layer enables the different strength and stiffness 

in various direction to be tailored.  This variation is the reason of the popular usage 

of laminated composite in most composites.  For example, a unidirectional fibre-

reinforced lamina have strong strengh in the direction of fibre but poor strength in 

the transverse direction of the fibre (Reddy, 2004).  A unidirectional laminate has the 

form 0  for all plies (Vinson and Sierakowski, 2008).  

 

 

Other types of laminates are angle-ply and cross-ply.  Angle-ply laminates 

have lamina orientations of either +θ or −θ at 0 90  , meanwhile cross-ply 

laminates use only 0   and 90   plies orientations in order to make a laminate.  

The examples for angle-ply and cross-ply laminates are shown in Figure 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Examples of (a) angle-ply and (b) cross-ply laminates 

 

 

Shell structure is used tremendously in designing a modern structure because 

of its strength and stiffness characteristics due to its curvature, which is greatly 

significant in resisting the external forces (Ventsel and Krauthammer, 2001).  

Cylindrical and conical shell structures are noticeable in aviation, ship, building, 
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missiles, and pressure vessel.  Apart from that, the application of shell structure with 

the interaction of fluid can be found in many engineering applications such as 

containers, reservoirs, silos, nuclear power reactors, and pipe systems.  In addition to 

that, the structures may have quiescent or flowing fluid, partially filled fluid, filled 

with fluid or submerged in a fluid.  

 

 

Commonly, there are two types of vibration, namely force vibration and free 

vibration.  By definition, a force vibration occur due to time-dependent external 

loads (Kraus, 1967).  In other words, the vibration is produced when force is exerted 

by the external loads and the vibration will stop as the external loads is released from 

the system.  Meanwhile, free vibration occurs in the absence of external load and it is 

initiated by some initial and boundary conditions (Ventsel and Krauthammer, 2001), 

which will give a continuous vibration with the same amplitude.  The frequency of 

free vibration is known as natural frequency, and such frequency only depends on the 

geometric and material of the shell (Ventsel and Krauthammer, 2001).  The natural 

frequencies need to be acknowledged in order to avoid the destructive effect of 

weather and the resonance which created by oscillating equipment or adjacent 

rotating (such as electrical machinery, jet and reciprocating aircraft engine, marine 

turbines) (Ventsel and Krauthammer, 2001; Kraus, 1967).  Hence, it is essential to 

understand the vibrational characteristics of shell structure for industrial application.  

 

 

Various studies on theoretical and experimental investigation of vibration 

behaviour of shell structure with fluid or without fluids have been conducted.  The 

method used to determine the vibrational behaviour of the shell must be correctly 

adopted to ensure the result can meet its efficiency and accuracy.  Currently, there 

are many methods that can be used for this purpose such as the Rayleigh-Ritz 

method (Zhu, 1994; Zhu, 1995), the finite element method (Carrera, 2002; 

Ramasamy and Ganesan, 1999), the Galerkin method (Lam and Loy, 1995a; Lee and 

Lu, 1995), the wave propagation approach (Zhang et al. 2001a; Zhang et al., 2001b), 

the general differential quadrature (GDQ) method (Tornabene et al., 2009; Asadi and 

Qatu, 2012), the multiquadric radial basis function method (Ferreira et al., 2007), and 

the spline method (Viswanathan et al., 2013).  On the other hand, excellent review 
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works on the composite material are accessible in Soedel (2004), Ye (2002), George 

(1999), Gibson (1994).  Extensive studies on the development of theory and methods 

have been reviewed by Kraus (1967), Leissa (1973), Qatu, (2004) and Reddy (2004).  

Most of the studies were firstly applied onto isotropic shells, and were subsequently 

extended to a study related to the laminated composite ones. 

 

 

In this study, free vibration of shell structures (truncated conical and circular 

cylindrical shell) filled with quiescent fluid using spline method is presented.  The 

spline method applies a lower order approximation which is simple and effective in 

terms of its accuracy (Bickley, 1968).  For the case of truncated conical shell, the 

equations of motion used are based on the Love’s thin shell theory.  The effects of 

relative layer thickness, cone angle, length ratio, type of materials and boundary 

conditions on the frequencies of two layered of shells are presented in this study. 

 

 

For the case of circular cylindrical shell, the equations of motion are derived 

using two theories, which are Love’s thin shell theory and First Order Shear 

Deformation Theory (FSDT).  The first case study refers to the two layered of 

circular cylindrical shell based on Love’s thin shell theory.  Parametric studies are 

performed to analyse the frequency response of the shell with reference to the 

relative layer thickness, length parameter, thickness parameter, circumferential node 

number, type of materials, and boundary conditions.  

 

 

Further, cross-ply, anti-symmetric angle-ply and symmetric angle-ply of 

laminated composite circular cylindrical shell which described by FSDT are 

investigated.  The effects of shell geometries, type of materials, ply orientations, 

layer of materials and boundary conditions on frequencies are studied. 
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1.2 Problem Statement 

 

 

High demands on composite structures in industry fields lead to further 

analysis on composite structures.  In fact, popular usage of composite can be seen in 

automotive, building, and aircrafts industries.  It is a necessity to find the natural 

frequency of the structures in order to avoid the destructive effect of weather and 

resonance due to adjacent rotating or oscillating equipment.  Geometric parameters, 

angle orientations, and boundary conditions affect the frequencies of the composite 

structures (Asadi and Qatu, 2012).  

 

 

In addition, Viswanathan and Navaneethakrishnan (2003) considered the free 

vibration of an empty cylindrical shell by using spline method.  Furthermore, the 

method has been successfully used in solving the free vibration of an empty layered 

cylindrical shell.  The spline method is one of the collocation methods and uses low 

degree polynomials in each of the interval compared to high degree polynomials, 

which does not suffer from Runge’s phenomenon, which is a problem of oscillation 

using polynomial interpolation with polynomials of high degree. 

 

 

Besides, Zhang et al. (2001b) considered the free vibration of an isotropic 

cylindrical shell filled with fluid.  Therefore, this study,  free vibration of laminated 

composite shell structures filled with fluid using spline method is analysed.  The 

frequency parameter values on various fixed parameters of laminated composite shell 

structures filled with fluid for conical as well as cylindrical shells are obtained.  

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Polynomial_interpolation
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1.3 Objectives 

 

 

The purpose of this research is to investigate the free vibration of laminated 

composite shell structures filled with fluid. This involves the mathematical 

formulation which included the derivation of the governing differential equations of 

motion and the transformation of the resulting governing equations into non-

dimensional ordinary differential equations. The non-dimensional ordinary 

differential equations are approximated by using the spline method and resulted in an 

eigenvalue problem.  The eigenvalue problem is solved for frequency parameters. 

This research embarks on the following objectives: 

 

 

1. To obtain the frequency parameter values for various fixed parameters of 

layered truncated conical shell filled with fluid under Love’s first 

approximation theory. 

 

2. To determine the frequency parameter values for various fixed parameters of 

layered circular cylindrical shell filled with fluid under Love’s first 

approximation theory. 

 

3. To acquire the frequency parameter values for various fixed parameters of 

cross-ply laminated composite circular cylindrical shell filled with fluid under 

first order shear deformation theory. 

 

4. To generate the frequency parameter values for various fixed parameters of 

anti-symmetric angle-ply laminated composite circular cylindrical shell filled 

with fluid under first order shear deformation theory. 

 

5. To obtain the frequency parameter values for various fixed parameters of 

symmetric angle-ply laminated composite circular cylindrical shell filled with 

fluid under first order shear deformation theory. 
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1.4 Scope of the Study 

 

 

This study aims to investigate the free vibration of laminated composite shell 

structure including circular cylindrical and truncated conical shell structure by using 

the spline approximation technique.  The equations of motion of shell structure based 

on Love’s first approximation theory and First Order Shear Deformation Theory 

(FSDT) are used in the problem.  The shell structure is completely filled with fluid.  

It is assumed that the fluid is inviscid and quiescent throughout the problem.  

Quiescent fluid is known as the fluid with zero velocity.  Hence, the effect of the 

fluid is introduced as added mass to the shell. 

 

 

For the first problem, two layered truncated conical shell filled with quiescent 

fluid based on Love’s first approximation theory is investigated.  By applying the 

same theory, two layered circular cylindrical shell filled with fluid is solved.  Then, 

cross-ply, anti-symmetric angle-ply, and symmetric angle-ply of laminated 

composite circular cylindrical shell filled with fluid based on FSDT is investigated.  

 

 

In the case of Love’s first approximation theory, the displacement 

components are assumed to be in a separable form in order to obtain a system of 

coupled differential equation consisting of the longitudinal, circumferential and 

transverse displacement functions, while the rotational functions are included for the 

case of FSDT.  These functions are approximated by Bickley-type spline of suitable 

order.  Collocation with these splines yields a set of field equations, which along 

with the equations supplied by the boundary conditions, and reduces to a system of 

homogeneous simultaneous algebraic equations on the assumed spline coefficients.  

The resulting generalised eigenvalue problem is solved to obtain frequency 

parameters and the corresponding eigenvectors.  The spline coefficients are the 

eigenvectors from which the mode shapes are constructed.  Clamped-Clamped (C-

C), Clamped-Free (C-F) and Simply Supported-Simply Supported (S-S) are the 

considered boundary conditions.  Parameter studies involving the geometries of the 
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shell, ply orientations, material properties, layer of materials, and boundary 

conditions are made according to the problem.  

 

 

 

 

1.5 Significance of the Study 

 

 

The study of the free vibration of shell structures filled with fluid lead the 

researchers to a better understanding on the characteristics of the shell structure and 

enhanced knowledge in finding the natural frequencies of the shell. 

 

 

The characteristic of the composite such as lightweight, high strength, and 

high stiffness provides superiority in designing any structure in engineering field as it 

can be engineered and designed to be strong in a specific direction.  Instead of using 

unidirectional lamina as a structural element, each lamina is oriented at different 

angles or direction to strengthen the structures.  This is due to the poor transverse 

property of the unidirectional lamina.  

 

 

Shell structure which containing inviscid and quiescent fluid is significantly 

affecting the frequency of the structure by lowering its frequency.  Hence, the effect 

of the fluid cannot be ignored as it influences the vibration of the structure. 

 

 

 

 

1.6 Research Methodology 

 

 

The research work begins with the equations of motion based on Love’s first 

approximation theory and First Order Shear Deformation theory.  After that, the 
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equations of motion which are coupled in displacement and rotations are obtained by 

substituting strain-displacement relations and stress-strain relations into the equations 

of motion.  Then, by assuming the solution in separable form, a system of ordinary 

differential equation in terms of the longitudinal, circumferential, transverse 

displacement functions for the case of Love’s first approximation theory and 

rotational functions included in the case of FSDT problem is obtained. 

 

 

Next, the equations are non-dimensionalised.  Together with the boundary 

conditions, it is approximated by Bickley-type spline method that resulting into a 

generalised eigenvalue problem.  Thus, it is numerically solved by using power 

method.  The eigenvalue problem is solved for frequency parameters and the 

corresponding eigenvectors. 

 

 

Parameter studies with respect to geometry of the shell, material properties, 

layer of materials, ply orientations, and boundary conditions are considered to obtain 

the frequency of the shell.  Convergence study is carried out to check the number of 

interval that used in the problem.  The results are compared with literature results in 

order to validate the present method.  Extensive parameter studies are conducted with 

respect to each problem and only suitable and reliable results are presented in this 

research.  The results are presented in graphs and tables. 

 

 

 

 

1.7 Thesis Outline 

 

 

This thesis is organised into nine chapters, in which Chapter 1 is the 

introduction to the research, Chapter 2 is the literature review while Chapter 3 

discusses the methodology used to solve the problems.  Chapter 4 to Chapter 8 

represents the five research problems of this study. Lastly, Chapter 9 represents the 

conclusion of the thesis. 
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Chapter 1 introduces the background of the study, problem statement, 

objectives of the study, scope of the study, significance of the study and the research 

methodology.  Chapter organisation is discussed at the end of this chapter.  In 

Chapter 2, the definitions of shell theories, the review on the previous work of 

various researchers regarding to the vibrational behaviour of empty conical and 

cylindrical shell, as well as the shells interact with fluid are discussed.  Then, the 

method of spline is presented. 

 

 

Chapter 3 presents the mathematical formulation of shell structures under two 

different shell theories.  Further, the spline method is implemented onto the problem.  

Next, the equations are reduced to the form of generalised eigenvalue problem.  The 

power method is used to determine the frequency parameters and associated 

eigenvectors. 

 

 

The first problem of this thesis discusses on the free vibration of two layered 

truncated conical shell filled with fluid under the Love’s first approximation theory is 

given in Chapter 4.  The effects of relative layer thickness, semi cone angle, and 

length ratio under Clamped-Clamped (C-C) and Clamped-Free (C-F) boundary 

conditions on the frequencies are presented.  Different combination of material such 

as S-Glass Epoxy (SGE), High Strength Graphite Epoxy (HSG), and PRD-490 III 

Epoxy (PRD), aluminium (Al) and steel (St) is used.  

 

 

The following Chapter 5 describes the free vibration of two layered circular 

cylindrical shell filled with fluid under the Love’s first approximation theory.  Three 

types of materials which are PRD, SGE and HSG are considered.  The frequencies 

with respect to the relative layer thickness, length-to-radius ratio, length-to-thickness 

ratio, and the circumferential node number under Clamped-Clamped (C-C) and 

Simply Supported-Simply Supported (S-S) boundary conditions are analysed. 

Convergence study is carried out to decide the optimal number of the knots of the 

spline function while comparative study is made to gain conviction on the 

correctness of the results.  
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Chapter 6 discusses the free vibration of cross-ply laminated composite 

circular cylindrical shell filled with fluid.  The formulation follows the First Order 

Shear Deformation theory (FSDT).  The effects of shell geometry (thickness-to-

radius ratio and length-to-radius ratio), material properties, boundary conditions, ply 

orientations and layer of the materials on frequencies are studied.  Two materials 

which are Kevler-49 epoxy (KGE) and AS4/3501-6 Graphite/epoxy (AGE) are used 

respectively.  The shell is constrained with C-C and S-S boundary conditions.  The 

problem is analysed for two, three and four layered shell.   

 

 

The following Chapter 7 discusses the free vibration also but for anti-

symmetric angle-ply laminated composite circular cylindrical shell filled with fluid.  

Four and six layered shells composed of two types of material; KGE and AGE 

materials are used under C-C and S-S boundary conditions.  Parametric studies with 

respect to thickness to radius ratio, length to radius ratio, material properties, ply 

angles and number of layers are carried out to analyse the frequencies.   

 

 

Next, the free vibration of symmetric angle-ply laminated composite circular 

cylindrical shell filled with fluid by considering FSDT is presented in Chapter 8.  

Three and five layered with combination of two materials namely KGE and AGE is 

analysed under C-C and S-S boundary conditions.  Parametric studies are made in 

analysing the frequencies of the shell with respect to the shell geometry, material 

properties, boundary conditions, ply-orientation and layer of the materials. 

 

 

Chapter 9 presents the conclusion of overall analysis of this thesis.  The 

extended problems that could be studied in the future are also discussed in the end of  

this chapter.
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