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Nowadays, much interest has been shown in the synthesis of carbon-based titania due to 

its improved electronic properties and its efficiency in the photocatalytic and catalytic activities. 

In the meantime, cellulose has emerged as one of the promising sources of carbon. Therefore, in 

this research, a new approach in the preparation of cellulose-derived carbon/titania composite is 

introduced by using natural cellulosic material, namely Averrhoa bilimbi fruits or bilimbi, as the 

carbon source. The purpose of using bilimbi is to utilize its interconnected porous structures and 

hydrophilic properties, in order to obtain a good interfacial interaction between carbon and 

titania. The bilimbi was first freeze-dried before being impregnated with titanium isopropoxide as 

the titania precursor. Bilimbi/TiO2 composite was then calcined at 200, 500 and 800°C in order to 

change the cellulosic material into carbon and subsequently formed cellulose-derived carbon 

(BDC)/TiO2 composites. The interfacial interactions between carbon and titania were 

comprehensively studied through the changes in the physical and electronic properties. The 

composites were characterized using X-ray photoelectron spectrometer (XPS), X-ray diffraction 

(XRD) spectrometer, nitrogen adsorption-desorption analyser, Fourier transform infrared (FTIR) 

spectrometer, thermogravimetric analyser, photoluminescence spectrometer and UV-Visible 

diffuse reflectance (UV-Vis DR) spectrometer. The strong interfacial interaction between bilimbi 

and titania resulted in the changes on the surface area and the porosity. This suggested that the 

interconnected porous structures and the hydrophilicity of the freeze-dried bilimbi led to the good 

attachment and well distribution of titania particles on the bilimbi’s surface. As the calcination 

temperature was increased, carbon was located at different locations. At calcination temperatures 

of 200 and 500°C, titania was at the interstitial titania lattice. However, as the calcination 

temperature was increased to 800°C, carbon substituted the oxygen atoms in the titania lattice as 

proved by the XPS analysis. This affected the phase transformation of titania from anatase 

(calcination at 500°C) to rutile (calcination at 800°C) and formed a mixture of anatase and rutile 

phases. Besides that, the band gap energies of the composites decreased from 3.2 to 2.9 eV with 

the increase of calcination temperature. Such changes did not occur in the synthesis of titania 

without bilimbi. The changes in the physical and electronic properties of the composites were 

then correlated to the photocatalytic and catalytic activities. The photodegradation of phenol 

under the irradiation of ultraviolet and visible lights was significantly improved by bilimbi/TiO2 

and BDC/TiO2 composites. The formation of the mixture of anatase, rutile phases and the defect 

sites, as analysed by photoluminescence spectroscopy, reduced the rate of the electrons and holes 

recombination which consequently increased the photocatalytic activities of the composites. 

Meanwhile, the catalytic activity of the composites for the catalytic oxidation of styrene was not 

affected by the presence of carbon since the carbon did not change the titanium catalytic active 

sites. In conclusion, the amount and location of the carbon in bilimbi/TiO2 composite, whether on 

the surface, interstitial, and substitution positions, were changed with the increase of calcination 

temperature and these changes affect the physical and electronic properties of the composites, 

and enhanced the photocatalytic activity of the composites.   
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Pada masa kini, banyak minat telah ditunjukkan dalam sintesis titania berasaskan karbon 

disebabkan oleh kebaikan sifat elektroniknya dan kecekapannya dalam aktiviti foto-pemangkinan 

dan pemangkin. Pada masa yang sama, selulosa telah muncul sebagai salah satu sumber karbon 

yang baik. Oleh itu, dalam kajian ini, satu pendekatan baharu dalam penyediaan komposit karbon 

berasaskan selulosa/titania diperkenalkan menggunakan bahan berselulosa, iaitu buah Averrhoa 
bilimbi atau bilimbi, sebagai sumber karbon. Tujuan penggunaan bilimbi adalah untuk 

menggunakan struktur berliang yang saling bersambung dan sifat hidrofiliknya untuk 

mendapatkan interaksi antara muka yang baik di antara karbon dan titania. Pertama, bilimbi 

dikering-sejuk beku sebelum pengisitepuan dengan titanium isopropoksida sebagai pelopor 

titania. Komposit bilimbi/TiO2 kemudian dikalsin pada suhu 200, 500 dan 800°C untuk 

mengubah bahan selulosa kepada karbon dan seterusnya membentuk komposit karbon terbitan 

selulosa (BDC)/TiO2. Interaksi antaramuka di antara karbon dan titania telah dikaji secara 

mendalam melalui perubahan sifat fizikal dan elektronik. Komposit telah dicirikan menggunakan 

spektrometer fotoelektron sinar-X (XPS), spektrometer pembelauan sinar-X (XRD), penganalisis 

penjerapan-penyaherapan nitrogen, spektrometer inframerah transformasi Fourier (FTIR), 

penganalisis termogravimetri, spektrometer fotopendarcahaya dan spektrometer pantulan serakan 

ultra lembayung-cahaya nampak (UV-Vis DR). Ikatan antara muka yang kuat di antara bilimbi 

dan titania menghasilkan perubahan pada luas permukaan dan juga keliangan. Ini mencadangkan 

bahawa struktur berliang yang saling bersambung dan sifat hidrofilik bilimbi kering-sejuk beku 

membawa kepada lekatan yang baik dan taburan zarah titania yang sekata di atas permukaan 

bilimbi. Apabila suhu pengkalsinan ditingkatkan, karbon terletak pada lokasi yang berlainan. 

Pada suhu pengkalsinan 200 dan 500°C, titania terlekat pada ruang antara kekisi titania. Walau 

bagaimanapun, apabila suhu pengkalsinan ditingkatkan kepada 800°C, karbon menggantikan 

atom oksigen di dalam kekisi titania seperti yang dibuktikan oleh analisis XPS. Ini telah memberi 

kesan kepada perubahan fasa titania daripada anatas (pengkalsinan pada 500°C) kepada rutil 

(pengkalsinan pada 800°C) dan membentuk campuran fasa anatas dan rutil. Selain itu, tenaga 

jurang jalur komposit berkurang dari 3.2 kepada 2.9 eV dengan peningkatan suhu pengkalsinan. 

Perubahan-perubahan ini tidak berlaku dalam sintesis titania tanpa bilimbi. Perubahan sifat 

fizikal dan elektronik komposit dikorelasikan dengan aktiviti fotopemangkinan dan pemangkin. 

Fotopemangkinan fenol di bawah penyinaran cahaya ultra ungu dan cahaya nampak 

menunjukkan penambahbaikan ketara oleh komposit bilimbi/TiO2 dan BDC/TiO2. Pembentukan 

campuran fasa anatas, rutil dan juga kecacatan tapak, seperti yang dianalisis oleh spektroskopi 

kefotopendarcahayaan, mengurangkan kadar penggabungan semula elektron dan lubang, justeru 

meningkatkan aktiviti fotopemangkinan komposit. Sementara itu, aktiviti pemangkinan komposit 

untuk pengoksidaan stirena bermangkin, tidak terjejas dengan kehadiran karbon memandangkan 

karbon tidak mengubah tapak aktif pemangkin titanium. Kesimpulannya, jumlah dan kedudukan 

karbon pada komposit bilimbi/TiO2, samada pada permukaan, ruang-antara. dan juga tempat 

penggantian, berubah dengan pertambahan suhu pengkalsinan dan perubahan ini memberi kesan 

kepada sifat fizikal dan elektronik komposit, dan meningkatkan aktiviti fotopemangkinan 

komposit.  

ABSTRAK 
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CHAPTER 1 

 

 

 

INTRODUCTION 

1.1 Background of Study 

Titania is regarded as one of the most fascinating inorganic materials mainly 

due to its excellent physical and chemical properties, and its promising potential as 

the photovoltaic (Grätzel 2001), gas sensor (Varghese et al. 2003), electrochromic 

devices (Berger et al. 2009) and photocatalyst (Ohtani et al., 1997). However, despite 

these advantages, titania faces some drawbacks such as fast electron-hole pairs 

recombination and inactive under visible light irradiation (Linsebigler et al., 1995). 

One of the ways to improve the functionality of titania is by the modification 

of titania with carbon to form carbon-based titania. Carbon nanotubes (CNT)-TiO2 

(Woan et al., 2009), multiwall-carbon nanotubes (MWCNTs)-TiO2 (Tettey et al., 

2010), fullerene-TiO2 (Kamat et al., 1997; Wang et al., 2015), activated carbon-

titania (Torimoto et al. 1997; Velo-Gala et al. 2017), carbon fibers (CFs)-TiO2 (Teng 

et al. 2015), graphene-titania (Zhou et al. 2011; Khalid et al. 2013) and carbon-doped 

titania (Li et al. 2005) are among thousands of carbon-based titania materials that 

have been successfully synthesized in previous studies.  
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Towards the modifications, carbon has generally changed the electronic 

properties of titania by facilitating faster transport to the active sites on titania’s 

surface, extending the light absorption to visible range, narrowing the band gap 

energy and suppressing the rate of the recombination of photo-induced electrons and 

holes (Palanivelu et al., 2007; Jeyalakshmi et al., 2012; Teng et al., 2014). Apart 

from that, it also changed the physical and structural properties of titania through the 

change in the lattice defects and impurities, particle size, bulk and surface crystal 

structure, including the morphology. 

However, upon comprehensive reviews, one trend that can be seen is the 

different types of carbon have different characteristics that will reflect the properties 

of the carbon-based titania obtained. A slower recombination of electrons and holes 

in the CNT-TiO2 composite was caused by the capability of CNT to act as the 

electron storage (Li et al. 2011). On the other hand, the efficient performance of 

graphene-TiO2 composite was due to the graphene exhibiting strong charge mobility 

and high thermal conductivity (Khalid et al. 2013; Tan et al. 2013). Therefore, the 

selection of the type of carbon is crucial in designing an efficient catalyst. 

In recent years, the attempt on using carbon from the natural sources in the 

synthesis of carbon-based titania became a topic of interest (Colmenares et al., 

2016). Glucose (Zhang et al. 2016), starch (Tang et al. 2009) and chitosan (Shao et 

al. 2015) are the examples of the natural sources that have been used in the synthesis 

of carbon-based titania. Among all these different types of natural sources used, to 

date, only a few literatures have reviewed on the usage of cellulose as the carbon 

precursor in the synthesis of carbon-titania composite. Cellulose is foreseen as a 

good choice of carbon precursor because of the abundancy and the renewability of 

the cellulose promised the low cost and sustainable source of carbon materials. 

However, most of the reports about cellulose for the synthesis of titania are focused 

only on the use of cellulose as the template (Luo et al., 2013), the utilization of 

cellulose itself to form cellulose titania hybrids (Morawski et al. 2013) or the 
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modification cellulose into the activated carbon before used in the synthesis of 

carbon based titania (Phan et al. 2006). 

Based on the limited reports of cellulose as the in-situ carbon source, Liu et 

al. (2010) described that the synthesis of carbon-derived cellulose titania by 

employing filter papers as the carbon source through the decomposition of ultrathin 

titania film sol-gel process. The synthesized composite yielded a high specific 

surface area and showed good performance in the photodegradation of dyes and the 

photoreduction of silver cation to silver nanoparticles. On the other hand, Mohamed 

et al. (2016) and Mohamed et al. (2017a) reported the synthesis of carbon-doped 

mesoporous TiO2 through the sol-gel method and the cellulose used is the 

regenerated cellulose membrane. The synthesized composite improved the 

photodegradation of methylene blue under the irradiation of visible light. Although 

these works have successfully proven the good effect of carbon derived from 

cellulose to the properties and the photocatalytic activity of titania, these works 

lacked the details on the interaction between carbon and titania, and the synthesized 

methods involved many synthesized steps, including the modification of cellulose 

into cellulose membrane. 

Averrhoa bilimbi, or bilimbi (Figure 1.1) is one of the cellulosic materials 

available in nature. The fruits of the bilimbi, which is rich in water content, is 

expected to be highly porous and interconnected after the removal of water. In 

addition, bilimbi is expected to have a good hydrophilic feature due to the plenty of 

hydroxyl groups that are retained in the bilimbi. Therefore, considering all the 

concerns mentioned above, this research proposed the synthesis of cellulose-derived 

carbon/titania composite with bilimbi as the in-situ carbon source and the 

comprehensive studies on the interaction between carbon and titania particles. The 

target is achieved by the strategy to propose the interconnected porous structure of 

the bulk cellulosic materials. A bulk cellulosic material with highly interconnected 

pores, and rich with hydroxyl groups are expected to give accessibility for the titania 

precursor to diffuse into the porous structure, distribute well on the substrate surface 
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and formed a strong interfacial interaction with the cellulose. Therefore, fitting the 

approach that was previously explained, the fruits of the Averrhoa bilimbi was 

chosen as the model material.  

 

 

Figure 1.1 The image of the Averrhoa bilimbi’s fruits 

1.2 Problem Statement 

The abundant surface hydroxyl group in the cellulosic material is used as the 

strategy to anchor the titania particles. These hydroxyl groups can act as the sites for 

the attachment of titania particles (Colmenares et al., 2016). In the synthesis of bulk 

cellulose-titania, without surface modification, the titania attached have a tendency to 

form agglomeration and was not well dispersed (Teng et al. 2015). The probability of 

the titania particles to interact with carbon is low. Therefore, to uniformly disperse 

titania particles on the surface of bulk titania-cellulose without surface 

functionalization, remain a challenge and this challenge limits the utilization of 

cellulose as the carbon source in the synthesis of carbon-based titania.  

In this research, in order to overcome this challenge, bilimbi has been used as 

the carbon source in the synthesis of carbon-titania composite. The water content of 
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the bilimbi was first removed by freeze-drying method, leaving the bilimbi’s 

structure to be porous. The bilimbi is then impregnated with the titania precursor by 

simple impregnation method. Following that, bilimbi-titania composite was 

carbonized at different calcination temperatures to form bilimbi-derived carbon 

titania composite. At low calcination temperature, it is expected to hold a strong 

interfacial between bilimbi and titania while at high calcination temperature, the 

bilimbi acted as the in-situ carbon source. By these factors, the physical and 

electronic properties of the bilimbi-TiO2 will be improved and thus reflect the 

catalytic and photocatalytic performance. The interaction between carbon and titania 

was studied through the change of the physical and electronic properties. 

The photocatalytic activities studied in this research is the photodegradation 

of phenol. Phenolic compounds are found to be the most organic pollutant found in 

wastewater and most of them generated from the coal and petrochemical industries 

(Busca et al. 2008). Uncontrolled phenolic pollutant introduced to wastewater lead to 

a cumulative hazardous effect on the environment. Even though there are many 

studies on the development of carbon-based titania as the photocatalyst to degrade 

the phenolic compounds, the improvement on the photocatalytic activity is still 

highly required. The catalytic reaction studied in this research is the oxidation of 

styrene. The oxidation of styrene by using aqueous hydrogen peroxide as the oxidant 

resulted to the production of styrene oxide, benzaldehyde and phenyl acetaldehyde 

that used as the chemical intermediates in the fine chemical industry (Lubis et al. 

2012). Therefore, the catalytic oxidation of styrene is an important reaction organic 

synthesis. However, only a few researches were reported on the catalytic oxidation of 

styrene with carbon based titania as the catalyst. 

Therefore, in this research, cellulose-derived carbon/titania composite 

prepared by the attachment of titania alkoxide on the surface of freeze-dried bilimbi 

and calcined at different temperature, affects the physical and electronic properties, 

including the photocatalytic and catalytic activities. 
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1.3 Motivation and Objectives of the Study 

The aim of this research is to provide a comprehensive study on the effects of 

carbon to the changes in the properties (physical and electronic) of titania composite 

and the correlation between the properties of carbon-TiO2 composite to its 

photocatalytic and catalytic activities. Averrhoa bilimbi, an example of highly 

interconnected porous and good hydrophilic cellulosic material, was used as the 

source of carbon since these characteristics are expected to improve the interaction of 

titania on the surface of the carbon. It is hypothesised that, with the use of 

interconnected porous carbon, it will prevent the aggregation of titania and therefore, 

provide a good interfacial interaction between titania particles and carbon. Moreover, 

the hydrophilicity of the material that was reflected from the abundant hydroxyl 

groups can enhance the attachment of titania particles. Hence, a good carbon-TiO2 

interaction is expected to be formed and subsequently change the physical and 

electronic properties of the carbon/TiO2 composite. 

 

In order to demonstrate the hypothesis, a systematic study has been carried 

out by varying the calcination temperature of bilimbi/TiO2 composite. The 

calcination process will change the physical and electronic properties of the 

composite since the bilimbi was transformed into different forms and amount of 

carbon. It is expected that, at low temperature, the carbon in the bilimbi will change 

the physical properties of composite in terms of adsorption, whereby at high 

temperature, there is probability for carbon to substitute oxygen atoms in the titania 

lattice. The physical and electronic properties of the composite will change due to the 

interaction of carbon with TiO2 and hence, improve their catalytic and photocatalytic 

activities. 

In light of the issues mentioned above, this research is conducted based on 

the following objectives; 
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 To synthesize the carbon-based titania composite with natural cellulose, 

Averrhoa bilimbi, as the source of carbon 

 To study the effect of calcination temperatures on the physical (surface and 

bulk) and electronic properties of the composite 

 To study the photocatalytic and catalytic activities of the composite and the 

structure-activity relationship 

1.4 Scope of the Study 

This research is focused on understanding the changes in the physical and 

optical properties of the cellulose-derived carbon/TiO2 composite when treated to 

different calcination temperatures and the structural-activity relationship of the 

composites. In order to accomplish the research’s objectives, the scope of the study is 

designated into three parts, which are the preparation and synthesis of the carbon-

TiO2 composite, the characterization of the composite and the application of the 

composite in the photocatalytic and catalytic reactions.  

 

Bilimbi is used as the model of the natural cellulose as main constituent in 

bilimbi is cellulose (67%), followed by 27% of hemicellulose and 13% of pectin 

(Muthu et al. 2016). The synthesis of carbon/TiO2 composite was done by using the 

impregnation method. The raw bilimbi was first scoured and freeze-dried before 

being impregnated with titania alkoxide precursor. The bilimbi/TiO2 was then 

calcined at 200, 500 and 800 °C, in order to see the effect of calcination temperatures 

on the physical and electronic properties of bilimbi/TiO2 composite and to acquire a 

fully crystalline titania phase, which are believed to be active in the photocatalytic 

and catalytic reactions (Shamaila et al. 2011). 
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