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ABSTRACT 

In Malaysia, even though the country can be considered as a low seismic 

area, the structural safety under seismic load has not been studied. Therefore, seismic 

vulnerability assessment is needed to be performed, especially for the towers. The 

objectives of this study are to investigate the capacity of tower members, failure 

mode, determine seismic capacity, and to derive seismic fragility curve for towers in 

Malaysia when subjected to far-field earthquake. The numerical models of three 

different heights towers were established in non-linear FE software, namely 

SAP2000. Equivalent static and response spectrum analysis, Pushover analysis and 

time history analysis were performed to determine the capacity of the towers 

members, capacity and fragility of towers, respectively. Totally, 6 far-field 

earthquake records, which were scaled from 0.05g up to 0.6g, were used in an 

incremental dynamic analysis in order to obtain fragility curves. Result from this 

study revealed that plastic hinge formation occurred near the tower base. Capacity 

curve was proved that the capacity of the studied tower decreases when the height of 

tower increases, as the length of tower member increases. The result of fragility 

curves showed that the most vulnerable tower due to far-field earthquake was tower 

with tallest (63.33m) height, and the probability of damage has significantly 

increased for the peak ground acceleration (PGA) larger than 0.2g. 

  



v 

ABSTRAK 

Di Malaysia, walaupun negara boleh dianggap sebagai kawasan seismik yang 

rendah, keselamatan struktur di bawah beban seismik tidak dipelajari. Oleh itu, 

penilaian kelemahan seismik diperlukan, terutamanya untuk menara. Objektif kajian 

ini adalah untuk menyiasat keupayaan menara, mod kegagalan, menentukan kapasiti 

seismik, dan memperoleh keluk kerapuhan seismik untuk menara di Malaysia apabila 

tertakluk kepada gempa bumi yang jauh. Model-model berangka dari tiga menara 

menara yang berbeza telah ditubuhkan dalam perisian FE linier, iaitu SAP2000. 

Analisis spektrum statik dan respon yang sama, analisis Pushover dan analisis 

sejarah masa telah dilakukan untuk menentukan kapasiti anggota menara, kapasiti 

dan kerapuhan menara, masing-masing. Secara amnya, 6 rekod gempa bumi yang 

jauh, yang berkisar dari 0.05g hingga 0.6g, digunakan dalam analisis dinamik 

incremental untuk mendapatkan keluk kerapuhan. Hasil daripada kajian ini 

menunjukkan bahawa pembentukan engsel plastik berlaku berhampiran pangkalan 

menara. Kurva kapasiti terbukti bahawa keupayaan menara yang dikaji berkurangan 

apabila ketinggian menara bertambah, karena panjang menara meningkat. Hasil 

kurva kerapuhan menunjukkan bahawa menara yang paling terdedah akibat gempa 

bumi jauh menara dengan ketinggian tertinggi (63.33m), dan kebarangkalian 

kerosakan telah meningkat dengan ketara untuk pecutan tanah puncak (PGA) lebih 

besar daripada 0.2g. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

In this study, the seismic vulnerability of transmission tower is investigated 

by developing the fragility function curve to fare-field earthquake (low to moderate 

intestines). The typical type of tower that has discussed is the lattice steel equal 

angled transmission tower used in the many projects in Malaysia. According to 

the Tenaga National Berhad (TNB), The 500 kV transmission system is the single 

largest transmission in Malaysia. Begun in 1994, Phase 1 involved the design and 

construction of the 500kV overhead transmission lines from Gurun, Kedah, in the 

North along the west coast to Kapar, in the central region and from Pasir Gudang 

to Yong Peng in the south of Peninsular Malaysia. The total distance covered for the 

500 kV transmission lines is 522 km and the 275 kV portion is 73 km. The National 

Grid; the Peninsula-wide transmission network which acts as a super-highway for 

electricity, plays a vital role in delivering the energy demand. It consists of 

approximately 18,812 circuit-km of overhead transmission lines, 740 circuit-km of 

underground transmission cables and 386 substations with transformation capacity of 

83,808 MVA. During the period under review, thirty-two (32) power stations, made 

up of TNB power stations and Independent Power Producers (IPPs), are connected to 

the grid with 19,723 MW installed capacity and a maximum electricity demand of 

14,007 MW recorded on 21 May 2008.  

The transmission tower is the crucial, yet vital infrastructure of the electricity 

transportation network. The severe damage of this infrastructure will be affecting a 

huge loss, including economic impact, and need a significant time to repair. One of 

the possible hazards that may occur in future and also can contribute to major 

damage of typical transmission tower is the earthquake. To avoid that, important 

https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Gurun%2C_Kedah.html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Kapar.html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Pasir_Gudang.html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Yong_Peng.html
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issues for a power transmission tower-line network, is to ensuring the seismic 

resistance of tower.  

Developing a seismic fragility curves for tower is method to predict the risk 

of the structural system when subjected to the earthquake load. The terms of risk 

produced is the possibility that the tower severe damage or fully collapse due to 

excessive displacement, compression buckling or torsional twisting of tower element, 

also the damage of the tower will be severe while subjected to higher peak ground 

acceleration (PGA). 

Beside to predict the possibility of failure, the seismic fragility of tower also 

can be used for damage prevention, guidance to periodical maintenance of the tower 

elements and retrofitting technique of infrastructure system that will be useful for 

both government and local shareholders to minimize the cost of maintenance. With 

knowing the capacity of the tower, it is also possible to estimate the total loss due to 

excessive lateral load. 

The transmission tower is the main component of power supply and 

distribution system, so that it is important to assured that the structure will not 

collapse or experience an excessive deformation that might occur during seismic 

excitations. Beside possible to causing a huge economic loss, the failure of tower will 

also contribute an inconvenience to social life of inhabitants, since this is a vital 

structure that use by the communities.    

The basic concept of the seismic fragility curves is a probability function, 

where there is an uncertainty factors that will affect the result of tower (elements) 

capacity. This uncertainty might come from material properties, construction errors, 

analytical uncertainties, and also a variance of peak ground acceleration that will be 

used to compute the failure probability function.  

As a probabilistic approach, the seismic fragility curves play important roles 

for determining seismic risk assessment before or after earthquake strike. (Dipendra 

Gautam, 2017). This approach can be produced by the nonlinear analysis, using 
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nonlinear software to determine how the tower will behave under the incremental 

static load and also dynamic load.   

In this study, the effect of far field earthquake was performed. Although the 

location of Malaysia, can be consider as a non-seismic zone, the effect of far field 

earthquake should be consider when designing an engineering structures, because the 

far field earthquake that strikes from far epicentre, will create a resonance effect, that 

possible to increase the vulnerability of structures (tower).  

The tower elements can be divided as a superstructures and substructures. 

The superstructures elements of the tower are the elements that directly receive the 

live load, while the substructures are elements below the superstructures. In this 

study, only superstructure have focused; superstructure elements are the lattice steel 

transmission tower, conductor lines and insulator which support the conductor and 

hanging over the cross arm of tower. While the substructures elements, which have 

not considered under this study; are the concrete footing making rigid connection to 

tower legs. 

To state the damage stage of the tower, the limit states or performance level 

of structures was adopted. The performance level used was the one that 

recommended by the Federal Emergency Management Agency (FEMA) 273 

guidelines for seismic rehabilitation of building and structures, namely immediate 

occupancy (IO), life safety (LS), and collapse prevention (CP). The damage criteria 

for each level is different, from the low damage, moderate, up to partial or total 

collapse of the structures. The damage states were measured according to the 

fragility curves associated to each component.  

1.2       Problem Statement 

 

Earthquake is a natural disaster that causing a tremor and violent shaking of 

the ground due to movement of earth crust or volcanic activities. The effect of 

earthquake or seismic activities is able to cause a great destruction for both structural 
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and non-structural elements in building or infrastructure. As a civil and structural 

engineer, it is compulsory to design a structure to be stiff enough and resistant to 

earthquake lateral load.  

Position of Malaysia in geological form is located in sunda shelf, except for 

eastern part of Malaysia where Sabah and Sarawak consider within the indo-

Australian plate. The peninsular of Malaysia, can be consider as a low seismic 

activity region since it is located far enough from the joint of the plate, so normally 

the earthquake that might happened to peninsular Malaysia is consider as a low 

seismic. Because of this, generally the typical building such as single story or multi 

story residential house, office, apartment, hospital etc., and infrastructure such as 

transmission tower, water tank, sewage, or electric pole etc. are designed based on 

dead load and imposed loads.  

 Peninsular Malaysia, even though can be consider as a low seismic area, 

does not rule out the possibility that the building and infrastructure will safe and 

resistant during earthquake, since it is possible that far earthquake effect able to 

produce the resonance effect to the structures. Based on this condition, it is necessary 

to predict how the structure will behave and determine the capacity and probability 

of structure due to lateral load that will be useful for further action. 

Seismic fragility curves was needed to be constructed for important structures 

such as transmission tower in Malaysia, in order to determine the probability of 

tower failures due to seismic excitations. This information from fragility curves can 

be used to establish a proper seismic risk management for transmission tower-line 

system, And also to design a new earthquake resistant structures or retrofitting 

techniques to existing structures of towers system. 

Another reason why this study needed to be done was because there had been 

no comprehensive study about seismic fragility curves or vulnerability assessment of 

the overhead electricity transmission tower in Malaysia. The previous study that has 

the same concept is applied the vulnerability assessment for material in moment 

resisting concrete frame, typically can be found in the normal building. The result of 
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this study hope can be used as tools for predicting seismic loss that can be apply to 

the tower in Malaysia, especially in lattice steel transmission towers. 

1.3       Objectives of Research 

This study is design to aim the following objectives: 

1. To determine the capacity of tower member to the internal forces generate by 

earthquake according to Malaysia national annex to euro code 8. 

2. To investigate failure mode of transmission tower when subjected to far field 

earthquake by numerical, 3D modelling in FE software SAP2000. 

3. To determine seismic capacity of transmission tower subjected to earthquake 

through static and dynamic incremental analysis (pushover analysis and time 

history analysis). 

4. To derive seismic fragility curve for transmission tower when subjected to far 

field earthquake considering different tower height. 

5. Performance limits at different damage stages; fine, minor damage, major 

damage and collapse, based on fragility curve will be determined for each 

type of tower. 

1.4       Scopes of Research 

This study is limited and constraint by the following scopes: 

1. Seismic fragility curves for equal angled lattice steel HV overhead power 

transmission tower of different height in Malaysia. 

2. The tower model and analysis based on the actual design drawing of 275kv 

and 500kv electricity supply tower available from Tenaga National Berhad 

(TNB), Malaysia. 
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3. Three different heights of tower 42.51m, 52.77m and 63.33m representing the 

most typical heights of tower in Malaysia were considered. 

4. The seismic fragility curves developed using set of similar tower height. 

5.  The transmission towers are made of mild steel with yield strength Fy; 440 

MPa to 275 MPa, Ultimate strength Fu; 510 MPa to 430 MPa and   Young’s 

modulus of 210 GPa. 

6.  Truss elements are used to model the structural primary members (legs 

diagonal bracings and horizontal bracing) and secondary bracing (redundant). 

7. For simplicity of tower numerical modeling, the coupled tower-cable 

interaction of tower-line system was not considered in this study. 

8. The mass of the cables and the wind loads effects on cables as well as tower 

body were applied as nodal load to the cross arms of tower at the point cable 

attached to the cross arm. 

9. The legs of the transmission tower were fully fixed to the ground through the 

cast-in-situ concrete footings. 

10. The soil condition interaction was not considered in this study. 

11. Different loads calculations, applied to the towers were based on the actual 

drawings calculations available from TNB, Malaysia. 

12. The analysis and  design considerations were based on Euro code 3 (EN 

1993-3-1) 

13. 6 Earthquake records were used to perform Incremental Dynamic Collapse 

Analysis (IDA). 

14. The numerical models of towers were based on using nonlinear finite element 

software SAP2000 
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Appendix A Demand Drift for 42.51m Tower 

 

Table 1:    SCALLING FACTOR 

Time 

History 

Name OPACO ElCentro POMONA KKM KDM SPM 

PGA 

(g) 1.17 0.3075 0.1646 0.1325 0.0032 0.0049 

PGA (g) 

0 0 0 0 0 0 0 

0.05 0.41923 1.595122 2.979951 3.70189 151.58 100.7 

0.1 0.83846 3.190244 5.959903 7.40377 303.15 201.4 

0.15 1.25769 4.785366 8.939854 11.1057 454.73 302.09 

0.2 1.67692 6.380488 11.91981 14.8075 606.3 402.79 

0.25 2.09615 7.97561 14.89976 18.5094 757.88 503.49 

0.3 2.51538 9.570732 17.87971 22.2113 909.46 604.19 

0.35 2.93462 11.16585 20.85966 25.9132 1061 704.89 

0.4 3.35385 12.76098 23.83961 29.6151 1212.6 805.58 

0.45 3.77308 14.3561 26.81956 33.317 1364.2 906.28 

0.5 4.19231 15.95122 29.79951 37.0189 1515.8 1007 

0.55 4.61154 17.54634 32.77947 40.7208 1667.3 1107.7 

0.6 5.03077 19.14146 35.75942 44.4226 1818.9 1208.4 

 

42.51m Tower Drift Division 

Performance Level Displacement (mm) Drift (%) 

OP 19 0.050304 

IO 35 0.092666 

DC 56 0.148266 

LS 80 0.211808 

CP 98 0.259465 

 

Table 3:  RESULT DRIFT OF (%) 42.51M TOWER 

Time 

History 

Name OPACO ElCentro POMONA KKM KDM SPM 

PGA 

(g) 1.17 0.3075 0.1646 0.1325 0.003 0.005 

 PGA (g) 

0 0 0 0 0 0 0 

0.05 0.00533 0.008125 0.0094202 0.0085 0.003 0.003 

0.1 0.01066 0.016251 0.018843 0.0171 0.006 0.007 

0.15 0.01599 0.024376 0.0282658 0.0256 0.009 0.01 

0.2 0.02132 0.032502 0.0376886 0.0342 0.012 0.013 

0.25 0.02666 0.040627 0.0471115 0.0427 0.015 0.017 

0.3 0.03199 0.048753 0.0565369 0.0513 0.018 0.02 

0.35 0.03732 0.056878 0.0659598 0.0598 0.021 0.023 

0.4 0.04264 0.065001 0.0753826 0.0684 0.023 0.027 

0.45 0.04799 0.073132 0.0848054 0.0769 0.026 0.03 

0.5 0.05331 0.081258 0.0942282 0.0862 0.029 0.033 

0.55 0.05864 0.089383 0.103651 0.094 0.032 0.037 

0.6 0.06397 0.097509 0.1130739 0.1026 0.035 0.04 
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Appendix B Demand Drift for 52.77m Tower 

 

Table 1:    SCALLING FACTOR 

Time 

History 

Name OPACO ElCentro POMONA KKM KDM SPM 

PGA (g) 1.17 0.3075 0.1646 0.1325 0.0032 0.0049 

PGA (g) 

0 0 0 0 0 0 0 

0.05 0.41923 1.595122 2.979951 3.70189 151.58 100.7 

0.1 0.83846 3.190244 5.959903 7.40377 303.15 201.4 

0.15 1.25769 4.785366 8.939854 11.1057 454.73 302.09 

0.2 1.67692 6.380488 11.91981 14.8075 606.3 402.79 

0.25 2.09615 7.97561 14.89976 18.5094 757.88 503.49 

0.3 2.51538 9.570732 17.87971 22.2113 909.46 604.19 

0.35 2.93462 11.16585 20.85966 25.9132 1061 704.89 

0.4 3.35385 12.76098 23.83961 29.6151 1212.6 805.58 

0.45 3.77308 14.3561 26.81956 33.317 1364.2 906.28 

0.5 4.19231 15.95122 29.79951 37.0189 1515.8 1007 

0.55 4.61154 17.54634 32.77947 40.7208 1667.3 1107.7 

0.6 5.03077 19.14146 35.75942 44.4226 1818.9 1208.4 

 

52.77m Tower Drift Division 

Performance Level Displacement (mm) Drift (%) 

OP 19 0.044695 

IO 35 0.082334 

DC 56 0.131734 

LS 80 0.188191 

CP 98 0.230534 

 

Table 3: RESULT DRIFT OF (%) 52.77M TOWER 

Time 

History 

Name OPACO ElCentro POMONA KKM KDM SPM 

 PGA 

(g) 1.17 0.3075 0.1646 0.1325 0.003 0.005 

 PGA (g) 

0 0 0 0 0 0 0 

0.05 0.00572 0.008589 0.0104728 0.0144 0.005 0.004 

0.1 0.01143 0.017179 0.020948 0.0288 0.011 0.008 

0.15 0.01715 0.025768 0.0314232 0.0432 0.016 0.013 

0.2 0.02287 0.034359 0.0418984 0.0576 0.022 0.017 

0.25 0.0286 0.042948 0.0523736 0.072 0.027 0.021 

0.3 0.03431 0.051538 0.0628511 0.0864 0.033 0.025 

0.35 0.04003 0.060127 0.0733263 0.1008 0.038 0.03 

0.4 0.04574 0.068718 0.0838015 0.1152 0.043 0.034 

0.45 0.05147 0.077314 0.0942766 0.1296 0.049 0.038 

0.5 0.05719 0.085902 0.1047518 0.144 0.054 0.042 

0.55 0.06291 0.094491 0.115227 0.1584 0.06 0.047 

0.6 0.06862 0.103082 0.1257045 0.1728 0.065 0.051 
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Appendix C  Demand Drift for 63.33m Tower 

 

Table 1:    SCALLING FACTOR 

Time 

History 

Name OPACO ElCentro POMONA KKM KDM SPM 

PGA (g) 1.17 0.3075 0.1646 0.1325 0.0032 0.0049 

PGA 

(g) 

0 0 0 0 0 0 0 

0.05 0.41923 1.595122 2.979951 3.70189 151.58 100.7 

0.1 0.83846 3.190244 5.959903 7.40377 303.15 201.4 

0.15 1.25769 4.785366 8.939854 11.1057 454.73 302.09 

0.2 1.67692 6.380488 11.91981 14.8075 606.3 402.79 

0.25 2.09615 7.97561 14.89976 18.5094 757.88 503.49 

0.3 2.51538 9.570732 17.87971 22.2113 909.46 604.19 

0.35 2.93462 11.16585 20.85966 25.9132 1061 704.89 

0.4 3.35385 12.76098 23.83961 29.6151 1212.6 805.58 

0.45 3.77308 14.3561 26.81956 33.317 1364.2 906.28 

0.5 4.19231 15.95122 29.79951 37.0189 1515.8 1007 

0.55 4.61154 17.54634 32.77947 40.7208 1667.3 1107.7 

0.6 5.03077 19.14146 35.75942 44.4226 1818.9 1208.4 

 

63.33m Tower Drift Division 

Performance Level Displacement (mm) Drift (%) 

OP 19 0.030016 

IO 35 0.055292 

DC 56 0.088468 

LS 80 0.126382 

CP 98 0.154818 

 

Table 3:   RESULT DRIFT (%) OF 63.33M TOWER 

Time 

History 

Name OPACO ElCentro POMONA KKM KDM SPM 

 PGA 

(g) 1.17 0.3075 0.1646 0.1325 0.003 0.005 

 PGA (g) 

0 0 0 0 0 0 0 

0.05 0.013 0.010071 0.0202796 0.0081 0.015 0.008 

0.1 0.02599 0.020142 0.0405671 0.0163 0.03 0.016 

0.15 0.03899 0.030213 0.0608547 0.0244 0.046 0.025 

0.2 0.05198 0.040286 0.0811422 0.0325 0.061 0.033 

0.25 0.06501 0.050357 0.1014297 0.0407 0.076 0.041 

0.3 0.078 0.060428 0.1217156 0.0488 0.091 0.049 

0.35 0.091 0.070499 0.1420032 0.0569 0.106 0.057 

0.4 0.104 0.08057 0.1622907 0.0651 0.122 0.066 

0.45 0.11702 0.090648 0.1825782 0.0732 0.137 0.074 

0.5 0.13002 0.100719 0.2028641 0.0813 0.152 0.082 

0.55 0.14302 0.11079 0.2231517 0.0895 0.167 0.09 

0.6 0.15601 0.120863 0.2434392 0.0976 0.182 0.099 

 


