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ABSTRACT

Thermal efficiency of a spark-ignited engine is normally in the range of 25 %

to 35% and reciprocating engines represent a very large source of waste heat with

most of the losses are from the exhaust, through coolant, by direct convection and

radiation to the environment. There is a significant potential to expand waste heat

recovery usage by tapping the large volumes of unused exhaust heat into useful

energy such as electricity. The methodology involved in the thesis includes

assessment of each waste heat recovery technology based on current developments,

research trends and its future in an automotive application. It also looked into the

potential energy recoveries, performances of each technology, other factors affecting

the implementation and comparison for each technology. Finally, simulation of an

Electric Turbo Compounding (ETC) was presented using a Ford EcoBoost as a

baseline engine with modification using HyBoost setup modeled with the 1-

Dimensional AVL Boost engine performance software. A validated 1-D engine

model was used to investigate the impact on the Brake Specific Fuel Consumption

(BSFC) and Brake Mean Effective Pressure (BMEP) and was run at full load

conditions. The results showed a maximum reduction of 3.0% BSFC and a maximum

increment of BMEP of 0.5 bar achieved at an engine speed of 2500 rpm, during the

full load condition. The setup was also able to achieve 1 kW of power and up to 3.75

kW recovered from the exhaust heat. A comparison between the engine testing and

1-D engine model showed a good agreement at the full load conditions with a

minimum BSFC Standard Deviation of 0.0206 at the engine speed of 3000 rpm.
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ABSTRAK

Kecekapan haba bagi enjin nyalaan pencucuh biasanya dalam lingkungan

25% hingga 35% dan enjin salingan merupakan sumber haba buangan yang sangat

besar dengan kehilangan haba kebanyakannya adalah daripada ekzos, melalui

penyejuk, dengan haba perolakan dan haba sinaran kepada persekitaran. Terdapat

potensi yang besar untuk menggunakan semula sisa haba dengan menukar sejumlah

besar haba ekzos yang tidak digunakan kepada tenaga yang berguna seperti elektrik.

Metodologi yang terlibat dalam tesis ini termasuk penilaian setiap teknologi

penggunaan semula sisa haba berdasarkan perkembangan semasa, kecenderungan

penyelidikan dan masa depan dalam aplikasi automotif. Selain itu, tesis juga melihat

potensi tenaga guna semula, prestasi setiap teknologi, faktor-faktor lain yang

mempengaruhi pelaksanaan dan perbandingan bagi setiap teknologi. Akhir sekali,

simulasi ke atas Elektrik Turbo Kompaun (ETC) dibentangkan menggunakan enjin

asas Ford EcoBoost yang diubahsuai menyerupai model HyBoost melalui perisian

prestasi enjin 1-Dimensi AVL Boost. Enjin model 1-D model yang telah disahkan

telah digunakan bagi mengkaji kesan terhadap Brek Penggunaan Bahan Api Khusus

(BPBAK) dan Tekanan Brek Min Berkesan (TBMB) dan dijalankan pada keadaan

beban penuh. Keputusan menunjukkan di dalam keadaan beban penuh, pengurangan

maksima 3.0% BPBAK serta kenaikan maksima TBMB sebanyak 0.5 bar dicapai

pada kelajuan enjin 2500 ppm. Konfigurasi ini juga dapat mencapai kuasa elektrik

sebanyak 1 kW sehingga 3.75 kW yang dijana semula daripada haba ekzos.

Perbandingan antara ujian jentera dan 1-D model jentera menunjukkan kesamaan

yang baik pada keadaan beban penuh dengan sisihan piawai BPBAK minima, 0.0206

diperolehi pada kelajuan enjin 3000 ppm.
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CHAPTER 1

INTRODUCTION

Since the start of the Industrial Age, industrialization has played an important

role in rapid reduction of natural energy resources availability. Hence, in the

beginning of the twenty-first century, using lesser energy has become a primary

interest in most of the industrialised countries. Conserving energy by waste heat

recovery suddenly become popular and majority of industrial sector plays an

important role in venturing the recovery technology. In the 1970s, waste heat

recovery systems (WHRS) were used mainly in power generation and energy

industries (Reiter, 1983). Various types of heat recovery systems and equipment

were invented since then (Reay, 1979). Apart from reducing energy consumption, it

also resulted in significant cost savings and reduction in air pollutants (Reiter, 1983

and US Department of Energy, 2005).

The strategy of recovering the waste heat lies on the temperature of the

stream of waste heat gases, methods to recover and reusing it and finally the

economics involved therein (Reay, 1979). The importance of WHRS have caught the

attention of engine manufacturers such as Detroit Diesel, Scania and Volvo to

integrate exhaust heat recovery system (EHRS) especially for their long haul diesel

engine used in land transportation sector. Over the years with the improvement of

materials, engine simulation programmes and system innovation, the examples of the
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automotive WHRS have been expanded from previous mechanical turbo-

compounding to electric turbo compounding, thermoelectric generator, organic

Rankine cycle, steam Rankine cycle and Brayton cycle (Mohd Noor et al. 2014 and

Saidur et al. 2012).

Apart from energy recovery from waste heat more stringent standards are

being imposed on automotive emissions and in the same time there is a requirement

to improve fuel economy due to increase of world fuel prices. Mandating the

reduction of CO2 exhausts emissions is becoming global trend with European Union

(EU) leading the way with substantial standards improvement over the past 25 years.

The use of highly boosted downsized engines is a feasible option in reducing CO2

emission. Reduction of displacement by means of downsizing; either by producing a

much smaller specific cylinder displacement or by reducing the number of cylinders

with the usage of supercharger or turbocharger with similar output of a much larger

engine. Reduction in engine capacity and size will also reduces the weight of the

vehicle and contribute to the increased fuel economy as shown in Figure 1.1 (Fraser

et al. 2009). This phenomena have resulted in numerous downsized engines already

being brought to production.

Figure 1.1. Gasoline downsize engine full load performance
(Fraser et al. 2009)
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At present, waste heat recovery systems for Internal Combustion Engines

(ICE) can be categorized into 3 methods; (1) Bottoming Cycles, (2) Turbo

Compounding and (3) Thermoelectric Generator. Electric Turbo Compounding

(ETC) concept have been pioneered by Caterpillar in 2002 using integrated turbo

compound downstream power turbine to recover exhaust heat and producing

electricity from unexploited waste heat.

1.1. Exhaust Energy

Figure 1.2. Ideal Otto Cycle (Heywood, 1988)
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Figure 1.2 explains the PV Diagram in an ideal Otto engine cycle. Maximum

possible closed-cycle efficiency (ideal efficiency) is represented by the state of (1) to

(2) with isentropic (adiabatic and reversible) compression from max (V1) to min

cylinder volume (V2).  Compression ratio is represented by rc, which is the value of

V1 over V2. The state (2) to (3) is the adiabatic and isochoric (at constant volume)

combustion. The state (3) to (4) represents isentropic expansion. Whilst the state (4)

to (1) exhaust process which the available energy is rejected which can be converted

to mechanical or electrical work for later use.

Algrain (2005) in his work mentioned when the power produced by the

turbocharger turbine exceeds the power requirement of the compressor, the surplus

mechanical power is converted into electrical power by a generator mounted on the

turbocharger shaft. Figure 1.3 shows the surplus power of the system as a function

of engine power. The power surplus is then converted into electricity to power an

electric motor mounted on the crankshaft, which also used to assists the engine. This

results to an increase in the system efficiency. The electrical machine also can be

used as a motor to accelerate the turbocharger shaft if the power requirement of the

compressor was lower than expected.

Figure 1.3.  Compressor and Turbine Power in Engine (Algrain, 2005)
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1.2 Electric Turbo Compounding as a Waste Heat Recovery System Option

for Gasoline Engine

In a gasoline powered internal combustion engines, about 40% of the fuel

energy is wasted in exhaust gases, and another 30% losses in engine coolant (Stabler,

2002). The increasing demand in improving the efficiency of the engine requires

extensive research and technology development by most of the engine

manufacturers. Exhaust gas heat utilization in the form of WHRS has attracted a

major interest due to substantial potential of the amount of heat that can be recovered

(Stobart and Weerasinghe, 2006 and Jianqin et al. 2011). Recovering useful energy,

in the form of electrical power from engine exhaust waste heat would directly reduce

system fuel consumption, increase available electric power and improve overall

system efficiency by adding the power produced by the engine (Millo et al. (2006)

and Hoppman and Algrain, (2003)).

Figure 1.4. Electric turbo compound schematic by Caterpillar

(Hoppman and Algrain, 2003)
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Electric Turbo Compounding (ETC) prototype (Figure 1.4) was first

developed by Caterpillar for diesel engines in 2003 (Hoppman and Algrain 2003).

The system consists of an electric machine integrated into the turbocharger shaft. The

electric machine can work as a motor to improve transient response or work as a

generator to recover energy. In another design by John Deere, an extra downstream

power turbine with electric machine was designed for diesel engine (Vuk, 2005).

Controlled Power Technologies Ltd UK also has developed a system called Turbo-

generator Integrated Gas Energy Recovery System (TIGERS); in which a turbo-

generator was used in a naturally aspirated gasoline engine exhaust line. Caterpillar

and John Deere both claimed that they were able to achieve fuel economy

improvement between 3 to 5% (Hoppman and Algrain, 2003 and Vuk, 2005).

In a recent work by Zhuge et al. (2011), an electric turbo compound gasoline

engine with Fixed Geometry Turbine (FGT) and Variable Nozzle Turbine (VNT)

was tested using engine performance software GT-Drive was able to achieve

improvement of fuel economy by 4.74% and 1.86% under US06 and FTP75

simulation of high loading and low loading driving cycles respectively (Table 1.1).

Table 1.1. Performance of ETC systems under driving cycles (Zhuge et al. 2011)

_______________________________________________

The Federal Test Procedure 75 (FTP-75) simulation cycle has been used for emission certification and fuel economy testing of

light-duty vehicles in the United States, while US06 was the supplemental test to FTP75 which is more towards aggressive

acceleration and rapid fluctuation driving behaviour.
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The design of a downstream power turbine eliminates the integration

complexity of electric machine into the engine turbocharger. However, the design

also has implication to the system architecture. As the exhaust pressure at the exit of

the main turbocharger turbine is relatively low, the additional turbine installed must

be able to recover the exhaust energy at low pressure. Conventional and of the shelf

turbine performance in meeting the low pressure requirement was very poor, so a

patented high performance Low Pressure Turbine (LPT) design was developed to

mitigate this issue (Aman et al. 2011). The LPT design work was in conjunction with

HyBoost low carbon vehicle project for exploratory waste heat recovery system in a

heavily downsized GDI engine.

1.3 Motivation

The thesis work is based on various electric turbo compounding project.

However, it is focused on previous HyBoost project which is the acronym for the

Hybridised Boosted Optimised System with the turbo compounding unit. A heavily

downsized Ford three-cylinder 1.0 liter turbo GDI EcoBoost engine was used against

a naturally aspirated 2L four-cylinder port-injected gasoline engine as its baseline

comparison. Variable Torque Enhancement System (VTES) or electric supercharger

has been used to eliminate the turbo lag. In the system, the function of electric turbo-

compound unit in the project was to supply continuous charge to battery charger or

energy storage and controller for the use of VTES (Refer Figure 1.5).

_______________________________________________

HyBoost project was funded by the United Kingdom Technology Strategy Board (TSB) with aim was to reduce the carbon

emission from 169 g/km to 99.7 g/km. The research was led by Ricardo UK Ltd in partnership with Ford (UK), Valeo, Control

Power Technologies, European Advanced Lead Acid Battery Consortium (EALABC) and Imperial College London.
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The simulation results in 1-D Ricardo Wave dynamic code results have

shown that an improvement in BSFC and BMEP of as much as 3 % can be achieved.

In a test bed result, shows the use of LPT at the exhaust post catalyst location enable

a maximum BSFC reduction of 2.6% and recovers exhaust energy of 1.3 kW.

However, it was observed that the model channeled the recovered exhaust energy

into the crankshaft of the engine and not to an electric generator; with the assumption

of mechanical efficiency of 100%. Therefore, it is the intention of this research to

simulate the energy recovered by introducing electric turbo compounding or electric

generator into the engine model and aim to achieve the same amount of BSFC and

BMEP improvement.

This research mainly focuses on two aspects; first to model and simulate a

heavily downsized Ford three-cylinder 1.0 liter turbo GDI EcoBoost engine with

downstream turbo-electric generator by integrating it into the 1-Dimensional AVL

Boost gas dynamic engine model. Secondly, to validate the results with data

provided by Imperial College London, Ricardo UK Ltd and previous work from

Mamat, (2011) with aim of achieving BSFC reduction of 2% or higher percentage

and energy recovery of 1kW.

Figure 1.5. HyBoost Engine Architecture (Mamat et al. 2011).
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1.4 Thesis Objective

The thesis presents the simulation and validation work of the Electric Turbo

Compounding (ETC). The research objective is to analyse the performance of a

turbocharged gasoline engine with ETC by using 1-D modeling and simulation

against previous experimental result.

1.5 Thesis Scope

In the present research, a model of Electric Turbo Compound for a

turbocharged gasoline engine is proposed. The model is inspired from a detailed and

comprehensive investigation of previous research work. The simulation process was

done through engine performance simulation software AVL Boost. The engine

simulation was based on the ETC unit located after the engine turbocharger whereas

in the HyBoost setup the location of ETC was after the catalyst (post catalyst). These

simulations define the optimum dimensions and structure of the ETC to meet the

performance requirements. For the validation purpose of simulation results, a

comparison between such results and experimental results produced from PhD thesis

by Dr Aman Mohamad Ihsan bin Mamat and other published papers is composed.
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1.6 Thesis Outline

The content of this dissertation is basically divided into five main chapters.

Chapter 1 introduces the reader to the background of engine downsizing and waste

heat recovery. The research motivation is derived from the existing HyBoost project

with the objective to prove and validate electric turbo-compounding simulation based

on the data obtained from Imperial College London. Chapter 2 provides the

literature reviews of this topic for the reader to recognize the present achievements of

the researches concerning the field of GDI, engine downsizing and available waste

heat recovery system. Chapter 3 involves the 1-D gas dynamic and mathematical

modeling of the system. Chapter 4 displays the overall graphical and written results

together with general discussions from the modeling, simulation and validation of the

system. Finally, Chapter 5 covers conclusions drawn based on the results of the

analysis and outlines some of the recommendations for possible future works on the

similar subject.
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