HOLMIUM CONCENTRATION DEPENDENT STRUCTURAL AND OPTICAL PROPERTIES OF ZINC TELLURITE GLASS

SHAIRAH BINTI GAFAR

UNIVERSITI TEKNOLOGI MALAYSIA

HOLMIUM CONCENTRATION DEPENDENT STRUCTURAL AND OPTICAL PROPERTIES OF ZINC TELLURITE GLASS

SHAIRAH BINTI GAFAR

A dissertation submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Science

Faculty of Science

Universiti Teknologi Malaysia

MARCH 2018

To my beloved family

ACKNOWLEDGEMENT

Alhamdulillah, all praise to Allah SWT, the Almighty, for giving me the courage, strength, and patience to complete this master study. First and foremost, I would like to express my deepest gratitude to my supervisor, Assoc. Prof. Dr. Sib Krishna Ghoshal for the encouragement, assistance and advice during the work.

Thank you to all the lecturers who have share their knowledge and experience during my dissertation. I also would like to thank all Material Analysis Laboratory's staff for their help and support during my experimental work. My sincere thanks and appreciation extend to all the lab assistants for their help using instruments in the laboratories.

I also would like to express my gratitude to Yayasan Biasiswa Sarawak Tunku Abdul Rahman for supporting scholarship during my master study. I also gratefully acknowledge the financial support from UTM and Malaysian Ministry of Education through GUP/RU Vot. 13H50, 17H19 and 18H68. Not forgetting to my family members for their love and support.

ABSTRACT

This thesis examined the effects of Ho_2O_3 dopant concentration variation on the physical, optical, thermal and structural properties of zinc tellurite glass system. Glass with composition of (80 - x) TeO₂ - 20ZnO - xHo₂O₃, where x = 0.0, 0.5, 1.0, 1.5 and 2.0 mol% were prepared using melt quenching method. Samples were characterized by X-ray diffraction (XRD) measurement, Energy-dispersive X-ray (EDX) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy, Differential Thermal Analysis (DTA), Archimedes Method, UV-Visible-NIR (UV-Vis-NIR) spectrometer and Photoluminescence (PL) spectrometer. XRD pattern verified the amorphous nature of prepared sample. EDX spectra detected the presence of appropriate elements in the glass. FTIR spectra showed all the functional group such as Zn–O, TeO₄ and TeO₃ in the range of 443 - 487, 654 - 675 and 760 - 763 cm⁻¹. Raman spectrum showed three bands at 463, 530 and 676 cm⁻¹ of Te–O–Te linkages, TeO₄ and TeO₃ respectively. The DTA thermogram showed the peak for glass transition temperature, T_g (367 °C), melting temperature, T_m (632 °C) and crystallization temperature, T_c (458 °C). The density, ρ and molar volume, V_m of the prepared glass sample was varied respectively in the range of 5.554 - 5.580 g cm⁻³ and 26.088 - 27.270 cm³ mol⁻¹ with increase of Ho₂O₃ concentration. The absorption spectra showed seven bands centered at 418, 454, 480, 541, 646, 894 and 1155 nm which assigned to the transitions from the ground state to the excited ${}^{5}G_{5}$, ${}^{5}G_{6}$, ${}^{5}F_{3}$, ${}^{5}F_{4}$ + ${}^{5}S_{2}$, ${}^{5}F_{5}$, ${}^{5}I_{5}$ and ${}^{5}I_{6}$ levels of Ho³⁺. The indirect band gap energy, direct band gap energy and Urbach energy were varied from 3.31 - 3.36, 3.21 - 3.30 and 0.17 - 0.21 eV respectively with the changes of holmium concentration. The PL spectra displayed two peaks at 657 nm (red region) and 753 nm (NIR region) for ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ and ${}^{5}S_{2} \rightarrow {}^{5}I_{7}$ transitions.

ABSTRAK

Tesis ini mengkaji kesan variasi kepekatan dopan Ho_2O_3 pada sifat fizikal, optik, terma dan struktur sistem kaca tellurite zink. Kaca dengan komposisi (80 - x) TeO₂ -20ZnO – xHo₂O₃, dengan x = 0.0, 0.5, 1.0, 1.5 dan 2.0 mol% disediakan menggunakan kaedah pelindap-kejutan leburan. Sampel dicirikan oleh pengukuran pembelauan sinar-X (XRD), spektroskop penyebaran tenaga X-ray (EDX), spektroskop tranformasi infra merah (FTIR), spektroskop Raman, analisis perbezaan terma (DTA), cara Archimedes, spektrometer UV-Vis-NIR dan spektrometer fotoluminisan (PL). Corak XRD mengesahkan sifat amorfus pada sampel yang disediakan. Spektrum EDX mengesan kehadiran unsur-unsur yang sesuai di dalam kaca. Spektrum FTIR menunjukkan semua kumpulan berfungsi seperti Zn-O, TeO4 dan TeO3 dalam lingkungan 443 - 487, 654 -675 dan 760 – 763 cm⁻¹. Spektrum Raman masing-masing menunjukkan dua kumpulan pada 463, 530 dan 676 cm⁻¹ untuk hubungan Te-O-Te, TeO₄ dan TeO₃. DTA termogram menunjukkan puncak bagi suhu peralihan kaca, T_g (367 °C), suhu lebur, T_m (632 °C) dan suhu penghabluran, T_c (458 °C). Ketumpatan ρ , dan isi padu molar, V_m sampel kaca yang disediakan masing-masing dalam lingkungan 5.554 - 5.580 g cm⁻³ dan $6.154 - 6.258 \times 10^{-24} \text{ cm}^3$ dengan peningkatan kepekatan Ho₂O₃. Spektrum UV-Vis menunjukkan tujuh jalur serapan berpusat pada 418, 454, 480, 541, 646, 894 dan 1155 nm yang ditugaskan untuk peralihan dari keadaan asal kepada teruja ⁵G₅, ⁵G₆, ⁵F₃, ⁵F₄ + ${}^{5}S_{2}$, ${}^{5}F_{5}$, ${}^{5}I_{5}$ dan ${}^{5}I_{6}$ tahap Ho³⁺. Tenaga jurang band tak langsung, tenaga jurang jalur langsung dan tenaga Urbach berubah dari 3.31 - 3.36, 3.21 - 3.30 dan 0.17 - 0.21 eV masing-masing dengan perubahan kepekatan holmium. Spektra PL menunjukkan dua puncak di 657 nm (rantau merah) dan 753 nm (rantau NIR) untuk ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ dan ${}^{5}S_{2} \rightarrow {}^{5}I_{7}$ peralihan.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	Х
	LIST OF FIGURES	xi
	LIST OF SYMBOLS	XV
	LIST OF ABBREVIATIONS	xvi
	LIST OF APPENDICES	xvii
1	INTRODUCTION	1
	1.1 Overview	1
	1.2 Research Background	1
	1.3 Problem Statement	3
	1.4 Objective of Study	4
	1.5 Scope of Study	4
	1.6 Significance of Study	5
	1.7 Motivation of Study	5
	1.8 Thesis Outline	6

LITE	RATURE REVIE	W	7
2.1	Overview		7
2.2	2 History of Glass	3	7
2.3	B Definition of Gl	ass	8
2.4	Preparation of C	Hass	11
2.5	5 Tellurite Glasses	S	11
	2.5.1	Structure of Tellurite Glasses	12
	2.5.2	Zinc Tellurite Glasses	13
2.6	5 Rare Earth Elem	nents	15
	2.6.1	Holmium Oxide as Dopant	16
2.7	⁷ Structural Prope	orties	17
	2.7.1	X-Ray Diffraction	17
	2.7.2	Energy-dispersive X-ray	19
	2.7.3	Fourier Transform Infrared	20
	2.7.4	Raman	23
2.8	3 Thermal Propert	ties	26
	2.8.1	Differential Thermal Analysis	26
2.9	Physical Propert	ties	29
2.1	0 Optical Properti	es	31
	2.10.1	UV-Vis	31
	2.10.2	Photoluminescence	35

3	METHO	ODOLOGY	37
	3.1	Overview	37
	3.2	Glass Preparation	37
	3.3	X-Ray Diffraction	41
	3.4	Energy-dispersive X-ray spectroscopy	42
	3.5	Fourier Transform Infrared Spectroscopy	43
	3.6	Raman Spectroscopy	44
	3.7	Differential Thermal Analysis	45

	3.8	Physical Analysi	S	46
	3.9	UV-Vis Spectros	сору	47
	3.10	Photoluminescen	ce Spectroscopy	48
4	RESULT ANI	DISCUSSION		49
	4.1	Overview		49
	4.2	Glass Preparation	n	49
	4.3	X-Ray Diffractio	n Pattern	51
	4.4	EDX Spectrum		52
	4.5	FTIR Spectra		55
	4.6	Raman Spectrum	1	57
	4.7	Thermal Analysi	S	58
	4.8	Physical Analysi	S	60
	4.9	UV-Vis-NIR Spe	ectra	63
		4.9.1	Optical Band Gap Energy	64
		4.9.2	Urbach Energy	66
		4.9.3	Refractive Index, Molar Refractivity	68
			and Electronic Polarizability	
	4.10	Photoluminescen	ice Spectra	72
		4.10.1	Integrated Luminescence Intensity	73
		4.10.2	Energy Level Diagram of Holmium	75
5	CONC	LUSION		76
	5.1	Overview		76
	5.2	Conclusion		76
	5.3	Future Outlook		79

REFERENCES	

80 87

Appendix A – D

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	FTIR peaks position of $(TeO_2)_{1-x} (ZnO)_x [30]$	21
2.2	Absorption peaks of the FTIR of	
	$(80 - x) \text{ TeO}_2 - 20\text{ZnO} - x\text{Sm}_2\text{O}_3 \text{ glasses [31]}$	25
3.1	Nominal composition of each material	38
4.1	Compositions of $(80 - x)$ TeO ₂ – 20ZnO – x Ho ₂ O ₃	
	glass system	50
4.2	The weight percentage of each chemical element in glass system	53
4.3	The FTIR peaks positions of	
	(80 - x) TeO ₂ – 20ZnO – x Ho ₂ O ₃ glass system	56
4.4	Thermal parameters of ZTH1.0 glass	59
4.5	Prepared glasses samples with their physical parameters	60
4.6	Direct and indirect band gap, Urbach energy	64
4.7	Refractive index, molar refractivity and polarizability	68
4.8	Enhancement factor of different Ho ₂ O ₃ concentration	73

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
2.1	Two dimensional schemes of the structure of	
	(a) crystalline silicon dioxide and (b) noncrystalline	
	silicon dioxide [11]	9
2.2	Specific volume versus temperature diagram [9]	10
2.3	TeO ₂ Trigonal Bipyrimidal structure [13]	12
2.4	TeO_{3+1} and TeO_3 structures [13]	13
2.5	Phase diagram for glass formation ranges of	
	zinc tellurite glasses [13]	14
2.6	Geometric arrangement of X-ray diffractometer [27]	18
2.7	XRD patterns of undoped and 1 mol% Ho ³⁺	
	doped zinc tellurite glasses [2]	18
2.8	EDX spectrum of the TPBKZFEr05 glass [29]	19
2.9	FTIR instrumentation [27]	20
2.10	FTIR spectra of $(TeO_2)_{1-x}$ (ZnO) _x with various compositions [30]	21
2.11	FTIR spectra of $(80 - x)$ TeO ₂ – 20ZnO – x Sm ₂ O ₃ glasses [31]	22

2.12	Raman instrumentation [28]	24
2.13	Room-temperature Raman spectra of the $70\text{TeO}_2 - 30\text{ZnO}$	
	glass doped with various concentrations of erbium.	
	The excitation line used is 457.9 nm [32]	24
2.14	Raman spectra of zinc tellurite glasses [1]	25
2.15	DTA instrumentation [28]	26
2.16	DTA curve with endothermic and exothermic peaks [28]	27
2.17	DTA profiles of undoped and 1 mol% Ho ³⁺ doped	
	TZO glasses [2]	28
2.18	A UV/visible spectroscopic system [27]	31
2.19	Optical absorption spectrum of undoped and	
	1 mol% Ho ³⁺ doped TZO glasses [2]	34
2.20	Photoluminescence instrumentation [38]	35
2.21	(a) PL Excitation spectra and (b) Emission spectra of	
	Ho ³⁺ doped TZO glasses at different holmium concentration [2]	36
3.1	Flow chart of sample preparation	38
3.2	Weighing the raw material by using electronic balance	39
3.3	Milling the powder mixture by using milling machine	
	for 30 minutes	39
3.4	Melting the powder mixture in platinum crucible	
	for 30 minutes at 900 °C	40

3.5	Annealing the glass liquid for 2 hours at 300 °C and	
	then cooling to room temperature	40
3.6	Rigaku Smart Lab X-ray Diffractometer General	41
3.7	Jeol Variable Pressure Scanning Electron Microscope	
	(VP-SEM)	42
3.8	Perkin Elmer FT-IR Spectrometer Frontier	43
3.9	Horiba Raman Spectrometer HR Evolution	44
3.10	Mettler Toledo TGA – SDTA	45
3.11	Precisa XT220A analytical balance of specific density	46
3.12	Shimadzu 3101 UV-Vis-NIR Spectrophotometer	47
3.13	Perkin-Elmer LS 55 Luminescence Spectrometer	48
4.1	Prepared glass samples	50
4.2	XRD pattern of ZTH1.0 glass	51
4.3	EDX spectrum of ZTH1.0 glass	52
4.4	EDX mapping of ZTH1.0 glass	53
4.5	Element viewed in range of 250 µm	54
4.6	Electron image viewed in range of 250 µm	54
4.7	FTIR spectra of $(80 - x)$ TeO ₂ – 20ZnO – x Ho ₂ O ₃ glasses	55
4.8	Raman spectrum of ZTH1.0 glass	57
4.9	DTA thermogram of ZTH1.0 glass	58
4.10	Density dependent Ho ₂ O ₃ concentration	61

4.11	Molar volume dependent Ho ₂ O ₃ concentration	62
4.12	UV-Vis-NIR spectra of $(80 - x)$ TeO ₂ – 20ZnO – x Ho ₂ O ₃ glasses	63
4.13	Indirect band gap energy against Ho ₂ O ₃ concentration	65
4.14	Direct band gap energy against Ho ₂ O ₃ concentration	66
4.15	Urbach energy against Ho ₂ O ₃ concentration	67
4.16	Refractive index against Ho ₂ O ₃ concentration	69
4.17	Molar refractivity against Ho ₂ O ₃ concentration	70
4.18	Polarizability against Ho ₂ O ₃ concentration	71
4.19	Luminescence spectra of $(80 - x)$ TeO ₂ – 20ZnO – x Ho ₂ O ₃	
	glasses	72
4.20	Ho ₂ O ₃ concentration dependent integrated PL intensity	
	enhancement factor	74
4.21	Schematic energy level diagram of holmium ion	
	with possible emission	75

LIST OF SYMBOLS

θ	-	Angle
М	-	Molar mass
ρ	-	Density
V_m	-	Molar volume
T_c	-	Crystallization Temperature
T_g	-	Glass Transition Temperature
T_m	-	Melting temperature
ΔT_s	-	Glass stability
Η	-	Hubry
E_g^I	-	Indirect optical band gap energy
E_g^D	-	Direct optical band gap energy
ΔE	-	Urbach energy
n	-	Refractive index
R_m	-	Molar refractivity
α_e	-	Polarizability

LIST OF ABBREVIATIONS

TeO₂ Tellurium dioxide -ZnO Zinc oxide -Ho Holmium -XRD X-ray diffraction -DTA Differential thermal analysis -FTIR Fourier transform infrared -EDX Energy-dispersive X-ray -Ultraviolet UV -Vis Visible _ NIR Near Infrared -PL Photoluminescence -

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Batch Calculation	87
В	Density Calculation	90
С	Tauc Plot of Glass Samples	91
D	Urbach Plot of Glass Samples	93

CHAPTER 1

INTRODUCTION

1.1 Overview

In this chapter, general information about the research background of study will be explained. This study is about holmium concentration dependent structural, thermal, physical and optical properties of zinc tellurite glass. The problem statement, objectives, scope, significance and motivation of study also will be explained in this chapter. Thesis outline also will be described in this chapter.

1.2 Research Background

Tellurium dioxide (TeO_2) based glasses were considered as promising materials for optical switching devices and laser hosts because of their unique properties. They possess high refractive index, high dielectric constant, good chemical durability, excellent infrared transmittance and can be prepared at low melting temperatures [1]. TeO₂ based glasses only can form glass when metal oxides such as ZnO, Na₂O, BaO, PbO, Nb₂O₅ and WO₃ are added to it or usual preparation conditions that are varied because TeO₂ belongs to the intermediate class of glass-forming oxides. These modifier molecules can improve the glass formation ability (GFA) in glass formers by increasing entropy and by breaking chains of structural units that can cause changes in structural units [1].

Many researchers reported that the ZnO–TeO₂ system is basic system that has good glass-forming ability because TeO₂ in combination with ZnO forms stable glasses. Tellurite zinc oxide glass is a promising host for photonic applications because the ZnO is a good material to use as modifier due to its excitation binding energy about 60 meV [2]. Besides, ZnO improve the ability of glass formation and reduce the crystallization rate of tellurite network [3]. ZnO–TeO₂ glasses are appropriate host for optically active rare earth ions because of the wide glass-formation range that close to the extremum for binary tellurite glasses. These glasses system also very useful medium for ultralow loss (1 dB 1000 m⁻¹) optical fibers for wavelengths in the $3.5 - 4 \mu m$ regions as a basis for multicomponent optical glass synthesis. So, tellurite glasses are very useful solid materials for many applications [4].

Researchers found that when tellurite glasses doped with heavy metal and rare earth oxides, it changes their density, optical and thermal properties [5]. Zinc tellurite glass appears to be excellent candidates for hosting rare earth ions because this glass provides a low phonon energy environment to minimize non-radiative loses. Rare earth ions can achieve optical emission from solid materials because of their sharp intra 4f-transitions and abundant energy level structures. Holmium allows multiple excited state absorptions which could trigger a wide emission spectrum and became important among rare earths [6]. Holmium ion displays several electronic transitions in the visible and infrared regions among various rare earth ions, so there are many laser transitions in its emission spectrum. Holmium ion also shows eye safe potential laser with a low threshold action even at room temperature that have very useful applications in atmospheric communication systems [7]. When the glasses are mixed with different network modifying ion, researchers expected that the structural modifications and local field variations around holmium ion with various luminescence transitions of holmium ions [8].

1.3 Problem Statement

Tellurite glasses have drawn much attention as promising candidates for many optoelectronic applications due to their advantageous properties, such as high refractive index, relatively low phonon energy, good visible and infrared transmissivity, suitability for doping with rare earth elements in a wide range and good electrical properties [1]. In this study, tellurite glasses will be studied due to their advantages in lasing properties in photonic applications. Even though there are numbers of research on tellurite glass has been done, yet the structural, thermal, physical and optical properties of holmium doped zinc tellurite glass for lasing properties is required for photonic applications in the future. Therefore, the present study will investigate the holmium concentration dependent structural, thermal, physical and optical properties of zinc tellurite glass by using X-ray diffraction (XRD), Energy-dispersive X-ray (EDX), Fourier Transform Infrared (FTIR), Raman, Differential Thermal Analysis (DTA), Archimedes method, UV-Visible (UV-Vis) and Photoluminescence (PL) spectroscopy.

1.4 Objective of Study

The objectives of study are:

- i. To synthesize different holmium concentration doped zinc tellurite glass by melt quenching technique with glass compositions of (80 x) TeO₂ 20ZnO xHo₂O₃ where x = 0.0, 0.5, 1.0, 1.5 and 2.0 mol%.
- ii. To characterize different holmium concentration doped zinc tellurite glass for their structural, thermal, physical and optical properties.

1.5 Scope of Study

In order to achieve the above objectives, the study had been focused by several scopes. Different holmium concentration doped zinc tellurite glasses were prepared by melt quenching technique. The structural properties of glass would be characterized by using X-ray diffraction (XRD), Energy-dispersive X-ray (EDX), Fourier Transform Infrared (FTIR) and Raman spectroscopy. The thermal properties of glass also would be characterized by using Differential Thermal Analysis (DTA). Besides, the physical properties of glass would be characterized by using Archimedes method. Lastly, the optical properties of glass would be characterized by using UV-Visible (UV-Vis) and Photoluminescence (PL) Spectroscopy.

1.6 Significance of Study

Research on zinc tellurite glass doped with holmium is very important because of the possible optical and photonic applications. From this research, the information about structural, thermal, physical and optical properties of different holmium concentration doped zinc tellurite glass would be found out which would enhance the development of new optical technology in glass science and engineering in last century.

1.7 Motivation of Study

Tellurite glasses are promising glasses based on their good advantages in future photonic applications. The use of tellurite glasses may be more valuable than other glasses due to their large third-order nonlinear optical susceptibility, high refractive index and wideband infrared transmittance. Tellurite glasses also combine the qualities of good glass stability, a short wavelength UV edge, a slow corrosion rate, rare earth ion solubility and relatively low phonon energy among oxide glass formers. In addition, rare earth ions such as holmium doped zinc tellurite glass appear to be excellent among optical glasses. It is because holmium allows multiple excited state absorptions which could trigger a wide emission spectrum and displays several electronic transitions in the visible and infrared regions.

1.8 Thesis Outline

Firstly in chapter one will explain briefly about the research background, problem statement, objectives, scope, significance and motivation of this study about holmium concentration dependent structural, thermal, physical and optical properties of zinc tellurite glass.

In chapter two, a brief review of history of glass, definition of glass, preparation of glass, tellurite glasses and rare earth elements will be presented. Some literature reviews as structural, thermal, physical and optical properties holmium doped zinc tellurite glass will also be briefly given.

In chapter three, it will describe the experimental procedure of this study including glass preparation and techniques used to characterize the sample by using Xray diffraction (XRD) spectroscopy, Energy-dispersive X-ray (EDX) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy, Differential Thermal Analysis (DTA), Archimedes method, UV-Visible (UV-Vis) spectroscopy and Photoluminescence (PL) spectroscopy.

In chapter four, all the result from the experiments will be presented. In all cases, data, spectra and graph will be interpreted and discussed based on the dependence of holmium concentration in zinc tellurite glass system.

Lastly in chapter five, from the results of this study, some conclusions can be draw and summarized in this chapter and future outlook of this study can be determined.

REFERENCES

- A. Kaur, A. Khanna, C. Pesquera, F. González and V. Sathe (2010). Preparation and characterization of lead and zinc tellurite glasses. *Journal of Non-Crystalline Solids*, Vols 356, Issues 18–19, 864–872.
- A. Pandey and Hendrik C. Swart (2016). Luminescence investigation of visible light emitting Ho³⁺ doped tellurite glass. *Journal of Luminescence*. 169, 93–98.
- Zahra Ashur Said Mahraz, M.R. Sahar, S.K. Ghoshal, M. Reza Dousti (2013). Concentration dependent luminescence quenching of Er³⁺-doped zinc borotellurite glass. *Journal of Luminescence*, Volume 144, 139–145.
- H. A. A. Sidek, S. Rosmawati, B. Z. Azmi, and A. H. Shaari (2013). Effect of ZnO on the thermal properties of tellurite glass. *Advances in Condensed Matter Physics*. Vols 2013, 6 pages.
- S. K. Ahmmad, M.A. Samee, A. Edukondalu, Syed Rahman (2012). Physical and optical properties of zinc arsenic tellurite glasses. *Results in Physics*, Vols 2, 175–181.
- Y. Yu, Y.D. Zheng, F. Qin, Z.M. Cheng, C.B. Zheng, Z.G. Zhang, W.W. Cao (2011). Experimental investigation on the upconversion mechanism of 754 nm NIR luminescence of Ho³⁺/Yb³⁺:Y₂O₃, Gd₂O₃ under 976 nm diode laser excitation. *Journal of Luminescence*, Volume 131, Issue 2, 190–193.
- K. Bhargavi, M. Sundara Rao, V. Sudarsan (2014). Influence of Al³⁺ ions on self-up conversion in Ho³⁺ doped lead silicate glasses. *Optical Materials*. Vol 36, 1189–1196.
- C. Laxmikanth, J. Anjaiaha, P. Venkateswara Rao (2015). Luminescence and spectroscopic properties of ZnF₂–MO–TeO₂ glasses doped with Ho³⁺ ions. *Journal of Molecular Structure*. Volume 1093, Pages 166–171.

- J. E. Shelby (2005). Introduction to Glass Science and Technology. (2nd Edition). U.K: The Royal Society of Chemistry.
- M. D. Sahar (2016). *The Physics of Non-Crystalline Material*. Class Notes. Universiti Teknologi Malaysia.
- 11. William D. Callister and David G. Rethwisch (2013). *Materials Science and Engineering: An Introduction.* (7th Edition). PA: John Wiley & Sons, Inc.
- 12. Charles Kittel (2004). Introduction to Solid States Physics (8th Editon). US: John Wiley & Sons, Inc.
- 13. R.L. Thomas (2013). Synthesis and characterization of tellurium oxide glasses for photonic applications. PhD Thesis. Cochin University of Science and Technology.
- El-Mallawany and R.A. (2002). Tellurite Glasses Handbook: Physical Properties and Data (2nd Edition). Florida: Press LLC.
- H.A.A. Sidek, S. Rosmawati, Z.A. Talib, M.K. Halimah and W.M. Daud (2009). Synthesis and Optical Properties of ZnO–TeO₂ Glass System. *Am. J. Applied Sci.* 6 (8), 1489-1494.
- R. El-Mallawany, M. Dirar Abdalla, I. Abbas Ahmed (2008). New tellurite glass: Optical properties. Mater. Chem. and Phy., 109, 291–296.
- 17. David Munoz Martin (2009). TeO₂-based film glasses for photonic applications: structural and optical Properties. Laser Processing Group Universidad Investigaciones Cientcas Instituto de Optica Complutense de Madrid.
- A.Hernández Battez, R.González, J.L.Viesca (2008). CuO, ZrO₂ and ZnO nanoparticles as antiwear additive in oil lubricants. *Wear*.Volume 265, Issues 3–4, Pages 422–428.
- Fierro, J. L. G (2006). *Metal Oxides: Chemistry & Applications*. CRC Press. p. 182.
- 20. Sean Manning (2011). A Study of Tellurite Glasses for Electro-optic Optical Fibre Devices. PhD Thesis. The University of Adelaide.
- 21. Hampel, Clifford A. (1971). *Rare Metals Handbook 2nd Edition (Facsimile edition)*. Florida: Krieger Pub Co.

- 22. Wiktorczyk, T (2002). Preparation and optical properties of holmium oxide thin films. *Thin Solid Films*. 405: 238.
- 23. S.K. Ghoshal, M.R. Sahar, M.S. Rohani, and S. Sharma (2011). Temperature dependent luminescence in erbium-doped zinc tellurite glass: A model investigation. *Indian Journal of Pure & Applied Physics*. Vol. 49, pp 509–515.
- 24. A. K. Singh, S.B. Rai, V.B. Singh (2005). Up-conversions in Ho³⁺ doped tellurite glass. *Journal of Alloys and Compounds*. Volume 403, Issues 1–2, Pages 97-103.
- 25. T.Schweizer, B.N Samson, J.R Hector, W.S Brocklesby, D.WHewak and D.N. Payne (1999). Infrared emission from holmium doped gallium lanthanum sulphide glass. *Infrared Physics & Technology*. Volume 40, Issue 4, Pages 329–335.
- 26. I. Kamma, B.R. Reddy (2010). Energy upconversion in holmium doped lead–germano–tellurite glass. J. Appl. Phys., 107, p. 113102.
- 27. Sam Zhang, Lin Li and Ashok Kumar (2008). *Material Characterization Techniques*. New York: CRC Press.
- 28. Yang Leng (2008). *Material Characterization: Introduction to Microscopic and Spectroscopic Methods*. Singapore: John Wiley & Sons (Asia) Pte Ltd.
- 29. Y. A. Tanko, M.R. Sahar and S.K. Ghoshal (2016). Prominent spectral features of Sm³⁺ ion in disordered zinc tellurite glass. *Results in Physics* 6, 7–11.
- N. Jaba, A. Mermet, E. Duval and B. Champagnon (2005). Raman spectroscopy studies of Er³⁺ doped zinc tellurite glasses. *Journal of Non-Crystalline Solids* 351, 833–837.
- 31. C. Duverger, M. Bouazaoui and S. Turrell (1997). Raman spectroscopic investigations of the effect of the doping metal on the structure of binary tellurium-oxide glasses. *Journal of Non-Crystalline Solids*. Volume 220, Issues 2–3, Pages 169–177.
- H. Li, Y.Su and S.K.Sundaram (2001). Raman spectroscopic study of Nd-doped 10Na₂O–90TeO₂ glasses. *Journal of Non-Crystalline Solids*. Volumes 293–295, Pages 402–409.

- 33. S. Khatir, J. Bolka and B. Capoen (2001). Raman spectroscopic characterization of Er³⁺-doped tellurite-based glasses. *Journal of Molecular Structure*. Volumes 563–564, Pages 283–287.
- 34. M.S. Sajna, Sunil Thomas, C. Jayakrishnan, Cyriac Joseph, P.R. Biju and N.V. Unnikrishnan (2016). NIR emission studies and dielectric properties of Er³⁺doped multicomponent tellurite glasses. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*. Volume 161, Pages 130–137.
- 35. S. Rosmawati, H.A.A Sidek, A.T. Zainal and H. Mohd Zobir (2007). IR and UV spectral studies of zinc tellurite glasses. *Journal of Applied Science* 7(20), 3051– 3056.
- 36. N. Vijaya, K. Upendra Kumar and C.K. Jayasankar (2013). Dy³⁺-doped zinc fluorophosphate glasses for white luminescence applications. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*. Volume 113, Pages 145–153.
- 37. N. N. Yusof, S. K. Ghoshal, R. Ariffin, M. R. Sahar (2015). Modified Absorption Features Of Titania-Erbium Incorporated Plasmonic Tellurite Glass System. Jurnal Teknologi (Sciences & Engineering) 76:13 89–94.
- 38. D. C. Harris (2006). *Quantitative Chemical Analysis 7th Edition*, New York: W. H. Freeman and Company.
- 39. Neeraj Kumar Giri, D. K. Rai, and S. B. Rai (2008). White light upconversion emissions from Tm³⁺ + Ho³⁺ + Yb³⁺ codoped tellurite and germanate glasses on excitation with 798 nm radiation. *Journal of Applied Physics*. Volume 104, Issue 11.
- 40. Gerhard Heinrich Dieke and Hannah Crosswhite (1968). *Spectra and energy levels of rare earth ions in crystals*, USA: Interscience Publishers.
- 41. B. P. Singh, A. K. Parchur, R. S. Ningthoujam, A. A. Ansari, P. Singha and S. B. Rai (2014). Enhanced photoluminescence in CaMoO4:Eu³⁺ by Gd³⁺ co-doping. *Dalton Transactions*. 43, 4779–4789.
- 42. N.M. Yusoff, M.R. Sahar (2015). The incorporation of silver nanoparticles in samarium doped magnesium tellurite glass: Effect on the characteristic of

bonding and local structure, *Phys. B Condens. Matter.* 470–471, 6–14. doi:10.1016/j.physb.2015.04.029

- 43. Erna Jaafar (2014). Spectroscopic Studies of Erbium Doped Zinc Tellurite Glass Embedded With Gold Nanoparticles. Master Thesis. Universiti Teknologi Malaysia, Skudai.
- 44. P. Babu, H.J. Seo, C.R. Kesavulu, K.H. Jang, C.K. Jayasankar (2009). Thermal and optical properties of Er³⁺-doped oxyfluorotellurite glasses, *J. Lumin.* 129 444–448. doi:10.1016/j.jlumin.2008.11.014.
- 45. I. Jlassi, H. Elhouichet, M. Ferid (2011), Thermal and optical properties of tellurite glasses doped erbium, J. Mater. Sci. 46, 806–812. doi:10.1007/s10853-010-4820-x.
- 46. Plotnichenko VG, Sokolov VO, Koltashev VV and Dianov EM (2005). Raman band intensities of tellurite glasses. *Optics Letters* 30:1156-1158.
- 47. Aye NN (2011). Study of *x*P2O5− (1−x−y) V₂O₅−yCuO semi-conducting glass system. *Univ Res Jour* 4: 39.
- 48. Mawlud SQ, Ameen MM, Sahar MD and Ahmed KF (2016). Influence of Sm₂O₃ Ion Concentration on Structural and Thermal Modification of TeO₂-Na₂O Glasses. *J Appl Mech Eng* 5:222.
- W.T. Carnall, P.R. Fields, K. Rajnak (1968), Electronic Energy Levels of the Trivalent Lanthanide Aquo Ions. IV. Eu³⁺, J. Chem. Phys. 49 4450–4455. doi:10.1063/1.1669896.
- 50. S.F. Khor, Z.A. Talib, F. Malek, E.M. Cheng (2013), Optical properties of ultraphosphate glasses containing mixed divalent zinc and magnesium ions, Opt. Mater. (Amst). 35, 629–633. doi:10.1016/j.optmat.2012.10.013.
- 51. S.F. Khor, Z.A. Talib, W.M. Mat Yunus (2012), Optical properties of ternary zinc magnesium phosphate glasses, Ceram. Int. 38, 935–940. doi:10.1016/j.ceramint.2011.08.013.
- 52. Suleiman Badamasi (2017). Synthesis and Characterizations of Dysprosium Doped Zinc-Sodium-Tellurite Glass. Master Thesis. Universiti Teknologi Malaysia, Skudai.

- 53. S.A. Jupri, S. K. Ghoshal, M.F. Omar, Sunita Sharma (2017). Improved Absorbance of Holmium Activated Magnesium-zincsulfophosphate Glass. *Malaysian Journal of Fundamental and Applied Sciences*. Vol. 13, No. 3, 253– 257.
- 54. Rada, S., Dehelean, Culea (2011). FTIR and UV-VIS spectroscopy investigations on the structure of the europium-lead-tellurate glasses. *Journal of Non-Crystalline Solids*; 357 (16–17): 3070–3073.
- 55. S.Singh, K. Singh (2014). Effect if in-situ reduction of Fe³⁺ on physical, structural and optical properties of calcium sodium silicate glasses and glass ceramics. *Journal of Non-Crystalline Solid*. Vol. 386, 100–104.
- 56. L. Marciniak, D. Hreniak and W. Strek (2014). Controlling luminescence colour through concentration of Dy³⁺ ions in LiLa_{1-x}Dy_xP₄O₁₂ nanocrystals. *J. Mater. Chem. C. Volume 2*, page 5704–5708.
- 57. Rajyasree, C. and Rao, D.K. (2011). Spectroscopic Investigations on Alkali Earth Bismuth Borate Glasses Doped with CuO. *Journal of Non-Crystalline Solids*. 357(3): 836–841.
- Pavani, P.G., Sadhana, K., and Mouli, V.C. (2011) Optical, Physical and Structural Studies of Boro-Zinc Tellurite Glasses. *Physica B: Condensed Matter*. 406(6): 1242–1247.
- 59. Awang, A. (2014). Effect of Nanoparticles on the Structure and Optical Properties of Erbium-Doped Zinc Sodium Tellurite Glass. Ph.D. Thesis. Universiti Teknologi Malaysia, Skudai.
- 60. Eraiah, B. (2010) Optical Properties of Lead-Tellurite Glasses Doped with Samarium Trioxide. *Bulletin of Materials Science*. 33(4): 391–394.
- Said Mahraz, Z. A., Sahar, M. R., Ghoshal, S. K., Reza Dousti, M. (2013). Concentration Dependent Luminescence Quenching Of Er³⁺-Doped Zinc Boro-Tellurite Glass. *J. Lumin.* 144: 139–145.
- 62. Nur Amanina Hj Mat Jan (2014). Optical And Thermal Properties Of Neodymium Doped Tellurite Nanostructured Glass. Master Thesis. Universiti Teknologi Malaysia, Skudai.

- 63. Izzah Afifah Ismail (2014). Optical Properties Of Erbium Doped Tellurite Glass With Different NaCl Composition. Master Dissertation. Universiti Teknologi Malaysia, Skudai.
- 64. Siti Fatimah Ismail (2014). Spectroscopic Properties Of Erbium Doped Tellurite Glass. Master Thesis. Universiti Teknologi Malaysia, Skudai.
- 65. V.A.G. Rivera, F.A. Ferri, L.A.O. Nunes, E. Marega Jr. (2017). White light generation via up-conversion and blue tone in Er³⁺/Tm³⁺/Yb³⁺-doped zinc-tellurite glasses. *Optical Materials*. Volume 67, Pages 25–31.
- 66. M. Reza Dousti, Raja J. Amjad (2017). Effect of silver nanoparticles on the upconversion and near-infrared emissions of Er³⁺:Yb³⁺ co-doped zinc tellurite glasses. *Measurement*. Volume 105, Pages 114–119.
- 67. Buddhadev Samanta, Dibakar Dutta, Subhankar Ghosh (2017). Synthesis and different optical properties of Gd₂O₃ doped sodium zinc tellurite glasses. *Physica B: Condensed Matter*. Volume 515, Pages 82–88.
- 68. M, Shimoda, M. Uchida, T. Hayakawa, P. Thomas (2017). Synthesis and structure of transparent zinc-niobate-tellurite glasses with low hydroxyl content. *Ceramics International*. Volume 43, Issue 3, Pages 2962–2968
- Tagiara, D. Palles, E.D. Simandiras, V. Psycharis, A. Kyritsis, E.I. Kamitsos (2017). Synthesis, thermal and structural properties of pure TeO₂ glass and zinc-tellurite glasses. *Journal of Non-Crystalline Solids*. Volume 457, Pages 116–125.