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ABSTRACT 

 

 

 

Over the years, Malaysia has encountered far-field and near-field 

earthquakes. Peninsular Malaysia, were affected the most by far-field earthquakes 

due to Sumatra fault line. On the other hand, high-rise structures are more vulnerable 

to far-field earthquakes compared to low-rise. Damage to the tall buildings will give 

a huge impact on countries financial and endangers numbers of human life. This 

study addresses the seismic fragility of high-rise buildings under far-field earthquake 

using Etabs 2017 software. The main aim of this study is to develop a seismic 

fragility curve of tall concrete wall structures in Malaysia. This study employs 

Incremental Dynamic Analysis (IDA) in order to determine the failure mechanism, 

inter-story drift demand, and capacity. There were two tall concrete wall structures 

with similar building plan and number of stories, with different number of parking 

level have been selected for seismic evaluation. In building 1 three stories were 

allocated to the parking while in building 2 it was 5 stories. The exterior and interior 

shear wall frame system (SWFS) at grid A and B for each building were selected. 

The results of the inter-story drift demand under 15 ground motions at each 

increment of peak ground acceleration (PGA) were used for derivation of fragility 

curves. Based on FEMA 356, three performance levels namely immediate occupancy 

(IO), life safety (LS) and collapse prevention (CP) levels were adopted. It was 

observed in both buildings the drift demand values increased with the increase in 

PGAs. The exterior SWFS have higher range of median drift demand value 

compared to interior SWFS. In addition, in both frame the median drift demand and 

PGA correlated well with each other. On the other hand, building 1 provided lower 

drift capacities compared to building 2. There were four fragility curves of four 2D 

SWFS developed from this study. Result shows that the probability of exceeding IO 

and CP limit state in exterior SWFS is higher than interior SWFS for both buildings. 

For a design PGA of 0.13g, the probability of exceeding CP limit state in building 1 

was 5.6%. Although this value is considered to be small, at 0.5g the probability of 

significant damage rose up to 84%. 
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ABSTRAK 

 

 

 

Dalam beberapa tahun ini, Malaysia telah mengalami gempa bumi yang 

berpunca dari jarak-jauh dan lokal. Semenanjung Malaysia paling terkesan kepada 

gempa bumi jarak jauh yang berpusat di Sumatra. Bangunan/struktur tinggi 

menunjukkan reaksi yang aktif kepada gempabumi jarak jauh berbanding 

bangunan/struktur yang rendah. Kerosakan ke atas bangunan/struktur tinggi akan 

memberi impak yang buruk kepada kewangan negara dan juga boleh membahayakan 

banyak nyawa manusia. Kajian ini membincangkan kerapuhan seismik ke atas 

bangunan tinggi yang diuji dengan rekod gempa bumi jarak jauh menggunakan 

perisian Etabs 2017. Tujuan utama kajian ini adalah untuk menghasilkan graf 

kerapuhan seismik struktur dinding konkrit tinggi di Malaysia. Kajian ini 

menggunakan Analisis Dinamik Peningkatan (IDA) untuk menentukan mekanisme 

kegagalan, permintaan dan kapasiti gerakan pengantara tingkat. Terdapat dua  

struktur dinding konkrit yang tinggi dengan pelan bangunan dan bilangan tingkat 

yang sama, tetapi bilangan tingkat yang berbeza untuk tempat letak kereta telah 

dipilih untuk penilaian seismik. Dalam bangunan 1, tiga tingkat telah diperuntukkan 

untuk tempat letak kereta dan bangunan 2 adalah 5 tingkat. Sistem bingkai dinding 

geseran luaran dan dalaman (SWFS) di grid A dan B untuk setiap bangunan telah 

dipilih. Keputusan permintaan gerakan antara tingkat, di bawah 15 gerakan tanah 

pada setiap kenaikan pecutan puncak (PGA) digunakan untuk pembentukan graf 

keluk kerapuhan. Berdasarkan FEMA 356, tiga tahap prestasi iaitu penghunian 

segera (IO), tahap keselamatan hidup (LS) dan tahap pencegahan keruntuhan (CP) 

telah diterima pakai. Ia diperhatikan di kedua-dua bangunan nilai permintaan gerakan 

meningkat dengan peningkatan PGA. SWFS luaran mempunyai nilai median gerakan 

yang lebih tinggi berbanding dengan SWFS dalaman. Di samping itu, dalam kedua- 

dua bingkai permintaan drift median dan PGA mempunyai hubungan yang baik 

antara satu sama lain. Sebaliknya, bangunan 1 mempunyai kapasiti drift yang lebih 

rendah berbanding dengan bangunan 2. Terdapat empat lengkung kerapuhan dari 

empat SWFS 2D yang dibangunkan dari kajian ini. Keputusan menunjukkan bahawa 

kebarangkalian melebihi had IO dan CP untuk SWFS luaran adalah lebih tinggi 

daripada SWFS dalaman untuk kedua-dua bangunan. Untuk PGA reka bentuk 0.13g, 

kebarangkalian melebihi had had CP dalam bangunan 1 ialah 5.6%. Walaupun nilai 

ini dianggap kecil, pada 0.5g kebarangkalian kerosakan ketara meningkat sehingga 

84%. 
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CHAPTER 1 

 

 

 
INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 
Earthquakes are one of the natural hazards in Malaysia. Although Malaysia is 

considered as a low seismic country, Malaysia is surrounded by world most active 

fault that lay in Indonesia and Philippine. Eventually, this will cause Malaysia to be 

exposed to earthquake risk from both distant and local earthquakes. Based on the 

statistic, Peninsular Malaysia is hit the most by the distant-earthquake from Sumatra 

subduction zone while Eastern Malaysia subjected to large earthquake from the 

Southern Philippines. 

 

Over the years, the number of tall-buildings in Malaysia has increased rapidly 

in line with the urbanization and development of the country. According to the 

Council on Tall Buildings and Urban Habitat (CTBUH), a common building 

constructed in a major city in Malaysia ranges from 20 to 50 stories with function as 

office and residential use. In addition, a common material used in tall buildings is 

reinforced concrete due to its high strength and cost-effectiveness. Damage to the tall 

buildings will give a huge impact on countries financial and endangers numbers of 

human life. 

 

There are many solutions to retrofit vulnerable buildings, for instance, 

jacketing, damping devices, and base isolation. Since most of the building in 

Malaysia has not been designed for seismic loads, during an earthquake the degree of 

damages are unidentifiable. It is important to predict the damage in order to get an 

optimum cost of retrofitting and risk mitigation plan. Fragility curves are one of the 

tools to predict potential damage during earthquakes. Fragility curves are defined as 

the probability of reaching or exceeding a specific damage state under earthquake 

excitation (Sadraddin et al. 2014). These curves represent the seismic risk assessment 
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and are used as an indicator to identify the physical damage in the strongest 

mainshock. 

 

Therefore, the aim of this study is to determine seismic fragility curves of tall 

concrete wall structures in Malaysia under far-field earthquake. This study will use 

Incremental Dynamic Analysis (IDA) in order to determine inter-story drift demands. 

 

 

 
1.2 Problem Statement 

 

 
During past few years, Malaysia has been struck many times by near-field 

and far-field earthquakes. Based on the statistic, Peninsular Malaysia is hit the most 

by the distant-earthquake from Sumatra earthquake. On the other hand, Eastern 

Malaysia subjected to large earthquake from the Southern Philippines. Damages to 

some buildings in Malaysia have been reported due to the far-field earthquake for 

example in 2002 and 2004 Sumatra earthquakes. This proves that far-field 

earthquake can affect buildings in Malaysia. 

 

Tall concrete wall buildings are quite common in Malaysia and usually 

function as a residential apartment. Damage to these buildings can cause huge 

catastrophic to human and country as it will endanger higher numbers of human life 

and large monetary losses. 

 

As most buildings in Malaysia are designed based on gravity and wind load 

only, therefore retrofitting are needed. Prediction of the degree of damage will 

provide optimum cost and economical design for retrofitting process. The seismic 

fragility curve is one of the tools that can forecast the damage intensity to buildings. 

 

Previous research on seismic fragility in Malaysia only focuses on low and 

mid-rise buildings, and industrial structures (Saruddin & Nazri 2015; Ahmadi et al. 

2014). It can be concluded that research on a tall building is still lacking. Hence, a 

study on seismic fragility curves of tall buildings in Malaysia under far-field 

earthquake is needed. Due to this, the main aim of this study is to determine seismic 
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fragility curves of tall concrete wall structures in Malaysia under far-field 

earthquakes. 

 

 

 
1.3 Research Objectives 

 

 
The purposes of this study are to develop fragility curve for tall concrete wall 

structures. This study will embark on the following objectives: 

 

(a) To study the failure mechanism of tall concrete wall structures through 

incremental dynamic analysis. 

 

(b) To determine inter-story drift demand and capacity of tall concrete wall 

structures under far-field earthquake. 

 

(c) To develop seismic fragility curve for tall concrete wall structures in 

Malaysia. 

 

 

 
1.4 Scope of Study 

 

 
This research considers the following scope of works: 

 

 
(a) Totally four 2D structures with concrete wall structural system will be 

analyzed in this study. 

 

(b) The concrete strength of 40 MPa is used for all structural models. 

 
(c) Yield and ultimate stress of employed reinforcement steel bar are 400 MPa 

and 650 MPa respectively. 

 

(d) Totally 15 far-field ground motions will be used. 

 
(e) The effect of soil-structure interaction (SSI) will be neglected. 
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(f) For numerical analysis, ETABS 2017 software will be used. 

 
(g) Peak ground acceleration will be selected as the engineering demand 

parameter. 

 

 

 
1.5 Significance of Research 

 

 
This research is carried out to determine vulnerabilities of tall concrete wall 

structures in Malaysia under seismic excitation that will give great advantages to the 

government and non-government organization (NGO). The cause of the failure of  

tall concrete wall structures during earthquakes excitation also will be investigated. 

Thus, prediction of building’s physical damage during earthquakes can be provided 

and interpreted in seismic fragility graph. The contribution includes planning to 

retrofit at-risk structures, seismic damage mitigation framework and create  

awareness on seismic vulnerability of tall buildings. 

 

 

 
1.6 Organization of Thesis 

 

 
There are five chapters in this thesis and the remaining chapters are as follow: 

 

 
(a) Chapter 2 presents brief explanation about previous studies related to the 

issues covered in this study. This chapter is presented in the general and 

concise reviews of earthquakes, Malaysia’s earthquakes history, near and far- 

field earthquakes, tall-building system, incremental dynamic analysis (IDA), 

and fragility curve on tall buildings. Based on literature review, problem 

statement, research objectives, the scope of study and research framework 

were able to determine. 

 

(b) Chapter 3 focused on the outline of overall research methodology which 

gives the details and a brief explanation regarding selection materials (input) 

and procedure on conducting the analysis in order to determine seismic 

fragility curve. There are seven main stages which include data collection, 
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generate models, analysis, and design to gravity and wind load, seismic 

analysis, data extraction, statistical analysis, and fragility curve. 

 

(c) Chapter 4 presents overall discussion finding of the study. The first part of 

this chapter will discuss the failure mechanism of frame and continue with 

discussion of interstory drift demand. At the end of this chapter, discussion  

on seismic fragility curve for all frame will be presented. 

 

(d) Chapter 5 concludes the findings of this study. 
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