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ABSTRACT 

 

 

 

 

Olefins are one of the most important chemicals and raw materials in the 

petrochemical industry.  However, because of the rapid increase in the price of crude 

oil and the oil shortage in the foreseeable future, alternative routes for production of 

light olefins from non-oil sources are desired. Catalytic conversion of methanol to light 

olefins (MTO) provides an alternative route for production of light olefins from a non-

petroleum source. Protonated commercial ZSM-5 (HZSM-5) zeolite has been widely 

used in the MTO reaction. However, fast deactivation of HZSM-5 due to coke 

deposition has always been one of the key problems in MTO reaction. A novel ZSM-

5 catalyst with silica fibrous morphology (HSi@ZSM-5) was successfully prepared 

using a microemulsion system with ZSM-5 seed assisted crystallization followed by 

protonation for MTO reaction. X-ray diffraction and field emission scanning electron 

microscopy analyses showed that the HSi@ZSM-5 possesses ZSM-5 structure and a 

spherical morphology with evenly distributed dendrimeric silica fibers. In addition, 

HSi@ZSM-5 exhibited intrinsic mesopores at 3-5 and 10-20 nm, which led to an 

increase in the surface area up to 22% compared with HZSM-5. Ammonia Fourier 

transform infrared spectroscopy result showed a remarkable reduction of Brønsted acid 

sites in HSi@ZSM-5. This reduction of Brønsted acid sites suppressed side reactions 

which led to increased olefin selectivity. These were proven in the catalytic activity as 

the propylene selectivity of HSi@ZSM-5 was almost two-fold higher than that of 

HZSM-5. Besides, the catalytic lifetime was improved significantly up to 80 hours for 

HSi@ZSM-5 compared to about 30 hours for HZSM-5. The high selectivity towards 

propylene and long catalyst lifetime of HSi@ZSM-5 could be attributed to the unique 

morphology of HSi@ZSM-5 which facilitates the diffusion of reactant and product 

into and out of the catalyst. Lowering diffusion limitation reduces the possibility of 

coke accumulation on the catalyst that lead to the deactivation of the catalyst. This new 

protonated silica fibrous ZSM-5 catalyst opens a big potential in general 

heterogeneous catalytic reaction.  
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ABSTRAK 

 

 

 

 

Olefin adalah salah satu bahan kimia dan bahan mentah yang paling penting 

dalam industri petrokimia. Walau bagaimanapun, disebabkan peningkatan pesat harga 

minyak mentah dan kekurangan sumber minyak yang diramal pada masa depan, laluan 

alternatif untuk penghasilan olefin ringan daripada sumber bukan minyak adalah 

dikehendaki. Penukaran bermangkin metanol kepada olefin ringan (MTO) 

menyediakan laluan alternatif untuk pengeluaran olefin ringan daripada sumber bukan 

petroleum. Zeolit ZSM-5 komersial berproton (HZSM-5) telah digunakan secara 

meluas dalam tindak balas MTO. Walau bagaimanapun, penyahaktifan cepat HZSM-

5 kerana pemendapan kok sentiasa menjadi salah satu masalah utama dalam tindak 

balas MTO. Mangkin ZSM-5 baharu dengan morfologi berserabut silika (HSi@ZSM-

5) telah berjaya disediakan menggunakan sistem mikroemulsi dengan penghabluran 

berbantukan benih ZSM-5 diikuti dengan pemprotonan untuk tindak balas MTO. 

Analisis pembelauan sinar-X dan mikroskopi elektron pengimbas pemancaran 

menunjukkan bahawa HSi@ZSM-5 mempunyai struktur ZSM-5 dan morfologi sfera 

dengan serabut dendrimer silika yang tertabur sama rata. Tambahan lagi, HSi@ZSM-

5 mempamerkan liang meso yang intrinsik pada 3-5 dan 10-20 nm, yang membawa 

kepada peningkatan luas permukaan sehingga 22% berbanding dengan HZSM-5. 

Keputusan spektroskopi inframerah transformasi Fourier ammonia menunjukkan 

pengurangan ketara tapak asid Brønsted pada HSi@ZSM-5. Pengurangan tapak asid 

Brønsted ini menindas tindak balas sampingan yang membawa kepada peningkatan 

kepilihan olefin. Ini telah dibuktikan dalam aktiviti bermangkin apabila kepilihan 

terhadap propilena bagi HSi@ZSM-5 adalah hampir dua kali ganda lebih tinggi 

daripada HZSM-5. Di samping itu, jangka hayat mangkin adalah bertambah baik 

dengan ketara sehingga 80 jam bagi HSi@ZSM-5 berbanding kira-kira 30 jam bagi 

HZSM-5. Kepilihan yang tinggi ke arah propilena dan jangka hayat mangkin yang 

panjang HSi@ZSM-5 boleh dikaitkan dengan morfologi unik HSi@ZSM-5 yang 

memudahkan pembauran zat tindak balas dan produk masuk dan keluar dari mangkin. 

Perendahan keterbatasan pembauran dapat mengurangkan kemungkinan pengumpulan 

kok pada mangkin yang membawa kepada penyahaktifan mangkin. Mangkin ZSM-5 

serabut silica berproton baharu ini mempunyai potensi besar dalam tindak balas 

bermangkin heterogen umum. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Olefins which are in the class of unsaturated hydrocarbons consist of a single 

double bond and a chemical formula of CnH2n are one of the most important chemicals 

and raw materials in petrochemical industry. Economic growth and the associated 

increased demand for consumer goods greatly influenced the continual increase in 

worldwide olefin’s demand (Sadrameli, 2016). Global production of ethylene and 

propylene are in the range of 200 million tons per year (Pinilla-Herrero, et al., 2016). 

Ethylene is primarily used to manufacture polyethylene, ethylene chloride and 

ethylene oxide. These products are very useful for the packaging, plastic processing, 

construction and textile industry. Propylene are mostly used in the manufacture of 

polypropylene, but it is also a basic product necessary to produce propylene oxide, 

acrylic acid and other chemical derivatives. In addition to plastic processing, 

packaging industry, furnishing sector, and automotive industry are also known to use 

propylene and its derivatives, in their manufacturing process. 

 

 

 Olefins are conventionally produced by thermal cracking of hydrocarbons from 

gaseous such as ethane, propane and butane, liquefied petroleum gas, to the liquid 

feedstock such as light and heavy naphtha, gasoil and vacuum gas oils. (Sadrameli, 

2015). Other than that, olefins were also produced via fluid catalytic cracking of 

petroleum fractions (Sadrameli, 2016). However, due to the rapid increase in the price 

of crude oil and the depletion of the non-renewable resources, alternative routes for 

production of light olefins from non-oil sources are desired (Dai, et al., 2011). 
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 Catalytic conversion of methanol to olefins (MTO) provides an alternative 

route for production of light olefins from a non-petroleum source (Yaripour, et al., 

2015). The MTO reaction was first proposed by Mobil Corporation in 1977 and many 

researchers have put great effort for the research of MTO reaction (Tian, et al., 2015). 

The MTO technology was developed as a two-step process. The first step involves the 

conversion of natural gas into methanol using synthesis gas. The next step involves 

dehydration of methanol to dimethyl ether (DME) and the obtained equilibrium 

mixture consisting of methanol, DME, and water is catalytically converted to light 

olefins (Dai, et al., 2011).  

 

 

In addition, the methanol industry has been booming for the last several years 

due to the shale gas revolution and the abundance of its cheap feedstock, natural gas. 

It is reported that natural gas prices have fallen 30 percent over the decade while crude 

oil prices have been increasing more than doubled (Olah, 2005). Thus, it is expected 

that methanol will become one of the abundant and cheap chemical. MTO is one of 

the ways to utilize methanol to produce more useful chemical in industry. 

 

 

 Zeolite is suitable to be used as catalyst in the methanol to olefin reaction due 

to the characteristic of zeolite that possesses catalytically active site and uniformity in 

micropore size and shape. ZSM-5 zeolite has been widely used in the MTO reaction 

and its efficiency in selectively converting light olefin from methanol has been proven 

(Pinilla-Herrero, et al., 2016; Dai, et al., 2011). However, ZSM-5 zeolite possesses 

significant diffusion limitation which restrict the movement of reactant and product in 

and out of the pores. The restriction of the diffusion will eventually lead to the 

deactivation of the catalyst as large size product was being trapped in the micropore 

(Zhang, et al., 2016). To overcome such limitation, mesoporous zeolites was designed 

to facilitate the diffusion of reactant and products in which will help in improving the 

catalytic lifetime of the catalyst. 

 

 

Fibrous material was initially developed by Polshettiwar, et al. in 2010. The 

first fibrous material is a silica-based equipped with high surface area and better 

accessibility of active site due to the dendrimeric fibres morphology. Several studies 

showed the potential of silica-based fibrous material in the adsorption of nitro- and 
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chloro- compounds and hydrogenolysis of alkene (Fihri, et al., 2012). Silica-based 

fibrous material was developed by using microemulsion technique which originally 

comes from surfactant. Development of zeolite-based fibrous material will 

significantly improve their catalytic activity especially in acid catalyzed reaction, 

along with tunable acidity and high surface area. Zeolite-based fibrous material will 

have a great potential to be applied in petrochemical industry. 

 

 

 

 

1.2 Problem Statement 

 

 

Methanol to olefin conversion, has attracted much attention as one of the new 

route for the production of light olefins. It is mainly due to the fact that methanol can 

be conveniently manufactured from any carbon-containing resources such as coal, 

biomass and natural gas (Dai, et al., 2011; Deimund, et al., 2015). Research on 

catalysts to be used in MTO reaction have been conducted intensively and 

continuously as the catalyst will greatly influenced the product formed during the 

process. 

 

 

Utilization of ZSM-5 as a catalyst in MTO reaction have been proven to yield 

high olefin selectivity during the process. High activity and selectivity of ZSM-5 in 

MTO reaction was mainly due to its well-defined microporous structure, high surface 

area and its high density of acid site that was responsible for the conversion (Sano, et 

al., 1992). Despite being one of the catalysts that is suitable for MTO, the presence of 

micropores in ZSM-5 often associated with significant diffusion limitation. The well-

defined pores restrict the diffusion of molecules into and out of the zeolite pores. 

Thereupon, large products could be trapped inside the micropores due to not being 

able to diffuse into the external surface. The trapped products will turn into coke that 

will deactivate the catalysts (Zhang, et al., 2016). In addition, high amount of acid site 

possesses by ZSM-5 promote the formation of aromatic products that are undesirable 

in MTO reaction as it will be converted into coke if being trapped in the pores (Wei, 

et al., 2011). Fast deactivation of ZSM-5 due to coke deposition has always been one 

of the key problem to be solved in order to prepare a highly efficient catalyst for MTO 

reaction (Qi, et al., 2017).  
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Silica-based fibrous material has been extensively studied by researchers after 

the discovery of fibrous silica nanosphere (KCC-1) by Polshettiwar et al., 2010. The 

KCC-1 was first prepared using the microwave-assisted hydrothermal technique which 

exhibited excellent properties, including a high surface area, a fibrous surface 

morphology, good thermal and hydrothermal stabilities and mechanical stability. The 

unique fibrous morphology is expected to facilitate the diffusion of reactant and 

products, therefore enhancing the catalysts lifetime. Previous studies in MTO reaction 

revealed that acid site density and its strength is important in tailoring the product 

distribution in MTO reaction (Wei, et al., 2011). However, the KCC-1 which is fully 

composed with silica does not provide an adequate acid sites to initiate MTO reaction 

(Moon and Lee, 2012).  

 

 

 

 

1.3 Hypothesis 

 

 

Implementation of the concept in developing silica-based fibrous material to 

zeolite will be the key to overcome these problems. In general, the high propylene 

yield and long catalytic lifetime improve economy of the MTO process and make it 

more comparable with the conventional processes for the olefins production 

(Rostamizadeh and Yaripour, 2017).  

 

 

Decrease in acid site density in fibrous silica zeolite material are expected to 

enhance the propylene formation in the MTO reaction based on hydrocarbon pool 

mechanism. Presence of the dendrimeric will facilitate the movement of reactant and 

product into and out of the pore. These will reduce the possibility of large molecules 

being trapped in the pore, thus increase the lifetime of the catalyst as the catalyst 

become more resistant towards deactivation. Utilizing microemulsions method, the 

development of zeolite-based fibrous material will be successfully achieved. Zeolite-

based fibrous material is the next step towards an efficient heterogeneous catalyst for 

methanol to olefin reaction.  
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1.4 Objectives 

 

 

The objectives of this study are: 

 

 

1. To prepare and characterize the physical and chemical properties of protonated 

fibrous silica ZSM-5 (HSi@ZSM-5) and protonated ZSM-5 (HZSM-5) 

catalysts. 

2. To study the performance and stability of the catalysts in methanol to olefin 

reaction. 

3. To study the deactivation and coke deposition of the catalysts in methanol to 

olefin reaction. 

 

 

 

 

1.5 Scope of Study 

 

 

There are three scopes in this study. The first scope discussed is the preparation 

of the catalysts. The crucial preparation is on the synthesis of fibrous silica ZSM-5 

catalyst (Si@ZSM-5). The synthesis involved microemulsion system from 

cetyltrimethyl ammonium bromide (CTAB), toluene, and n-butanol. Cationic 

surfactant, CTAB, was selected due to its ability to form coulombic interaction with 

silicate gels and zeolite framework (Monnier, et al., 1993). It was also selected because 

of its structure. Manipulating the packing parameter of single chain surfactant, such as 

CTAB, was easier due to the absence of steric hindrance. This was proved by 

Polshettiwar, et al. (2010) who discovered the loss of fibrous morphology after using 

benzalkonium chloride, which is a double chain surfactant. According to Moon and 

Lee (2012), the co-solvent, which was short-chain alcohol, had important role in 

controlling the thickness of dendrimeric silica fiber. Their study showed that iso-

propanol produce thick dendrimer with narrow inter-dendrimer distance and n-

pentanol produced thin and very wide inter-dendrimer distances. n-butanol was chosen 

as a suitable co-solvent because it produces dendrimer with adequate distance to 

promote high accessibility. Urea was selected as the hydrolyzing agent for the silica 

precursor due to its mild basicity. The addition of strong base as hydrolyzing agent, 

such as NaOH could compromise the microemulsion system. According to the study 
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by Polshettiwar, et al. (2010), the addition amount of urea affects the morphology of 

dendrimeric silica fiber. However, excess addition of urea could increase the particle 

size of the catalyst due to the rapid hydrolysis of silica precursor. Zeolite crystal-seed 

crystallization was used instead of direct zeolite crystallization. This was to avoid 

interaction competition between microemulsion and zeolite structure directing agent 

and the aluminosilicate species (Li, et al., 2011). The presence of other electrolyte 

from zeolite precursor, such as Na+, could change the critical micelle concentration of 

CTAB, which will result in different formation of supramolecular structure. Thus, 

zeolite crystal-seed crystallization was best suited to be used in synthesis method to 

avoid the competition and minimizing the changes in CTAB critical micelle 

concentration. The preparation also involved protonation, in which both Si@ZSM-5 

as well as commercial ZSM-5 catalysts were converted into ammonium form by ion-

exchange and followed by calcination to convert the NH4
+ species into H+. The first 

scope includes the characterization of the catalyst. The morphological features of 

HSi@ZSM-5 was examined with Field Emission Scanning Electron Microscopy 

(FESEM) and Transmission Electron Microscopy (TEM). The structure of 

HSi@ZSM-5 was characterized with X-ray Diffraction (XRD) to confirm the presence 

of ZSM-5 structure. The surface and pore analysis were obtained by N2 adsorption-

desorption. The surface area was obtained by Brunaeur-Emmet-Teller (BET) method, 

pore distribution was obtained by Non-Localized Density Functional Theory 

(NLDFT), and micropore analysis was obtained by t-plot method. Molecular vibration 

of HSi@ZSM-5 was assessed with Fourier transform infrared (FTIR) spectroscopy. 

Ammonia was chosen as the probe to investigate the acidic properties of HSi@ZSM-

5 due to its size and ability to access all acid sites both on the surface and inside the 

pore of catalyst (Gianotti, et al., 2002). For comparison purpose, commercial ZSM-5 

was subjected to similar characterization. 

 

 

The catalytic activity of HSi@ZSM-5 was assessed with methanol to olefin 

reaction. The catalytic reaction was carried out in the temperature range of 473-673 K. 

Several reports demonstrated that the reaction was optimally performed in the reaction 

temperature of 573-673 K (Khaledi, et al., 2017; Khare, et al., 2017). The reaction was 

performed at lower temperature to observe the formation of product at respective 

temperature. The stability of HSi@ZSM-5 catalyst was studied at the optimum 
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reaction temperature. According to the experimental result, both catalysts showed 

highest activity and selectivity towards light olefin at 673 K. Therefore, the stability 

testing for both catalysts was performed at 673 K. The catalytic stability was conducted 

for 100 h. After both catalysts experienced deactivation at 100 h, the deactivated 

catalysts were subjected to oxidation treatment at 823 K in attempt to remove coke 

deposited on the catalyst (Sidik, et al., 2015). After regeneration step, the reaction was 

continued for another 20 h to observe the ability of each catalyst to recover from coke 

deposition. 

 

 

The final scope covered the characterization of spent catalysts in which the 

catalysts were subjected to 100 h methanol to olefin reaction. Coke deposition on the 

spent catalysts was clarified by thermogravimetry analysis (TGA). Weight loss that 

occurred at temperature range of 823-1073 K were often associated with combustion 

of coke in spent catalysts (Sidik, et al., 2015). Blocking of the pore due to coke was 

investigated by N2 adsorption-desorption analysis. In addition, the presence of coke in 

the spent catalysts was obtained by KBr-FTIR analysis. Presence of absorption band 

in the range of 2800-3100 cm-1 confirmed coke content in the catalyst (Chen, et al., 

1996). For comparison purpose, spent HZSM-5 was obtained and subjected to similar 

characterization as spent HSi@ZSM-5 catalyst. 

 

 

 

 

1.6 Significance of Study 

 

 

Protonated fibrous silica HZSM-5 (HSi@ZSM-5) was prepared in this study 

as an efficient catalyst in methanol to olefin reaction. The investigation regarding to 

physical and chemical properties of the catalysts had been studied. The fibrous 

morphology is a novel morphology for ZSM-5. The fibrous morphology would 

enhance the surface area and micropore volume of ZSM-5. The unique morphology of 

HSi@ZSM-5 was able to enhance the catalytic activity and stability in methanol to 

olefin reaction compared to ZSM-5. 
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1.7 Thesis Outline 

 

 

The study was divided into five chapters. The first chapter consists of the 

introduction of methanol to olefin reaction and their progress on their catalyst. The 

problem statement and hypothesis of the current research is stated to give a clear 

objective of current research. There is also scopes of study that will be conducted to 

meet the objectives. 

 

 

Chapter 2 covers the literature review and knowledge regarding previous 

research in methanol to olefin reaction and catalyst, advances in zeolite development, 

and previous effort and research in silica-based fibrous material development. The 

background and the concept for developing zeolite-based fibrous material are also 

covered in this chapter. 

 

 

Chapter 3 comprises of the details regarding materials and chemicals that are 

used in this research. The complete procedure with experimental setup and analysis 

for catalyst preparation, characterization, and catalytic testing in methanol to olefin 

reaction are also included in this chapter.  

 

 

Chapter 4 contains the results and discussion of the present research. The data 

are presented and analyzed comprehensively. Finally, Chapter 5 covers the conclusion 

and recommendation for future work and development. 
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