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ABSTRACT 

 

 

 

 
Urea inclusion compounds are organic crystalline complexes that are potential 

candidates for molecular separator of long chain alkanes. A well-defined structure of the 

crystalline tunnel systems constructed from hydrogen bonding arrangement of urea 

molecules can be used to comprehend the fundamental aspects of processes involving ions 

or molecules transportation which play an important role in many physical, chemical and 

biological process taking place in a wide range of materials. This work endeavours to 

explore the diffusional behaviour of hexadecane-1,16-diol and hexadecane enclathration 

in urea tunnel architecture. The correlation of the diffusion mechanism with the guest’s 

structural and conformational properties was obtained using molecular dynamics 

simulation approach. Three-stage of model systems have been developed in this work. In 

the first phase, a single urea tunnel with inclusion of only one guest molecule was 

constructed. In the second phase, eleven guest molecules were included inside a single 

tunnel of rigid and nonrigid urea host molecules to observe the influence of the existence 

neighbours, i.e. the guest-guest intratunnel molecular interaction. In the third phase, four 

urea tunnels were constructed to take into account the effect of intertunnel interaction on 

the guests’ behavioural properties. It was found that hexadecane along the urea tunnel 

diffuse more rapidly than hexadecane-1,16-diol. The diffusion coefficients of hexadecane-

1,16-diol in phase I, phase II of rigid and nonrigid and phase III model systems were       

2.69 × 10-9 m2s-1, 1.83 × 10-10 m2s-1, 8.9 × 10-11 m2s-1, and 3.2 × 10-11 m2s-1, respectively, 

whilst those for hexadecane 1.96 × 10-8 m2s-1, 2.58 × 10-9 m2s-1, 7.15 × 10-10 m2s-1, and 

5.36 × 10-10 m2s-1, respectively. The guests’ along urea tunnel exhibited slower diffusion 

with the value correlated well with experimental findings, as the size of the model systems 

tended to mimic the real system. Elucidation on the guest rotational pattern as the molecule 

translated within the confinement of urea tunnel found that the guest preferred to follow 

the right-handed spirals of the chiral urea hydrogen-bonded structure. Besides, the 

translational and rotational properties of the guests are much more pronounced in the 

nonrigid urea systems. It was suggested that restriction imposed on the rigid urea systems 

constrained the molecules from being in their best conformation, thus contributed to the 

overall observation on the guest structural and conformational behaviour. The 

asymmetrical G- and G+ distortion along the guest’s conformational energy which 

demonstrated the influence of urea chirality on the guest was notable on hexadecane-1,16-

diol as compared to hexadecane. The variation in the diffusional and conformational 

properties evaluated in phase I, II and phase III model systems has highlighted the 

significant role of the guests’ functional groups, which in turn are associated to guest-guest 

intratunnel and intertunnel molecular interactions as well as the host-guest interaction. 

Molecular dynamics method offered significant fundamental knowledge associated with 

the structures and dynamics of the guest molecules in a well-defined urea nanoporous 

model systems that have important application in molecular separation and enantiomeric 

discrimination area.  
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ABSTRAK 

 

 

 

 
Sebatian rangkuman urea adalah sejenis kompleks kristal organik yang 

mempunyai potensi sebagai pemisah alkana berantai panjang. Struktur sistem terowong 

hablur yang jelas dibina daripada susunan ikatan hidrogen molekul urea boleh digunakan 

untuk memahami aspek asas proses yang melibatkan pengangkutan ion atau molekul, yang 

memainkan peranan penting dalam banyak proses fizik, kimia dan biologi yang berlaku di 

dalam pelbagai bahan. Kajian ini berusaha untuk meneroka sifat pembauran heksadekana-

1,16-diol dan pemerangkapan heksadekana di dalam kerangka terowong urea. Korelasi 

mekanisme pembauran dengan ciri-ciri struktur dan konformasi molekul-molekul tetamu 

telah diperoleh dengan menggunakan pendekatan simulasi molekul dinamik. Tiga 

peringkat sistem model telah dibangunkan dalam kajian ini. Dalam fasa pertama, terowong 

urea dengan rangkuman hanya satu molekul tetamu telah dibina. Dalam fasa kedua, 

sebelas molekul tetamu telah dimasukkan ke dalam terowong tunggal terdiri daripada 

molekul-molekul hos urea tegar dan tidak tegar untuk melihat pengaruh kewujudan 

molekul jiran, iaitu interaksi molekul tetamu-tetamu di dalam terowong. Dalam fasa 

ketiga, empat terowong urea dibina untuk mengambil kira kesan interaksi di antara 

terowong terhadap sifat perilaku molekul tetamu. Didapati, heksadekana di sepanjang 

terowong urea membaur dengan lebih cepat berbanding heksadekana-1,16-diol.  Pekali 

difusi bagi heksadekana-1,16-diol dalam model sistem fasa I, fasa II dengan sistem tegar 

dan tidak tegar serta fasa III masing-masing adalah 2.69 × 10-9 m2s-1, 1.83 × 10-10 m2s-1, 
8.9 × 10-11 m2s-1, dan 3.2 × 10-11 m2s-1 manakala nilai bagi heksadekana adalah                   

1.96 × 10-8 m2s-1, 2.58 × 10-9 m2s-1, 7.15 × 10-10 m2s-1, dan 5.36 × 10-10 m2s-1. Molekul 

tetamu di sepanjang terowong urea memperlihatkan pembauran yang lebih perlahan 

dengan nilai pembauran berkorelasi baik dengan dapatan eksperimen, apabila saiz model 

sistem cenderung untuk mengikut sistem yang sebenar. Pencerahan terhadap corak putaran 

molekul tetamu apabila bergerak dalam rangka kurungan terowong urea mendapati 

bahawa molekul tetamu lebih memilih untuk mengikuti spiral tangan-kanan struktur 

ikatan hidrogen urea kiral. Selain itu, sifat translasi dan putaran molekul tetamu adalah 

lebih menyerlah dalam sistem urea tidak tegar. Dicadangkan, sekatan pada sistem urea 

tegar telah menghalang molekul-molekul daripada berada dalam konformasi terbaik, 

justeru menyumbang kepada pemerhatian keseluruhan terhadap tingkah laku struktur dan 

konformasi tetamu. Herotan G- dan G+ yang asimetri pada sepanjang tenaga konformasi 

tetamu menunjukkan bahawa pengaruh kekiralan urea pada tetamu adalah ketara pada 

heksadekana-1,16-diol berbanding dengan heksadekana. Variasi sifat pembauran dan 

konformasi yang dinilai dalam model sistem fasa I, II dan fasa III menjelaskan peranan 

penting kumpulan berfungsi tetamu, yang mana mempunyai kaitan dengan interaksi 

tetamu-tetamu dalam terowong dan antara terowong serta interaksi hos-tetamu. Kaedah 

molekul dinamik menawarkan pengetahuan asas yang signifikan berkaitan dengan struktur 

dan dinamik molekul tetamu dalam model sistem urea berliang nano yang mempunyai 

aplikasi penting dalam bidang pemisahan molekul dan diskriminasi enantiomer. 
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The hexagonal simulation cell consists of 23 repeating 

unit cells of the host structure along the z-direction, 
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the data were taken over all guest molecules and over 

the whole 10 ns period of the molecular dynamics 

simulation 
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5.7 (a) Graphical representation of guests’ intramolecular 

torsion angle computation in urea inclusion compounds. 

Hexadecane-1,16-diol and hexadecane set of atoms are 

OCCO and HCCH, respectively. For clarity, image of 

urea molecules was omitted, only the central guest and 

its neighbouring molecules are shown. The proportion 

of guests as a function of torsion angle distribution in (b) 

rigid and (c) nonrigid urea host systems. Conformational 

energy landscapes of guests’ torsion angle distribution 

in (d) rigid and (e) nonrigid urea host systems. In each 

respective case, averages of the data were taken over all 

guest molecules and over the whole 10 ns period of the 

molecular dynamics simulation 
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5.8 (a) Graphical representation of guests’ intermolecular 

torsion angle distribution in urea inclusion compounds. 

Hexadecane-1,16-diol and hexadecane set of atoms are 

O-C---C-O and H-C---C-H, respectively. For clarity, 

image of urea molecules was omitted, only the central 

guest and its neighbouring molecules are shown. The 

proportion of guest conformation as a function of torsion 

angle distribution in (b) rigid and (c) nonrigid urea host 

systems. Conformational energy landscapes of guest 

torsion angle distribution in (d) rigid and (e) nonrigid 

urea host systems. In each respective case, averages of 

the data were taken over all guest molecules and over 

the whole 10 ns period of the molecular dynamics 

simulation 
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5.9 Graphical representation of intermolecular torsion angle 

(a) trans and (b) gauche conformation of hexadecane-

1,16-diol guests in urea inclusion compounds 
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6.1  (a) Schematic representation of guest’s position and (b) 

atomistic representation of guest’s confinement, within 

the urea inclusion architecture. There were eleven guests 

arranged along the urea tunnel. For clarification, only a 

few guest molecules were drawn to clearly demonstrate 

the guest-guest interaction. Molecules in ball and stick 

style represent hexadecane-1,16-diol guest molecules 
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whilst in line style represent urea host molecules. The 

blue dashes denote the hydrogen bond. The hexagonal 

simulation cell consists of 23 repeating unit cells of the 

host structure along the z-direction, representing four 

tunnels 
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6.2 The logarithmic plot of average MSD for all guest 

molecules in four urea tunnels of (a) hexadecane-1,16-

diol and (b) hexadecane. The MSD in (a) and (b) was 

found to scale as t1/2 at long time t, which is predictable 

for systems that exhibit single file diffusion behaviour 

[4]. The logarithmic plot of average diffusional 

configuration for all guest molecules in four urea tunnels 

of (e) hexadecane-1,16-diol and (f) hexadecane 
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6.3 Conformational energy landscapes of hexadecane-1,16-

diol (a)–(b) calculated via quantum chemical and 

molecular dynamics simulation, (c)–(d) in urea model 

system of all phases, and (e)–(f) the degree of distortion 

which reflected the amount of guest chirality. The (a), 

(c), and (e) refers to CCCO_a torsion angle energy 

distribution whilst (b), (d), and (f) refers to CCCO_b 

torsion angle energy distribution. In each respective 

phase, the energy is relative to the lowest energy 

conformation 
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6.4 Conformational energy landscapes of hexadecane (a)–

(b) calculated via quantum chemical and molecular 

dynamics simulation, (c)–(d) in urea model system of all 

phases, and (e)–(f) the degree of distortion which 

reflected the amount of guests chirality.. The (a), (c), and 

(e) refers to CCCH_a torsion angle energy distribution 

whilst (b), (d), and (f) refers to CCCH_b torsion angle 

energy distribution. In each respective phase, the energy 

is relative to the lowest energy conformation 
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6.5 Percentage of (a)–(b) CCCO torsion angle of 

hexadecane-1,16-diol and (c)–(d) CCCH torsion angle 

of hexadecane, end group conformation. In each 

respective case, averages of the data were taken over all 

guest molecules and over the whole 5 ns (phase I), 10 ns 

(phase II), and 5 ns (phase III) period of the molecular 

dynamics simulation 
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xx 
 

6.6 Conformational energy landscapes of torsion angle 

distribution for guest-guest intratunnel molecular 

interaction of (a) hexadecane-1,16-diol/urea and 

(b) hexadecane/urea. In each respective case, averages 

of the data were taken over all guest molecules and over 

the whole 5 ns (phase III) and 10 ns (phase II) period of 

the molecular dynamics simulation. O-C/ H-C of one 

guest molecule and C-O/ H-C of adjacent guest 

molecule are the four points used to define the torsion 

angle for hexadecane-1,16-diol and hexadecane guest 

molecules, respectively 
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6.7 Schematic representation of setting for guest pairing in 

respective tunnels for radial distribution functions 

measurement with centroid of central guest in tunnel 1 

chosen as reference point 
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6.8 Radial distribution function for interactions between 

guests in different tunnels for (a) hexadecane-1,16-diol. 

First peak occurred at r = 8.39 Å, 8.61 Å, and 8.63 Å 

whilst second peak occurred at r = 14.41 Å, 14.85 Å, and 

14.47 Å for reference guest with neighbours in tunnel 

two, tunnel three, and tunnel four, respectively. For (b) 

hexadecane, first peak occurred at r = 8.25 Å, 8.43 Å, 

and 8.49 Å whilst second peak occurred at r = 14.43 Å, 

14.47 Å, and 14.51 Å for reference guest with 

neighbours in tunnel two, tunnel three, and tunnel four, 

respectively 
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6.9 Radial distribution functions for guests in phase III 

model system: (a) the distance between the urea 

hydrogen atom and the hydroxyl oxygen atom of 

hexadecane-1,16-diol, the urea nitrogen atom and 

hydroxyl hydrogen atom of hexadecane-1,16-diol, the 

urea nitrogen atom and hydroxyl oxygen atom of 

hexadecane-1,16-diol, and between the urea oxygen 

atom and the hydroxyl hydrogen atom of hexadecane-

1,16-diol and (b) the distance between the hydroxyl 

oxygen atom of hexadecane-1,16-diol hydroxyl group 

and the hydrogen atom of the neighbouring           

hydroxyl group 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Inclusion compounds, in a general sense, can be defined as systems in which 

one species which is the “guest” is spatially confined within another species, known 

as the “host” [1]. They can be formed from diverse types of organic and inorganic host 

components such as urea, thiourea, cyclophosphazenes, cyclodextrin [2], 

aluminosilicates (zeolites and clay minerals), aluminophosphates, graphite, layered 

metal chalcogenides, and layered metal phosphonates [3].  

 

 

Over the years, many studies have been done in great detail on inclusion 

compound for it can be applied on industrial scale. Cyclodextrin, for example, is used 

in stabilisation of food flavours and fragrance [4] while urea inclusion compounds 

work in separation of components in mixture [5], particularly within petrochemical 

industry [1]. The selective separation of substances incurred by the formation of 

inclusion compounds have led the materials to be utilised at various stages of 

chromatography process due to their capability to provide solutions for specific 

analytical problems and one of the many materials to be used is urea inclusion 

compounds [6].  

 

 

Urea inclusion compounds, the early representative of the host-guest molecular 

systems, are nanoporous solid materials which belong to the family of supramolecular 

compounds. These materials have been successfully applied in the laboratory and 

separation industry of linear and branched compounds in solution. The host structure 
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was reported to form an extensively hydrogen-bonded arrangement containing linear, 

parallel tunnels with an effective “diameter” of the tunnels ranging between 

approximately 5.5 and 5.8 Å [1, 6]. Since the selection for enclathration of guest 

molecules is essentially governed by the size of available tunnels, urea preferentially 

forms inclusion compounds with straight chain hydrocarbons. Compounds with larger 

substituents such as benzene and side chains remain excluded [5, 6]. In other words, 

the tunnel diameter serves as the “discriminator” for the incorporated guest     

molecules [7]. Thus, the selective character infatuated by the size of the urea tunnels 

has been the subject as why urea inclusion compounds can be used in separation 

technique. Indeed, this was one of the motivations for many of the early studies 

concerning urea inclusion compounds. Another example is the study conducted by 

Holman and Ener [8] on the use of urea inclusion compounds containing essential fatty 

acid for an experimental diet. In the report, they stated the danger that always exists 

when fat has been included in the experimental diet containing essential fatty acids 

was the occurrence of unwanted rancidity and destruction of vital nutrients, at least 

partially, by oxidation with atmospheric oxygen. Since the formation of inclusion 

compounds between urea and essential fatty acids or esters are not subject to 

autoxidation, urea became the preferred material to be used in their laboratory.  

 

 

Urea inclusion compounds have also been found to increase the guest 

compounds performance, such as increasing the bioavailability of drugs [9–11], 

storing nanoparticles without aggregation in the solid state, and preventing the loss of 

products due to decomposition process [12]. Recently, with the ability to form co-

inclusion complex with substituted compounds such as Malathion (MA), a highly toxic 

organophosphate insecticide that was being used widely to control insect pests, urea, 

due to its low cost and high solubility of water in place of cyclodextrin, has been 

employed as a host compound in Dhall and Madan studies [10]. The co-inclusion of 

MA in urea host lattice showed a steep reduction in the toxicity and was found to 

improve the handling characteristics.  

 

 

Studies concerning urea inclusion compounds are still a subject of continuing 

interest, covering a wide range of scientific area [12–19], including this 

supramolecular compound’s physicochemical characteristics. The reported studies 
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include molecular transport [20–22], structural and molecular recognition [20, 23], 

host–guest chiral recognition [20, 24, 25], and dynamical properties [20–23] that are 

predominantly related to the molecular motion of the guest molecules. 

 

 

Molecular transport phenomena have wide applications in a broad                 

range of scientific disciplines, for example, in solid state [26, 27], biomedical                       

engineering [28, 29], and chemical engineering [30, 31]. Studies concerning transport 

phenomena through nanoporous systems, where diffusion is one of its fundamental 

characterisations [32], have a very significant role in understanding the separation 

process which functions as a crucial technological phase in extensive industrial 

processes [33]. On the other hand, knowledge involving interactions between atoms 

and molecules, constituents of structural and conformational features at the molecular 

level with specific functional properties, is essential in designation and advance of 

constantly developing materials and chemicals [34]. Aside from that, understanding 

the structure of materials is also crucial for the determination of transport properties as 

it serves as the key to understanding many practical applications including separation 

process in porous materials [35]. Moreover, utilisation of computational approach such 

as molecular dynamics (MD) simulations in assessing the dynamics of a substance’s 

diffusional and structural behaviour at the molecular level could assist in discovering 

irregular properties that could not possibly be identified by physical experiments [33], 

where in many situations are associated with high cost. In addition, the ability to design 

materials at the molecular level to enhance system performance with desired functional 

properties makes computational analysis a powerful approach that could be exploited 

in exploring and understanding a variety of systems [34]. 

 

 

 

 

1.2.  Problem Statement 

 

 

Since their discovery in the 1940s by Bengen [36], considerable experimental 

and theoretical works [1, 20] on urea inclusion compounds with different types of guest 

such as n-alkanes, α,-dihalogenoalkanes, carboxylic acids, α,-alkane dicarboxylic 

acids, anhydrides, diacyl peroxides, alcohols, alkanones [37, 38], and various other 

types [12, 13, 16, 39] of guest compounds have been explored. However, to the best 
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of our knowledge, no study has been reported yet concerning α,-dihydroxyalkanes 

type of guest family in urea inclusions by means of theoretical approach; only 

experimental studies have been reported so far on this type of guest family [40, 41]. 

Thus, our research highlighted and extended the theoretical studies of urea inclusion 

compounds with hexadecane-1,16-diol, a member of the α,-dihydroxyalkanes 

family, as guest molecules. The α,-dihydroxyalkanes have many potential 

applications of industrial and biological importance such as the use in polyesters 

production [42] and serve as initiators in biomaterials area [43]. 

 

 

There has been a variation of scale in modelling the urea inclusion systems in 

molecular dynamics studies. Some researchers model the system as a single             

tunnel [23, 44] whilst others build larger systems which consist of a few                  

tunnels [20, 21] with insertion of at least one guest molecule or more. Large model 

systems were preferred [20, 21] in order to achieve a result that can accurately and 

reliably correlate with experimental findings. Regardless of some limitations, studies 

that used small urea model systems [23, 44] were still able to address significant 

findings  related to their extent of problems. Compared to the previous works, both the 

small and large systems were included in the construction of urea model in this work, 

in which the model systems were not limited to a single urea tunnel or a number of 

urea tunnels but encompassed a series of urea tunnel systems. As this investigation 

was initially conducted from a small system, a single urea tunnel with one guest, 

understanding on the behavioural properties of guest molecules was hoped to be 

achieved from the ground level and to be gradually extended as the systems develops. 

 

 

 

 

1.3. Objectives of Study 

 

 

This study focused on probing the movement of guest molecules of interest 

along the urea tunnel and their behavioural properties by inspecting their reactions 

along the tunnel structure. The main objectives in this study are: 
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1) to explore the diffusion of hexadecane-1,16-diol and hexadecane guests along 

urea host tunnel for three different stages of systems, 

 

2) to determine the structural and conformational properties of 

hexadecane-1,16-diol and hexadecane guests as they translated and rotated 

along urea host tunnel for three different stages of systems, and 

 

3) to compare the behavioural properties of hexadecane-1,16-diol and hexadecane 

guests inside urea host tunnel for three different stages of systems. 

 

The three stages of the systems are (i) single guest inside a single urea tunnel,        

(ii) eleven guests inside a single urea tunnel and (iii) eleven guests inside each of the 

four urea tunnels. 

 

 

 

 

1.4  Scope of Study 

 

 

In this work, we studied the transport and structural properties of 

hexadecane-1,16-diol guest molecules by means of molecular dynamics simulation. 

The guest compounds come from the ,-dihydroxyalkanes family, a type of 

molecule that consists of a hydroxyl group attached at each end of the long alkane 

chain. In order to assess the effect of these hydroxyl groups towards the guests’ 

behavioural properties in urea inclusion compounds, another molecular dynamics 

simulation was run for hexadecane. This way, observation on the differences between 

guest representatives of different functional groups in the hydrocarbon chain could be 

carried out. The model systems were initially built as a single tunnel with introduction 

of one single guest within the framework of the urea tunnel. Development of the model 

system continued with construction of a single tunnel with introduction of eleven 

guests within the tunnel structure. At this phase, two parameters were imposed. One 

of the urea host molecules was held rigid whilst the other one was held nonrigid. In 

the third phase, the system was modelled by constructing four urea tunnels with 

insertion of eleven guests in each tunnel.  
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Hexadecane-1,16-diol guest compound was selected to represent the 

,-dihydroxyalkane family in this work. Martí-Rujas et al. [41] mentioned that two 

types of crystal system, α,-dihydroxyalkane/urea co-crystals and α,-

dihydroxyalkane/urea inclusion compounds could exist using the mixture of the same 

compounds. The molar ratio of urea to α,-dihydroxyalkane co-crystals are 

stoichiometric but in the urea inclusion compounds, they are not stoichiometric as a 

result of an incommensurate relationship between the host-guest periodicities. Their 

research work emphasised on the investigation of structural properties for a series of 

α,-dihydroxyalkane/urea co-crystals: hexane-1,6-diol, octane-1,18-diol, decane-

1,10-diol, dodecane-1,12-diol, tetradecane-1,14-diol, and hexadecane-1,16-diol.  

 

 

However, they revealed that in some of the crystallisation experiments which 

involved α,-dihydroxyalkanes as guest, the formation of urea inclusion compounds, 

rather than the urea co-crystals, was obtained and interestingly prevalent, particularly 

with α,-dihydroxyalkanes that exhibit longer chain length. Their attempts to produce 

a hexadecane-1,16-diol/urea co-crystal were only successful in their early studies. All 

the subsequent attempts using that particular guest molecule resulted in the formation 

of urea inclusion compounds. This information essentially gave us a basis for selection 

and designation of hexadecane-1,16-diol as the representative guest molecule in urea 

inclusion model systems of our work. There was another class of guest molecule that 

has been mentioned to form inclusion compounds with urea, hexane-1,6-diol. 

However, with limited computational resources and high computational cost, our work 

was restricted and focused only on hexadecane-1,16-diol as the guest molecule. 

 

 

 

 

1.5 Significance of Study 

 

 

Diffusion is an important molecular transport phenomena. Understanding the 

process of molecule or ion transportation at the atomic or molecular level is the basis 

for many physical, chemical, and biological processes of materials [32]. In this regard, 

studies of appropriate model systems such as urea inclusion compounds could play an 

important role in establishing fundamental knowledge of such transport processes, i.e. 
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in the field of molecular separation. Moreover, with the ever-changing needs for 

improvement and designation of new chemicals and materials, researchers and 

engineers are becoming increasingly engaged in using the knowledge about 

interactions [34].  

 

 

This study investigated guest molecule transportation as well as interactions in 

urea host compounds. The significant insights on the structures and dynamics of the 

host and guest elements could provide an opportunity to understand properties at the 

molecular level, which in several cases cannot be retrieved by investigations by means 

of experimental approach. In addition, execution of considerable scientific works to 

understand in details, particularly of that physicochemical characteristics, of urea 

inclusion compounds [20–25] reflected on the relevance of studies related to the 

transport and structural properties of these compounds at the atomic or molecular level. 

Our work thus contributed in enriching and extending the knowledge at the 

fundamental level on these physicochemical areas of urea inclusion compound studies 

with hexadecane-1,16-diol (and hexadecane for comparison) as guest molecules. Since 

this investigation used a series of urea inclusion model systems starting from small to 

large, an insight towards the structural and dynamics characterisation which reflects 

the behavioural properties of the guest molecules could be observed and 

comprehended as a whole, i.e. the effect of urea confinement could be observed 

towards not only the guest molecules that have the nature of guest-guest interaction 

within the tunnel (guest-guest intratunnel interaction) but also towards the single guest 

molecule that have no guest-guest interaction as well as the guest-guest interaction 

between different tunnels (guest-guest intertunnel interaction). 

 

 

 

 

1.6 Outline of the Thesis 

 

  

This thesis consists of seven chapters. Chapter 1 gives a brief overview on the 

research background. It includes the problem statement, objectives, scope, and 

significance of the present study. 
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Chapter 2 compiles the literature review of the present study. The literature 

was divided into four main categories: (i) introduction to the inclusion compounds, 

the host-guest complex; (ii) discussion on urea inclusion compounds, i.e. urea as the 

host molecule, hexadecane-1,16-diol and hexadecane as the guest molecules, the 

application of urea inclusion compounds in various fields which demonstrates the 

relevance and continuous use of urea as a promising host molecule, and also 

theoretical studies on the physicochemical characteristics of this supramolecular 

compounds; (iii) reviews on the importance of diffusion and structure studies in 

nanoporous host-guest complex by molecular dynamics simulation approach; and    

(iv) brief overview on the basic principle used in molecular dynamics simulation. 

 

 

Chapter 3 gives the details of the theoretical works. It includes the description 

about the construction of urea model systems, the computational method of molecular 

dynamics simulation, and the basic concepts used in the structural and dynamical 

analysis. 

 

 

Chapter 4 provides the discussion on the results obtained from simulation of 

phase I model system, a single urea tunnel in which only one guest molecule resided. 

The highlight on this system is to perceive the rotational patterns of hexadecane-1,16-

diol and hexadecane guest molecules as they translate along the urea tunnel and to 

probe if they have a certain recognisable preferential orientation. Diffusional 

behaviour of the single guest molecule was described through measurement of the 

diffusion coefficient. This chapter also includes the discussion on the translational and 

rotational properties of the guest molecules. The translational and rotational mode of 

the guest molecules along the tunnel was evaluated by measuring the travelling 

distance and torsion angle of the guest molecules.  

 

 

Chapter 5 continues the discussion on the diffusional behaviour as well as the 

translational and rotational properties of hexadecane-1,16-diol and hexadecane, now 

in phase II model system where a single urea tunnel was filled with eleven guest 

molecules. The inclusion of additional guest molecules enabled analysis on the guest-

guest interactions within the tunnel to be carried out. Two types of model system were 
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constructed at phase II, the urea molecule was held rigid on one tunnel and the other 

was held nonrigid. With implementation of these parameters, this chapter focuses more 

on describing the interplay between the diffusion of the guest molecules and their 

structural and conformational properties when a rigid and nonrigid urea host molecules 

were imposed. 

 

 

Chapter 6 presents a study of a more profound property, i.e. the induced effect 

of urea chirality on the guest molecules and examination on factors that contribute to 

the behavioural properties of the guest molecules in a system that consists of four urea 

tunnels with the inclusion of eleven guest molecules in each tunnel. The findings were 

then compared to that of phase I and phase II model systems. This chapter also 

discusses the variations found on the diffusional behaviour of the guest molecules in 

all model systems. With the presence of neighbouring tunnels in the phase III model 

system, the influence of guests-guests intertunnel interaction was also addressed 

towards several of the discussed properties in this chapter.  

 

 

Chapter 7 gives a summary of this study and concluded on the results obtained 

throughout the study with some suggestions presented for future work. 
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