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ABSTRACT 

 

 

 

 

 Biohydrogen production from microorganism is a form of renewable energy 

that could supplement the depletion of fossil fuels. In producing biohydrogen, 

microbial consortia are more feasible than pure cultures because of its operational ease 

and stability and it is more favourable energetically at elevated temperatures which 

enables thermophiles to reach higher biohydrogen production than mesophiles. The 

aim of this study was to isolate, enrich and screen microbial consortium from local hot 

spring for its potential in producing biohydrogen, to optimize the selected consortium 

for optimal biohydrogen production and to identify the microbial diversity community 

of the consortium. Sampling was conducted at Gadek, Cherana Putih, Gersik and 

Selayang hot spring and the samples were enriched in Mineral Salt Succinate medium. 

The enriched consortia were screened for biohydrogen production using Gas 

Chromatography-Thermal Conductivity Detector (GC-TCD) and the biohydrogen 

production of the selected consortium was optimized by one factor at a time (OFAT) 

method. The kinetic analysis of the growth and biohydrogen production of the 

consortium were analyzed using the modified Logistic growth equation and modified 

Gompertz equation respectively. The microbial diversity community of the consortia 

were observed using 16S rRNA polymerase chain reaction-denaturing gradient gel 

electrophoresis (PCR-DGGE). To determine the microbial population dynamics of the 

consortia, 16S rRNA clone library were constructed for the consortia before and after 

optimization and sequencing data were analyzed using Mothur. Microbial consortium 

from Gadek hot spring (GDC) yielded the highest biohydrogen production compared 

to other consortia. The optimized condition (15% (v/v) inoculum size, 50°C, pH 7, 2 

g/L sodium pyruvate and 0.5 g/L tryptone) showed a maximal biomass growth of 0.563 

g dry cell weight/L and apparent specific growth rate of 0.959 h-1. Whilst the optimized 

hydrogen production potential was 86.2 mmol H2/L culture with the maximal 

production rate of 4.117 mmol/L h-1, biohydrogen yield obtained was 135.7 mmol H2/g 

biomass and the lag phase time was 5.1 hours. DGGE showed a slight microbial shift 

between the consortia before and after optimization. From the 16S rRNA clone library, 

21 clones were obtained and a total of four operational taxonomic unit (OTU) were 

detected. Both consortia showed Firmicutes and Proteobacteria as the predominant 

phyla which have phylogeny affiliations to hydrogen producers. However, OTU_4 

(Sporoacetegenium mesophilum) was only present in the consortium before 

optimization, OTU_1 (Thauera sp), OTU_2 (Paenibacillus barengoltzii) and OTU_3 

(Sporomusaceae g. sp) were present in both consortia. Analysis showed the presence 

of OTU_2 and OTU_3 and the abundance of OTU_1 in the optimized consortium led 

to an increased in biohydrogen production of about 8 fold more from the consortium 

before optimization. In conclusion, this is the first study that reports a unique 

combination of Thauera sp., Paenibacillus barengoltzii and Sporomusaceae g. sp. 

which are able to produce a high amount of biohydrogen at the optimized condition.  
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ABSTRAK 

 

 

Penghasilan biohidrogen daripada mikroorganisma ialah sejenis tenaga 

diperbaharui yang dapat menambah kekurangan sumber bahan api. Dalam 

menghasilkan biohidrogen, konsortia mikrob adalah lebih sesuai berbanding kultur 

tulen kerana operasi yang mudah dan kestabilannya dan ia lebih sesuai digunakan dari 

segi tenaga pada suhu tinggi yang membolehkan termofil mencapai penghasilan yang 

lebih tinggi berbanding mesofil. Tujuan kajian ini adalah untuk memencil, 

memperkaya, dan menyaring konsortium mikrob dari kolam air panas tempatan untuk 

keupayaanya menghasilkan biohidrogen. Selain itu, tujuan kajian ini juga adalah untuk 

mengoptimumkan konsortium terpilih bagi penghasilan biohidrogen yang optimum. 

dan untuk mengenal pasti kepelbagaian komuniti mikrob di dalam konsortium 

tersebut. Pensampelan dilakukan di kolam air panas Gadek, Cherana Putih, Gersik dan 

Selayang dan sampel diperkaya dalam medium garam mineral suksinat. Konsortia 

diperkayakan disaring untuk penghasilan biohidrogen dengan menggunakan 

Kromatografi Gas- Pengesan Terma Kekonduksian (GC-TCD) dan penghasilan 

biohidrogen oleh konsortium terpilih dioptimumkan dengan kaedah satu faktor pada 

satu masa (OFAT). Analisis kinetik terhadap pertumbuhan dan penghasilan 

biohidrogen oleh konsortium masing-masing dianalisis dengan menggunakan 

persamaan pertumbuhan Logistik terubah suai dan persamaan Gompertz terubah suai. 

Kepelbagaian komuniti mikrob dicerap dengan menggunakan tindak balas rantai 

polimerase16S rRNA-gel elektroforesis penyahaslian cerun (PCR-DGGE). Untuk 

menentukan populasi dinamik mikrob konsortia tersebut, perpustakaan klon 16S 

rRNA dibina untuk konsortia sebelum dan selepas pengoptimuman dan data 

penjujukan dianalisis dengan menggunakan Mothur. Konsortium mikrob dari kolam 

air panas Gadek (GDC) menghasilkan biohidrogen paling tinggi berbanding konsortia 

lain. Keadaan optimum (15% (v/v) saiz inokulum, 50°C, pH 7, 2 g/L natrium piruvat 

dan 0.5 g/L tripton) menunjukkan pertumbuhan biojisim maksimum sebanyak 0.563 g 

berat kering sel/L dan kadar pertumbuhan spesifik ketara, 0.959 h-1. Sementara itu, 

penghasilan biohidrogen optimum adalah sebanyak 86.2 mmol H2/L dengan kadar 

penghasilan maksimum 4.117 mmol/L h-1, hasil biohidrogen adalah sebanyak 135.7 

mmol H2/g biojisim dan fasa lamban selama 5.1 jam. DGGE menunjukkan sedikit 

anjakan mikrob antara konsortia sebelum dan selepas pengoptimuman. Daripada 

perpustakaan klon 16S rRNA, 21 klon diperoleh dan sebanyak empat unit taksonomi 

operasi (OTU) dikesan. Kedua-dua konsortia menunjukkan Firmikut dan 

Proteobakteria sebagai filum pradominan yang mempunyai hubungan filogeni dengan 

penghasil hidrogen. Walau bagaimanapun, OTU_4 (Sporoacetegenium mesophilum) 

hanya terdapat pada konsortium sebelum pengoptimuman, OTU_1 (Thauera sp), 

OTU_2 (Paenibacillus barengoltzii) dan OTU_3 (Sporomusaceae g. sp) hadir dalam 

kedua-dua konsortia. Analisis menunjukkan kehadiran OTU_2 dan OTU_3 dan 

kelimpahan OTU_1 dalam konsortium yang dioptimumkan membawa kepada 

penghasilan biohidrogen meningkat lebih kurang 8 kali ganda daripada konsortium 

sebelum pengoptimuman. Kesimpulannya, ini adalah kajian pertama yang melaporkan 

kombinasi unik Thauera sp., Paenibacillus barengoltzii dan Sporomusaceae g. sp. 

yang mampu menghasilkan biohidrogen dengan jumlah yang tinggi pada keadaan 

optimum.  
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CHAPTER 1  

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Currently, fossil fuels such as coal, oil and natural gas are massively used for 

industrialization, transportations, generation of electricity, and overall the sole global 

energy (Huntley and Redalje, 2007; Hallenback et al., 2009; Chandrasekhar et al., 

2015).  However, enormous consumption of fossil fuel has caused major 

environmental destruction, changes in global climate, global warming, emission of 

greenhouse gasses and health problems (Chang et al., 2006; Jamali et al., 2016). 

Hydrogen is one of the most abundant elements in the universe in its ionic form and is 

odourless, colourless, tasteless and non-poisonous gas (Das et al. 2001; Chong et al., 

2009). Thus, it is recommended that hydrogen could replace fossil fuels and minimize 

the environmental pollution because of its clean and renewable energy properties.  

 Hydrogen gas is the simplest element and is the most abundance element in 

the universe. The atmosphere contains 0.07 % of hydrogen and the Earth’s surface has 

0.14 %   of hydrogen (Das et al., 2001). Furthermore, hydrogen is a promising energy 

carrier of the future and can be derived from a variety of energy sources. Hydrogen is 

used in fuel cells with high efficiency of 142.35 kJ/g which means that on burning 1 g 

of hydrogen, 142.35 kJ of energy is produced (Singh, 2013). Hydrogen can  either  be
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used as the fuel for direct combustion of engine or as the fuel for a fuel cell (Das and 

Veziroglu, 2008). Moreover, hydrogen is categorized as a clean fuel because upon 

oxidation, it only produces water which can be recycled again to produce more 

hydrogen, thus making it a source of renewable energy (Singh and Wahid, 2015). 

Furthermore, by only producing water upon combustion or oxidation hydrogen is a 

non-polluting and carbon-free alternative in comparison to fossil fuels which produces 

carbon dioxide upon combustion thus further increase the effects of greenhouse gases 

(Singh, 2013; Singh and Wahid, 2015).  

Currently, hydrogen is used for hydrogenation of many products, foods, and 

ammonia for fertilizer and is also used in the petroleum industries (Das and Veziroglu, 

2008; Kim and Kim, 2012). Furthermore, it has been reported that the demand for 

hydrogen is increasing and hydrogen could be the future of energy for power and 

transportation due to its many advantageous trait (Singh, 2013). Thus, a significant use 

of hydrogen has been demonstrated in the recent years for hydrogen-fueled transit 

buses, ships and submarines, including chemical and petrochemical applications 

(Singh  and Wahid, 2015). However, unlike fossil fuels, hydrogen gas is not readily 

available in nature, and the commonly used production methods are quite expensive 

(Singh and Wahid, 2015). At present 40% hydrogen is produced from natural gases, 

30% from heavy oil and naphtha, 18% from coal, 4% from electrolysis and about 1% 

from biomass (Sinha and Pandey, 2011). Most of this hydrogen production are 

exclusively made by methane steam reforming and coal gasification by using fossil 

fuels, which emits a significant amount of greenhouse gases (Kim and Kim, 2012).  

Therefore, renewable energy sources have to be employed for sustainable hydrogen 

production. Thus, biological hydrogen production are becoming important due to its 

renewable energy resources and its ability to operate at ambient temperature and 

atmospheric pressure (Wang and Wan, 2009; Loss et al., 2013).  

 Biohydrogen production are mainly from microorganisms that are able to 

produce hydrogen inside its metabolic pathway such as the photosynthetic bacteria 

(purple non sulfur bacteria (PNSB), cyanobacteria, purple sulfur bacteria) and 

fermentative hydrogen production bacteria (Clostridium sp). Both of these type of 

bacteria are extensively isolated and studied in mesophilic condition for its ability to 

produce high amount of hydrogen. However, Lazaro et al. (2015) concluded that mix 

cultures are more feasible in producing hydrogen in comparison to the pure cultures. 
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Furthermore, they also observed that mixed cultures are the preferred choice because 

of its operational ease, stability, diversity of biochemical functions, and the possibility 

to use a wide range of substrates (Han et al., 2012). Apart from that, it is known that 

biological hydrogen production is more favourable energetically at elevated 

temperatures which enables thermophiles to reach higher hydrogen production than 

mesophiles (Pawar and van Niel, 2013).  

Hot Springs in Malaysia is a known hotspot for tourism. According to Baioumy 

et al. (2015), there are more than sixty hot springs in West Malaysia with the variation 

temperature of 41°C to 99°C and pH values varies in the range of 4.5 to 9.9 and the 

hot springs in West Malaysia are non-volcanic hot springs. However, biological 

studies are rare because of the lack comprehensive information of their microbial 

communities. Thus far,  Chan et al. (2017) via independent cultivation, reported that 

generally, Firmicutes and Proteobacteria dominated the bacterial communities in all 

hot springs along the flank of the Banjaran Titiwangsa mountain range. For the past 5 

years, a few of bacterial species has been successfully isolated from Malaysian hot 

spring which are Rhodomicrobium vannielii (Ainon et al., 2006),  Geobacillus 

thermoleovorans CCB_US3_UF5 (Sakaff et al., 2012), and Sulphur oxidizing bacteria 

isolate (Hidayat et al., 2017).  Furthermore,  hot springs in Thailand (Puhakka et al., 

2012) and Turkey (Jessen et al., 2015) observe the existence of hydrogen producer 

bacteria which produces high yield of hydrogen.  Nevertheless, to the best of our 

knowledge, there are no reports in the public domain regarding the ability of bacteria 

from hot springs in Malaysia to produce hydrogen. However, Ainon et al., (2006) 

reported the presence of a PNSB, Rhodomicrobium vannielii, a PNSB from Gadek hot 

spring in Melaka.  PNSB is known to possess a metabolic pathway to produce 

hydrogen. Therefore in the present study, microbes were isolated from a few hot 

springs in Malaysia to explore their ability to produce biohydrogen. Furthermore, it 

would be beneficial to produce hydrogen in a higher scale for a future of clean and 

renewable energy source. 
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1.2 Problem Statement 

 

 

Energy is the most vital source and is used daily for electricity, transportation, 

technology, manufacturing and industrialization. To date, these global energy 

requirements are heavily dependent on fossil fuels such as oil, coal and natural 

gaseous. There is an urgency to search for replacement source of energy since the 

depletion of limited fossil fuels source is inevitable.  Furthermore, the global warming 

and the climate change that the world is enduring right now is causing worry due to 

the extensive use of fossil fuels where there is a tremendous emission of carbon dioxide 

during combustion of fossil fuels (Chong et al., 2009). Therefore, for these reasons, 

researches are looking for alternative fuels that could tackle the environmental issues 

mentioned. Thus, hydrogen is the best substitute for fossil fuel due to its abundance in 

the environment and it is a form of renewable energy (Jamali et al., 2016). This is 

because production of hydrogen only produces water upon oxidation and the water 

could be recycled again to produce hydrogen (Singh and Wahid, 2015). Hence, making 

it a form of renewable energy. Also it is a clean energy source due to the lack of 

emission of the greenhouse gases in the process of producing hydrogen and thus 

making it environmentally friendly (Singh, 2013; Singh and Wahid, 2015; Jamali et 

al., 2016). Moreover, biological process in producing hydrogen is an eco-friendly 

method which uses microorganisms via biochemical pathway in comparison to the 

conventional method which uses about 98% of fossil fuels (Singh and Wahid, 2015).  

However, there are some limitations in production of biohydrogen such as: 

i. Limitations of biohydrogen production in pure cultures 

 

In recent years, studies on biohydrogen production via pure cultures are more leaning 

towards modifications of its genetic information and its metabolic pathway (Cai and 

Wang, 2014; Mohd Yasin et al., 2013; Ma et al., 2012; Rey et al, 2007; Morimoto et 

al., 2005; Kondo et al., 2002) .Thus, making the hydrogen production costly and 

prevents the commercial application of the technology (Cai et al., 2012). Furthermore, 

pure cultures require sterile conditions and strict control of environmental conditions 

making it difficult for large-scale process in producing hydrogen for future energy 

source (de Sá et al., 2013). In comparison,  mix cultures are easy to control, due to the 
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absence of  of sterilization and being adaptive to variations in feedstock or condition 

due to its interaction between different microorganisms in the mix culture making it 

favourable for large-scale processing (Bao et al., 2012; Loss et al., 2013; 

Sivagurunathan et al., 2014; Zhang et al., 2015). In addition, mix cultures are robust 

and able to convert a wide array of substrates because of their metabolic flexibility to 

utilize short-chain fatty acids and carbon dioxide and produce hydrogen (Shanmugam 

et al., 2014). Thus, resulting in mix cultures and co-cultures producing higher 

hydrogen production rather than pure cultures without any genetic modifications 

(Zhang et al., 2015).  

 

ii. Abundance of different types of bacteria in a mix culture could lead to instability 

of biohydrogen production system. 

 

To date, biohydrogen producing enriched consortia are mainly isolated from Palm Oil 

Mill Effluent (POME) which produces hydrogen in dark fermentation (Jamali and Md 

Jahim, 2016; Rasdi et al., 2009; Singh et al., 2013; Vijayaraghavan and Ahmad, 2006; 

Yossan et al., 2012). However, there is an underlying problem whereby instability of 

the consortium isolated from POME occurs due to the abundance of bacterial 

community (Singh and Wahid, 2015). The abundance of bacterial community usually 

consist of hydrogen consumers such as methanogens, homoacetogens, sulphate and 

nitrate reducing bacteria (Singh, 2013). Furthermore, this resulted in depleting the 

amount of hydrogen yield from 11% to 43% due to these bacteria consuming hydrogen 

in the mix culture (Saady, 2013). In addition, low hydrogen yield were reported due to 

the less efficiency in converting substrates to hydrogen because most thermal enthalpies 

are lost in the formation of volatile fatty acids (VFA) (Wong et al., 2005).  Thus, another 

environmental source are needed for the production of hydrogen with an optimal bacterial 

community to produce high yield of hydrogen. 

 

 

iii. Lack of data for local thermophilic isolates and their biohydrogen production 

 

Hydrogen production by mix culture has shown to be higher at higher temperatures 

(O-Thong et al., 2008; Akutsu et al., 2009; Puhakka et al., 2012; Zhang et al., 2016).  

Thus, it is possible that thermophilic enrich culture may be capable of producing high 
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amount of hydrogen. Enrich cultures taken from the hot springs reportedly yield high 

amount of hydrogen (Prasertsan and O-Thong, 2011; Puhakka et al., 2012; Phummala 

et al., 2014). At thermophilic condition, the hydrogen community producer becomes 

energetically favorable and hydrogen consuming reactions become less favorable, better 

pathogenic destruction, higher rate of hydrolysis and thus higher hydrogen yields (Das, 

2001; Chong et al., 2009; Md Jahim, 2016; Roy et al., 2014). However, although the 

thermophiles are cultivated at elevated temperatures with highly intensive energy 

requirements, their hydrogen production can be closer to the theoretical yield in 

comparison to mesophiles by overwhelming the thermodynamic barrier (Chandrasekhar 

et al., 2015). Thus, a higher temperature is more feasible for hydrogen production due to 

favorable thermodynamics and hold tremendous promise for the forthcoming generations 

as well as for the commercial production of hydrogen fuel (Hasyim et al., 2011). However, 

to date, in the public domain, research done to investigate the ability of the microbial 

community of the hot spring in producing hydrogen are sparse.  

 

iv. Lack of data in bacterial consortium containing PNSB for biohydrogen production 

via photo fermentation 

 

As for photo fermentation in biohydrogen production, it usually involves PNSB that 

utilizes sunlight to oxidize organic compounds and generate the electron potential needed 

to drive hydrogen production (Azwar et al., 2014). Additionally, photo fermentation is 

widely used for wastewater remediation and stabilization due to its versatility in sources 

of metabolic substrate (Ghadamshetty et al., 2008; Kim and Kim, 2012). Thus, solar 

energy can be utilized in producing hydrogen with minimal non-renewable energy inputs 

and by utilizing low cost substrates or waste streams and, by collecting and recycling 

useful by-products (Gadhamshetty et al., 2008). Also, PNSB can potentially divert 100% 

of electrons from an organic substrate to hydrogen production (Azwar et al., 2014). Hence, 

biohydrogen production via photo fermentation is favourable due to its potential in 

producing high amount of hydrogen and its versatility in consuming various substrate 

which could be utilized as wastewater remediation apart from producing hydrogen. Thus 

far, consortium containing PNSB for one step biohydrogen production has been reported 

from only the mesophilic environment (Yanling et al., 2008, Loss et al., 2013 and Lazaro 

et al., 2015). Also, there are no studies yet available in the public domain using consortium 

containing PNSB isolated from the hot springs for biohydrogen production. 

 



7 

 

 

 

Therefore, in this research, microbes from hot springs samples were isolated and 

further analyzed its biohydrogen production potential and its environmental effect on 

biohydrogen production. In addition, the microbial diversity of the mix culture taken 

from the hot spring is further studied to understand its role and its abundance in a 

consortium. Overall, in this present study, consortium from hot spring were assessed 

for their ability to produce hydrogen for future energy source. 

 

 

 

 

1.3 Research Objectives 

 

 

This study was carried out to investigate the ability of an enriched mix bacterial 

culture (consortium) from a local hot spring to produce high amount of biohydrogen 

and identify the microbial population that is responsible for hydrogen production.  The 

specific objectives of this studies were: 

1) To isolate, enrich, characterize and screen the consortium for biohydrogen 

production from various hot springs samples. 

2) To characterize and optimize the maximal biohydrogen production of the selected 

consortium in batch mode. 

3) To identify the microbial community diversity of the consortium before and after 

biohydrogen production optimization. 

1.4 Scope of Study  

 

 

In this study, water samples from Selayang hot spring, Selangor, Cherana Putih 

and Gadek hot springs in Melaka were enriched in a medium for PNSB with the aim 

of obtaining a consortium with PNSB. This is because PNSB are versatile and able to 

break down any organic substrate into hydrogen production whilst having the potential 

to divert 100% of electrons from an organic substrate to hydrogen production (Azwar et 

al., 2014). Apart from producing hydrogen, PNSB could simultaneously remediate 



8 

 

 

 

wastewater due to its ability in utilizing any form of substrate and also its ability to survive 

in an extreme habitat (Seifert et al., 2010; Seifert and Zagrodnik, 2009). Chan et al. (2017) 

reported that the dominant phyla in most of Malaysian hot springs are Proteobacteria. 

PNSB is from the phyla of Proteobacteria. Hence, it could be hypothesize that PNSB from 

hot springs could produce a high amount of hydrogen due to its efficiency in converting 

its substrate to hydrogen (Azwar et al., 2014). Moreover, at elevated temperatures, 

production can be closer to the theoretical yield by overwhelming the thermodynamic 

barrier (Chandrasekhar et al., 2015).  

Next, the various consortium were screened for its ability to produce hydrogen 

via gas chromatography-thermal conductivity detector (GC-TCD). Isolation and 

identification of the consortium with the highest hydrogen production was done and 

the isolated pure cultures were screened for hydrogen production. The environmental 

effects on hydrogen production of the consortium was further studied. Parameters such 

as the light illumination protocol, inoculum size, initial pH of the medium, incubation 

temperature, effects of carbon sources and its concentration and effects of nitrogen 

sources and its concentration which influence the hydrogen production of the 

consortium were optimized conventionally using one factor at a time method (OFAT). 

The biohydrogen production of the consortium was kinetically analyzed using the 

modified Gompertz equation and the growth and biomass production of the consortium 

was analyzed using the Logistic growth model. Furthermore, the relationship between 

biomass growth and the production of hydrogen by the consortium were also analyzed. 

The microbial community diversity of the consortium before and after optimization of 

hydrogen production was done via denaturing gradient gel electrophoresis to screen a 

microbial shift in bacterial population.  Then, identification of the microbial population 

of the consortium before and after optimization of hydrogen production was done by 

construction of 16S rRNA gene clone library and analyzed using Bioedit and Mothur.  
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1.5 Significance of Study 

 

 

This study provides information of the ability of a bacterial consortium taken from 

the hot spring to produce hydrogen. Biohydrogen production has been vastly studied 

around the world, however new information arises that thermophilic bacterial 

consortium produce much higher hydrogen production (Shin et al., 2004; Puhakka et 

al., 2012; Zhang et al., 2016). Only a few studies were found in the public domain on 

the ability of bacterial communities taken from hot springs to produce hydrogen such 

as Puhakka et al. (2012) and Jessen et al. (2015). Thus, in this research, biohydrogen 

production from bacterial culture of hot springs in Malaysia has been studied to further 

provide the information of the ability of a bacterial consortium in hot spring Malaysia 

to produce hydrogen. 

This research will also provide important environmental parameters and its kinetic 

analysis in enhancing the production of hydrogen in the consortium. The production 

of hydrogen is influenced by many factors such as temperature, pH, its carbon source 

and also its nitrogen source. Different type of microorganisms and consortiums has 

different effects on hydrogen production and its growth base on the variation of the 

environmental parameters. Furthermore, kinetic models were developed and applied 

for growth and hydrogen production to describe the progress of growth and hydrogen 

production process respectively.  It is unknown whether a certain combination of many 

environmental parameters could yield high amount of hydrogen by the bacterial 

consortium of the hot spring. Thus, by investigating the environmental factors and its 

kinetic analysis, it will provide a better evaluation of the kinetic growth and hydrogen 

production of the consortium and its effects towards different environmental 

parameters. 

 Furthermore, this study provides an in depth analysis of the microbial community 

dynamics of the consortium that is responsible for producing high hydrogen 

production. Knowledge of the microbial composition of the major hydrogen producing 

microorganisms would result in efficient and optimal operation of fermentative 

hydrogen producing systems (O-Thong et al., 2008). Apart from identifying the 

bacterial consortium, little information concerning microbial population structures and 

its dynamic changes in hydrogen production is available.  Therefore in this research, 
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Appendix C 

 

Promega Wizard® Genomic DNA Purification kit Protocol 

1 mL of the overnight culture was centrifuged at 16 0000 x g for two minutes 

to obtain cell pellet. This step was repeated about five times with the overnight culture 

to obtain higher amount of pellet. Then, the cells were suspended thoroughly in 480 μl 

of 50 mM EDTA followed by addition of 120 μL of lysozyme and was mixed gently. 

The puroose of this pre-treatment was to weaken the cell wall so that cell lysis could 

efficiently took place. Next, the sample was incubated at 37°C for 60 minutes on the 

Thermomixer® (Eppendorf) and then was centrifuged for 2 minutes at 16, 000 x g. 

After that, the supernatant was discarded.  Then, 600 μL of Nuclei Lysis solution was 

added and mix gently.  

Next, the cells were lysed by incubation at 80°C on the Thermomixer® 

(Eppendorf) for 5 minutes and then was cooled at room temperature. Three μl of 

RNAse solution was added to the cell lysate and the tube was inverted 2-5 times to 

mix. After that, the tube was incubated at 37°C for 60 minutes before it was cooled at 

room temperature.  Then, 200 μL Protein Precipitation Solution was added to the 

RNAse-treated cell lysate and then was vortexed vigorously at high speed for 20 

seconds. Next, the sample was incubated for 5 minutes on ice and followed by 

centrifugation at 16, 000 x g for 3 minutes.  

Then, the supernatant containing the DNA was carefully transferred to a clean 

1.5 mL microcentrifuge tube containing 600 μL of room temperature isopropanol. The 

supernatant was carefully transferred without any contamination of the pellet which is 

the precipitated protein. The tube containing the mixture was gently inverted until a 

thread-like strands of DNA form a visible mass. The mixture was centrifuged at 16, 

000 x g for 2 minutes. Then, carefully the supernatant was poured off and drained from 

the tube on clean absorbent paper. After that, about 600 μL 70% (v/v) ethanol was 

added and the tube was gently inverted several times to wash the DNA pellet. Again, 

the tube was centrifuged at the same power for 2 minutes and excess ethanol was 

carefully aspirated. The tube was drained on a clean absorbent paper and the pellet was 
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allowed to air dry for 10 to 15 minutes. Then, 50 μL of DNA rehydration solution was 

added to the tube and the DNA was rehydrated by incubating at 65°C for 1 hour on the 

Thermomixer® (Eppendorf). The solution was periodically mixed by gently tapping 

the tube. Alternatively, the DNA was rehydrated by incubating the solution overnight 

at 4°C. Finally, the DNA was stored at 2-8°C to use as a working solution or was stored 

at - 20°C for longer storage.  

 

 




