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ABSTRACT 

Arsenic is regarded as one of the most toxic heavy metals and the largest mass 

poisoning material in the world. Recently, membrane distillation (MD) using 

hydrophobic membranes has been a promising technology for arsenic removal in 

water. While polymeric membranes are known to show drawbacks such as low thermal 

and chemical resistivity, similarly, commercial ceramic membrane from alumina that 

is extremely expensive. Therefore, the development of cost effective ceramic 

membranes from natural materials have grown inexorably to solve some of the 

underlying issues. In this work, hydrophobic ceramic hollow fibre membranes 

(CHFM) derived from natural resources (kaolin, rice husk waste and cow bone waste) 

were developed via phase inversion and sintering technique and modified through 

fluoroalkylsilane grafting. At the beginning of the study, characterization on chosen 

natural resources (kaolin, silica based rice husk ash and hydroxyapatite based cow 

bone) were performed. The prepared membranes were characterized and modified 

with 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane and ethanol solution for 24 hours 

with respect to their morphological structure, surface roughness, wettability behaviour, 

pore size distribution and porosity. The results revealed that the modification process 

successfully turned the CHFM from hydrophilic to hydrophobic with contact angle 

value of 145°, 157°, 161° and 170° for membranes prepared from kaolin, amorphous 

silica, crystalline silica and hydroxyapatite, respectively. Afterwards, the prepared 

CHFM were tested towards synthetic arsenic wastewater by varying direct contact 

membrane distillation (DCMD) parameters such as arsenic pH, arsenic concentration, 

and arsenic-feed temperature. It was found that CHFM prepared from kaolin (KHFM) 

prepared at kaolin content of 37.5 wt.% and sintered at 1300°C showed the best 

performance with 100% rejection of arsenite [As(III)] and arsenate [As(V)]) towards 

arsenic removal via DCMD system. Nevertheless, the last part of the study is treating 

the arsenic-contaminated water collected from Sungai Pengorak, Malaysia using the 

best membrane that induced 100% arsenic removal via DCMD system. When 

comparing the performance of the prepared membrane in this study with nanofiltration 

and reverse osmosis membranes, it was found that the newly-developed KHFM 

showed excellence performance in treating arsenic-contaminated water with 100% 

arsenic rejection and stable flux of 23kg/m2h. It is worth mentioning that no membrane 

fouling was observed in the prepared KHFM for 72 hours of operation in this study 

compared to polymeric membranes.   



ABSTRAK 

Arsenik dianggap sebagai salah satu logam berat yang paling toksik dan 

beracun di dunia. Terkini, penyulingan membran (MD) menggunakan membran 

hidrofobik ditemui sebagai teknologi yang efektif untuk penyingkiran arsenik di dalam 

air. Sementara itu, membran polimer menunjukkan kelemahan seperti ketahanan kimia 

dan suhu yang rendah dan begitu juga seramik membran komersial diperbuat daripada 

alumina adalah sangat mahal. Oleh itu, pembangunan membran seramik yang berkos 

efektif daripada bahan semula jadi telah berkembang dengan pesat. Dalam kajian ini, 

membran gentian geronggang seramik semulajadi hidrofobik (CHFM) telah 

dibangunkan dari bahan seramik alternatif yang dipilih (kaolin, sisa sekam padi dan 

sisa tulang lembu) melalui penyongsangan fasa dan teknik persinteran dan diubah suai 

menerusi teknik cantuman fluoroalkylsilane. Pada awal kajian, pencirian pada bahan 

alternatif yang dipilih (kaolin, silika berasaskan abu sekam padi dan hidroksiapatit 

berasaskan tulang lembu) telah dilakukan. Membran terhasil dicirikan dan diubahsuai 

dengan larutan 1H,1H,2H,2H-perfluorodecyltriethoxysilane dan etanol selama 24 jam 

terhadap struktur morfologi, kekasaran permukaan, kelakuan kebolehbasahan, taburan 

saiz liang dan keliangan. Keputusan yang diperoleh menunjukkan bahawa proses 

pengubahsuaian berjaya mengubah membran seramik dari bersifat hidrofilik ke 

hidrofobik dengan nilai sudut sentuh 145°, 157°, 161° dan 170° untuk membran yang 

disediakan daripada kaolin, silika amorfus, silika kristal dan hidroksiapatit. 

Seterusnya, semua CHFM diuji ke atas air sisa arsenik sintetik dengan pelbagai 

parameter penyulingan membran sentuhan langsung (DCMD) seperti pH arsenik, 

kepekatan arsenik dan suhu suapan arsenik. Keputusan menunjukkan CHFM yang 

disediakan daripada kaolin (KHFM) pada kandungan kaolin 37.5 % berat dan disinter 

pada 1300°C menunjukkan prestasi terbaik  dengan penolakan 100% arsenit [As (III)] 

dan arsenat [As (V)]) terhadap penyingkiran arsenik melalui sistem DCMD. Pada akhir 

kajian, air tercemar arsenik yang yang di ambil daripada Sungai Pengorak, Malaysia 

dirawat menggunakan membran terbaik dan berjaya menyingkirkan arsenik 100% 

melalui sistem DCMD. Apabila membandingkan prestasi membran yang disediakan 

dalam kajian ini dengan nano-penurasan membran dan osmasis balik membran, 

didapati bahawa KHFM yang baharu dihasilkan menunjukkan kecemerlangan dalam 

merawat air tercemar dengan memberi penyingkiran arsenik 100% dan 23kg/m2h 

fluks. Selain itu, tiada kotoran membran diperhatikan dalam KHFM sepanjang 72 jam 

operasi berbanding dengan membran polimer. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Research Background 

“Fresh water is the world’s first and foremost medicine”. The world is poised 

at the brink of a severe global crisis especially lack of fresh water. As the population 

increases, water scarcity is becoming more of an issue. Water covers 70% of the world, 

and it is easy to think that it will always be plentiful. However, fresh water, in which 

referring to the precious thing that we drink, bathe in, and irrigate our farm field, only 

3% of the world’s water is fresh water and 1.1 billion people lack access to clean and 

safe drinking water. The remaining percentage is tucked away in frozen glaciers or 

otherwise unavailable for our use.  

Access to safe drinking water is now one of the most challenging issue to 

mankind due to the ever-rising water demand (Vorosmarty et al., 2010). Inadequate 

sanitation is also a problem for 2.4 billion people. They are exposed to diseases such 

as cholera, typhoid fever, and other water-borne illness (i.e., diarrhoea, gastrointestinal 

illness). According to World Health Organization (WHO), 3.4 million people, mostly 

children, die each year from diarrheal disease alone (Pandey et al., 2014). Among the 

main pollutant found in water is the family of heavy metals such as lead, arsenic, 

cadmium, fluoride, and mercury. Comparing to other pollutants, heavy metals are 

categorised to be harmful and toxic for ecosystem and human due to their acute 

behaviour that cannot be destroyed (Yurekli, 2016).  
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Arsenic is regarded as one of the most toxic heavy metal and largest mass 

poisoning in the world, with atomic number 33, located in group 15 of the periodic 

table and widely present in the environment in rocks, soils and groundwater (Bissen 

and Frimmel, 2003; Smedley and Kinniburgh, 2002). In fact, it has been classified as 

Group 1 human carcinogen by the International Agency for Research on Cancer 

(IARC) (Fan et al., 2016). Arsenic is the 20th most abundant element in the earth’s 

crust, 14th in seawater and the 12th most abundant element in the human body (Pal, 

2015d). Consequently, there are two types of arsenic which are arsenite [As(III)] and 

arsenate [As(V)]. In general, arsenic can be traced in both surface water and 

groundwater, but higher concentration level for groundwater, as summarised in Table 

1.1. Groundwater is one of the main drinking water sources, recently, to overcome 

shortages of clean water caused by chronic climate change for most developing 

countries (Basu et al., 2014). Bangladesh, India, Argentina, Taiwan, China and 

Mongolia have been reported as among the countries that face major arsenic 

contamination.  

Table 1.1 : Arsenic Concentration in both surface water and groundwater (Source: 

US-Environmental protection Agency 2000) 

Sources of water Arsenic concentration range 

Air, ng/m3 1.5-53 

Rain from unpolluted ocean air, µg/L (ppb) 0.019 

Rain from terrestrial air, µg/L 0.46 

Rivers, µg/L 0.20-264 

Lakes, µg/L 0.38-1000 

Ground (well) water, µg/L < 1.0 and > 1000 

Seawater, µg/L 0.15-6.0 

Soil, mg/kg (ppm) 0.1-1000 

Stream/river sediment, mg/kg 5.0-4000 

Lake sediment, mg/kg 2.0-300 

Sedimentary rock, mg/kg 0.1-490 

Biota: green algae, mg/kg 0.5-5.0 

Biota: brown algae, mg/kg 30 

 

In view of this issue, literatures have revealed that arsenic contamination can 

cause serious human health problem such as long-term cancer (Basu et al., 2014). Most 

recently, in Malaysia (Sungai Pengorak, Pahang), it was reported that a very high 



3 

 

 

 

concentration arsenic of 101.5 mg/kg (101,500 ppb) was found t in fish body where its 

habitat has been contaminated by bauxite. Generally, bauxite contains mainly 40-50% 

aluminium oxide, 20% ferric oxide and 3–5% combined silica (Valeton, 1972). 

However, Rajah stated that bauxite in Kuantan is characterised by high ferric oxide 

content ranging from 14.4 to 40.6% depending on the area (Rajah, 1984). Because of 

its composition, aluminium and iron are the main contaminants that pollute the water 

resources but depending on the geological characteristics of the land and surrounding 

land use activities, other toxic metals such as arsenic, mercury, cadmium, lead, nickel 

and manganese may also contaminate drinking water resources when the natural 

ecosystem is aggressively removed and excavated (Abdullah et al., 2016). 

For more than 100 years, many technologies have been introduced for arsenic 

removal from water including precipitation, coagulation, electrocoagulation, reverse 

osmosis, electrodialysis, adsorption, ion exchange, and membrane filtration. 

Conventionally, coagulation and flocculation are among the most common methods 

for arsenic removal. The term coagulation and flocculation are often used in single 

term “flocculation” that describe both process (Bratby, 2016). Consequently, 

hydroxide-based coagulant is the most commonly employed in flocculation process 

due to its eco-friendly and simplicity. However, this material does not ensure total 

compliance for various metals especially arsenic, since hydroxide do not completely 

precipitate at a single pH.  

Adsorption evolved as the most promising and well-known method that can 

effectively remove As(III) and As(V) from water (Mohan and Pittman Jr, 2007). More 

than 100 papers and patents reported on arsenic removal by adsorption in literature. 

There are many types of adsorbents used to remove arsenic through adsorption system, 

such as ferrous material, surfactants, biomass waste and activated carbon. A recent 

review on removal arsenic from water using nano adsorbents and challenges have also 

been studied (Lata and Samadder, 2016). Unfortunately, in the review, it was reported 

that adsorption also shows some drawbacks that need urgent modification. Some of 

that are (i) limitation to further the technology into market due to the lack of excellent 

adsorbent with high adsorption capacity and unavailability for commercial scale 

column; and (ii) adsorption capability of different types of water pollutants.  
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Membrane separation has been known to be a “worldwide technology” 

especially towards water treatment due to its cost effective, simple operation, long-life 

term and need less energy (Mulder, 1996). According to some source (Strathmann, 

1981), the demand of pure water flux have driven the market for crossflow membrane 

equipment and membranes worldwide from $ 6.8 billion in 2005 to $ 9 billion in 2008. 

Early investigation towards this technologies was developed from animals such as 

bladders of pigs, cattle or fish, and sausage casings made of animal gut (Baker, 2012). 

By the early 1930s, microporous collodion membranes were ready and commercially 

available in market. During the next 30 years, this early microfiltration membrane 

technology was expanded to other polymers, notably cellulose acetate, in which 

fabricated using phase inversion technique by Loeb and Sourirajan (Loeb and 

Sourirajan, 1963) that could produce membrane in asymmetric structure. Nowadays, 

these technologies have been divided into four types, which are microfiltration, 

MF (< 100 nm), ultrafiltration, UF (4-100 nm), nanofiltration, NF (1.2-12nm) and 

reverse osmosis, RO (< 0.5 nm) (Schäfer et al., 2005).  

Microfiltration (MF) membrane have the largest pore size ranging from 0.1 to 

10 µm. Subsequently, arsenic can be existing in water in any form such as particulate 

(> 0.45 µm), colloidal (between 0.45 µm to 3000 Da) or dissolve state (< 3000 Da). 

Hence, by applying MF membrane alone can only remove less than 10% of arsenic, in 

which still falls short of target reduction below the WHO-prescribed limit of 10 µg/L. 

It is obviously shown that NF and RO have high potential arsenic removal through 

membrane separation. Figoli et al. (2010) applied NF membrane and rejected more 

than 91% of As(V) with initial feed in the range of 100-600 ppb while Yu et al. (2013) 

obtained a high As(V) removal of 97.8% through commercial NF membrane made 

from aromatic polyamide with existence of 40 mg/L of humic acid. In literature, it was 

hard to find studies that successfully done As(III) removal through NF membrane. This 

is due to As(III) is very small and can diffuse easily through NF membrane’s pore. 

Similar to NF, RO membrane also have high rejection for As(V) but very low for 

As(III) at neutral pH (Waypa et al., 1997). In fact, water treated through RO may not 

consist of precious minerals such as calcium and magnesium in which concerned by 

human being through drinking water (Verma and Kushwaha, 2014).  
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Membrane distillation (MD) is a recent technology that received the most 

remarkable attention towards water purification including desalination and heavy 

metals removal. In 2008, MD was first innovated into arsenic removal and obtained 

100% rejection for both As (III) and As (V) (Macedonio and Drioli, 2008). In 

membrane distillation system, only water vapour is allowing to pass through a 

microporous hydrophobic membrane. The water vapour refers to thermally driven 

transport of vapour pressure difference between the two sides of the membrane’s pores 

(Khayet and Matsuura, 2011a). Unlike other methods such as RO membrane, MD 

rewards many unique features like low operating pressure. In fact, MD pore size is 

relatively larger than those membrane separations. Most importantly, MD need a 

hydrophobic membrane. In fact, due to this, MD possess antifouling behaviour.  

Among all types of MD configuration, direct contact membrane distillation 

(DCMD) seems to become the first-line choice over others configuration. This is 

according to DCMD does not need an external condenser and very suitable for water-

based application (Khayet, 2011). Furthermore, it is interesting to note here that the 

DCMD has the simplest MD configuration to set up. In DCMD operation system, the 

hot feed solution is in direct contact with hot membrane side surface, thus, evaporation 

takes place at the feed membrane surface. Due to evaporation, vapour formed and 

moved by the pressure difference across the membrane to permeate side and condense 

inside the membrane module. The feed solution cannot permeate into membrane pores 

due to the membrane hydrophobicity, which means only the gas phase exists inside 

the membrane pores. Qu et al. (2009) used polyvinylidene fluoride (PVDF) 

hydrophobic polymeric membrane and obtained a high rejection of > 99.95% for both 

As (III) and As (V) using DCMD. In fact, a high feed arsenic concentration at average 

of 1000 to 2000 mg/L have been tested. It is worth to mentioned that MD process in 

the work have been tested for more than 10 days with excellent arsenic removal.  

1.2 Problem Statement 

To date, membrane distillation (MD) especially direct contact membrane 

distillation (DCMD) is attracting widespread attention (Ashoor et al., 2016) for 
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treating wastewater containing high toxicity of heavy metals removal like arsenic. 

Hydrophobic polymeric membrane such as polyvinylidenefluoride (PVDF), 

polytetrafluoroethylene (PTFE) and polypropylene (PP) are commonly employed for 

MD because of their low surface energy and high hydrophobicity (El-Bourawi et al., 

2006; Wang et al., 1999). However, polymers have disadvantages at which they have 

the inability to act in harsh condition such as high temperature and high chemical 

resistance, in which are of crucial membrane’s properties for MD.  

To tackle this problem, ceramic membrane with superior characteristics is able 

to withstand harsh conditions due to its excellent mechanical, chemical stability and 

thermal resistance (Li et al., 2016). In general, alumina is the common ceramic 

material in fabrication of ceramic membrane (Norfazliana et al., 2016; Ren et al., 

2015; Shi et al., 2015). Unfortunately, ceramic membrane from alumina shows some 

drawbacks and dramatic alteration due to high sintering temperature up to 1500ºC to 

reach a compromise between mechanical strength and porosity using micron-sized 

alumina powder (Li et al., 2016). At this high sintering temperature, in addition to the 

alumina powder itself that known to be a high cost material, thus making the ceramic 

membrane extremely expensive.  In addition, when high sintering temperature is used, 

the fabrication process will be prolonged.  

Realising the huge potential that is offered by ceramic membrane, therefore, 

alternative ceramic material from natural resources such as clays, ashes from 

agricultural wastes and animal bone wastes were recently used as new material for the 

fabrication of alternative ceramic membrane (Eom et al., 2015; Saffaj et al., 2013; 

Tolba et al., 2016). Generally, there are three types of clays that are commonly used 

in industrial which are kaolin, ball clay and bentonite. In this regard, kaolin is a white 

ceramic powder that are used widely in ceramic filling and coating applications. 

Among all clays, kaolin is the most popular alternative ceramic material towards 

fabrication of ceramic membrane (Bouzerara et al., 2006; Harabi et al., 2015; Hedfi et 

al., 2016). To be noted, kaolin provides low plasticity, high refractory and hydrophilic 

properties to the membrane, in which extremely desired for membrane characteristic 

especially towards water filtration (Mgbemena et al., 2013; Mittal et al., 2011). 

Whereas, the issue of utilizing abundantly agricultural waste such as rice husk, 
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sugarcane bagasse and bamboo leaves is remained unsolved. Interestingly, these 

wastes could be simply converted into precious ceramic material, which is silica in the 

form of ashes, through calcination process. In literatures, it was found that rice husk is 

one of the most silica rich raw materials containing about 90-99% silica, compared to 

other waste (Alyosef et al., 2018). In fact, it can be turned into amorphous and 

crystalline silica depending on the calcination temperature. Meanwhile, bio-ceramic 

based material called as hydroxyapatite (HAp) can be produced from animal bone 

wastes like cow bones, fish bones and pig bones through calcination at temperature of 

800-1000°C (Brzezińska-Miecznik et al., 2015). To produce large amount of HAp 

powder, cow bone wastes are commonly used due to its size and abundantly available 

as wastes.  

Another remarkable problem is that, most of these ceramic membranes are 

hydrophilic due to their nature of surface hydroxyl (Ren et al., 2015). Consequently, a 

literature search revealed that this problem can be solved by simple surface 

modification with low surface energy materials before used for MD. Ceramic 

membrane grafted with silane agents like fluoroalkylsilanes (FAS) have been 

receiving most attention in turning hydrophilic properties of ceramic membrane into 

hydrophobic. The pioneer for modification from hydrophilic to hydrophobic ceramic 

membrane was first reported by Larbot in 2004 (Larbot et al., 2004). In the work, 

hydrophobic ceramic was obtained with contact value at the range of 150° for 

desalination application through MD. Almost 100% rejection of salt rejection was 

obtained in the study, proving that ceramic membrane can be used as promising 

membrane, replacing the polymeric membrane in MD. 

Based on the above mentioned problems, this study focused on preparation and 

characterization of ceramic hollow fibre membrane derived from natural resources 

(CHFM) which are kaolin, amorphous and crystalline silica (AS an CS) and cow bone 

waste that obtained from natural resources of clays, agricultural waste, and animal 

bones waste, respectively, through a phase inversion and sintering technique. 

Afterwards, the prepared CHFMs were subjected towards hydrophobization process 

to modify the surface of CHFMs from hydrophilic to hydrophobic. Consequently, the 

modified CHFMs were tested on arsenic synthetic wastewater removal via DCMD 
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system at various parameters such as arsenic concentration, arsenic pH, and arsenic 

feed temperature. Finally, a arsenic-contaminated water will be treated at long term 

operation. 

1.3 Objectives and Scopes 

The main objective of this study is to develop ceramic hollow fibre membranes 

derived from natural resources (CHFMs) with hydrophobic properties via phase 

inversion/sintering technique for the use in membrane distillation system to remove 

arsenic from water. This objective has been achieved by accomplishing the following 

specific objectives: 

a) To prepare and characterize alternative ceramic material obtained from natural 

resources (kaolin, amorphous silica, crystalline silica, and hydroxyapatite 

based cow bone waste). 

b) To fabricate and characterize ceramic hollow fibre membranes (CHFMs) from 

kaolin, amorphous silica, crystalline silica, and hydroxyapatite based cow bone 

waste using phase inversion/sintering technique in term of their physical and 

chemical behaviours. 

c) To graft and characterize hydrophobic layer onto selected ceramic hollow fibre 

membranes (CHFMs) using FAS silane agent and examine its physical and 

wettability properties. 

d) To evaluate the separation performance of selected hydrophobic ceramic 

hollow fibre membranes (CHFMs) towards arsenic removal in water using 

direct contact membrane distillation. 

e) To evaluate the performance of best hydrophobic ceramic hollow fibre 

membranes (CHFMs) towards arsenic-contaminated water for long term 

process. 
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In order to achieve the objectives, seven scopes have been identified in this 

research. The scopes are: 

a) Preparing and characterizing alternative ceramic materials obtained from 

natural resources which are kaolin, amorphous silica, crystalline silica, and 

hydroxyapatite based cow bone wastes: 

i. Drying all the alternative ceramic materials in oven before used. 

Converting the rice husk and cow bone into ceramic powder through 

calcination process. 

ii. Measuring the morphology and size of all alternative ceramic materials 

using transmission electron microscopy (TEM) and Brunauer-Emmett-

Teller (BET) theory. 

iii. Investigating the chemical and physical properties of all alternative 

ceramic materials using x-ray fluorescence (XRF), x-ray powder 

diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and 

thermogravimetry/differential thermal analysis (TG/DTA).  

b) Fabricating the ceramic hollow fibre membrane via phase inversion and 

sintering technique: 

i. Preparing the ceramic suspension containing ceramic powder of natural 

resources (kaolin, rice husk and cow bone) as main material at different 

content (35 to 50 wt.%), N-methyl pyrrolidone (NMP) as solvent, 

Arlacel P135 as dispersant and polyethersulfone (PESf) as binder, in 

order to find the most suitable formulation. 

ii. Analysing the viscosity of ceramic suspension prepared at different 

content using viscometer. 

iii. Shaping the ceramic suspension into ceramic hollow fibre precursor 

through tube-and-orifice spinneret using phase inversion technique. 

iv. Forming the final alternative ceramic hollow fibre membrane through 

sintering process at different temperatures from 900 to 1500ºC. 
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c) Characterizng the properties of ceramic hollow fibre membranes (CHFMs): 

i. Measuring the surface and cross section morphology of ceramic 

hollow fibre membranes using scanning electron microscopy (SEM) 

analysis. 

ii. Investigating the mechanical strength of ceramic hollow fibre 

membranes using three-point bending test analysis. 

iii. Identifying the porosity and pore size distribution using mercury 

intrusion porosimetry analysis. 

d) Grafting and  characterizing the selected ceramic hollow fibre membranes from 

each alternative material into hydrophobic ceramic membrane using FAS 

silane agent: 

i. Grafting the ceramic hollow fibre membranes through immersion 

process with mixture of FAS agent and ethanol for 24 hours. 

ii. Comparing the surface morphology and roughness of pristine and 

hydrophobic ceramic hollow fibre membranes using scanning electron 

microscopy (SEM) and atomic force microscopy (AFM). 

iii. Evaluate the changes in mechanical strength of pristine and 

hydrophobic natura ceramic hollow fibre membranes using 3-point 

bending test analysis 

iv. Measuring the wettability properties of pristine and hydrophobic 

ceramic hollow fibre membranes using liquid entry pressure of water 

measurement (LEPw) and contact angle test. 

e) Performing the performance test of selected hydrophobic ceramic hollow fibre 

membranes towards arsenic removal using synthetic wastewaters through 

direct contact membrane distillation in term of permeate flux and arsenic 

rejection: 

i. Preparing the synthetic arsenic wastewater into two types which are 

arsenite [As(III)] and arsenate [As(V)]. 

ii. Investigating the effect of membrane’s sintering temperature as 

function difference membrane’s pore size. 
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iii. Investigating the effect of arsenic pH ranging from 3 to 11. It should be 

noted that the pH 7.48 is used instead of pH 7 as initial pH from the 

previous study on effect of membrane’s sintering temperature. 

iv. Investigating the effect of arsenic concentration of 1, 50, 100, 500 and 

1000 ppm. 

v. Investigating the effect of arsenic feed temperature range from 40 to 

80°C. 

f) Evaluating the performance of best hydrophobic ceramic hollow fibre 

membranes towards arsenic-contaminated water collected from Sungai 

Pengorak, Pahang, Malaysia through direct contact membrane distillation : 

i. Measuring the permeate flux and arsenic rejection for long term 

operation at 70 hours. 

ii. Comparing the permeate flux and arsenic rejection with pressure 

driven membrane (nanofiltration and reverse osmosis) from 

literatures. 

iii. Comparing the permeate flux and arsenic rejection with polymeric 

membrane in membrane distillation from literatures. 

1.4 Rational and Significance of the Study 

This study contributes to the development of ceramic hollow fibre membranes, 

at the same time, beneficial to the researchers in this area regarding to the knowledge 

on preparation of ceramic membrane using combined phase inversion and sintering 

technique. It is acknowledged that commercially available ceramic membrane is 

commonly made from alumina that has high cost and high melting point. Therefore, 

attempts are made to investigate the potential of natural resources of ceramic materials 

from clays, agricultural waste, and animal bones waste as main material in fabrication 

process of ceramic membrane and able to compete economically with commercial 

alumina membranes. Besides, other advantages of ceramic membranes such as hollow 

fibre configuration and modification of its hydrophilicity behaviour into hydrophobic 

are also interesting topic to study. 



12 

 

 

 

In addition, this study lead to direct implications towards industry, especially 

for mining industry, for treating contaminated water from heavy metals, such as, 

arsenic using membrane distillation technology. Recently, unregulated bauxite mining 

activity in the Malaysian state of Pahang has led to an alarmingly arsenic 

contamination. Accordingly, it was found that the high level of arsenic was measured 

in the contaminated fishes and water which is more than 100 times the legal amount 

of arsenic allowed by the Food Regulation 1985 and Water Quality Standard by 

Malaysian Health of Ministry. Thus, this study could be beneficial to the researchers 

in this area and support the government policies.  

1.5 Organization of the Thesis 

This thesis is organized into nine chapters addressing on fabrication of ceramic 

membrane prepared at different ceramic content and sintering temperature, then 

modified into hydrophobic membrane through simple FAS grafting method and 

application on arsenic removal through DCMD process. Figure 1.1 presents the overall 

thesis structure.  

Chapter 1 outlines brief information on membrane separation technologies 

towards arsenic removal including MD process. Then, the detail of the problem 

statements, objectives and scopes of this study have also been stated in detail.  

Chapter 2 presents literature reviews about the main topics of this thesis. In 

this chapter, background information on conventional and recent technologies towards 

arsenic removal are discussed. A comprehensive review is presented on the arsenic 

toxicity and its conventional treatment, preparation of hydrophobic ceramic membrane 

through surface modification process and various type of alternative ceramic 

membranes prepared from natural resources such as clays and wastes. The review also 

provides various fabrication steps available for ceramic membrane, factors that affect 

membrane structure and membrane configuration as well as advantages and 

disadvantages. 
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Figure 1.1 Overall thesis structure 

Chapter 3 focuses on the materials, working procedures, characterization 

methods and DCMD experimental setup for arsenic removal. 

Chapter 4 describes in detail the characterization of alternative materials from 

natural resources (kaolin clay, rice husk waste and cow bone waste) as main material 

prior to fabrication of ceramic hollow fibre membranes. The characterization includes 

particles morphology, the crystallinity behaviour, infrared spectrum, and adsorption-

desorption analysis. Herein, rice husk waste is burned at 600°C and 1000°C to produce 

Chapter 1 and Chapter 2 

Introduction and Literature 

Review 

Chapter 9 

Conclusions and Recommendation 

Chapter 3 

Methodology 

Chapter 7 

The Potential of Ceramic hollow fibre membranes for Arsenic Removal via 
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amorphous and crystalline silica, respectively. Meanwhile, cow bone was burned at 

800°C to produce ceramic material in powder form. 

In Chapter 5, preparation, and characterization of ceramic hollow fibre 

membranes from natural resources and prepared by combined phase inversion and 

sintering technique were studied in detail. The effect of ceramic content and sintering 

temperature towards membrane morphologies and mechanical strength were studied. 

Afterwards, membrane pore size analysis and porosity were further measured to 

investigate the effect of sintering temperature. 

Meanwhile, Chapter 6 discusses in detail the preparation and characterization 

of hydrophobic ceramic hollow fibre membranes through hydrophobization with FAS 

silane agent. The effectiveness of FAS grafting surface on ceramic hollow fibre 

membranes were investigated in term of surface morphologies and surface roughness, 

presence of F1 atom measured by XPS analysis, wettability behaviour includes contact 

angle and liquid entry pressure analysis, difference in mechanical strength as well as 

membrane pore size and porosity.  

Consequently, Chapter 7 presents the potential of hydrophobic ceramic 

hollow fibre membranes performance in DCMD process for arsenic removal. The 

effect of arsenic concentration, arsenic pH and feed temperature were also investigated 

in detail towards the permeate flux and arsenic rejection performance of each prepared 

hydrophobic ceramic hollow fibre membranes. Interestingly, hydrophobic ceramic 

hollow fibre membrane prepared from kaolin clay at 37.5 wt.% content and sintered at 

1300°C recorded excellent performance. 

In Chapter 8, the performance of excellence hydrophobic ceramic hollow fibre 

membranes from kaolin clay were investigated towards arsenic-contaminated 

wastewater taken from Sungai Pengorak, Kuantan. This chapter also evaluates the 

membrane stability of hydrophobic ceramic hollow fibre membranes from kaolin clay 

by testing for long term operation. Finally, the general conclusions and some 

recommendation are given in Chapter 9, outlining the directions for further research 
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and optimization. A preliminary study on some recommendation were also tested and 

discussed in appendices. 
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