EFFECTS OF MANGANESE OXIDE NANOPARTICLES EMBEDMENT ON OPTIC-MAGNETIC FEATURES OF MAGNESIUM BOROTELLURITE DOPED EUROPIUM GLASS

SITI MAISARAH BINTI AZIZ

UNIVERSITI TEKNOLOGI MALAYSIA

EFFECTS OF MANGANESE OXIDE NANOPARTICLES EMBEDMENT ON OPTIC-MAGNETIC FEATURES OF MAGNESIUM BOROTELLURITE DOPED EUROPIUM GLASS

SITI MAISARAH BINTI AZIZ

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

> Faculty of Science Universiti Teknologi Malaysia

> > FEBRUARY 2018

.

....dedicated to my lovely parent:

AZIZ IBRAHIM 💙 CHE NONG SU

for their unconditional love, motivation and support..

ACKNOWLEDGEMENT

Alhamdulillah, I am so grateful to Allah Almighty on His mercy and blessing for completing this research. First and foremost I owe my sincere gratitude to my supervisor, Prof. Dr. Md. Rahim Sahar for his constant support, guidance and enthusiasm throughout this research. I am also very thankful to Assoc. Prof. Dr. Sib Krishna Ghoshal and Dr. Supar Rohani for their guidance, advices and comments of the papers and thesis. Without their continued support and interest, this thesis would not have been the same as presented here.

I am also indebted to Ministry of Higher Education, Malaysia and Universiti Teknologi Malaysia for funding my Ph.D. study. Lab assistance at Faculty of Science and University Laboratory Management Unit (UTM), Universiti Sains Malaysia, Universiti Kebangsaan Malaysia and Universiti Putra Malaysia also deserve special thanks for their assistance during the experiment.

It would not have been possible to write this thesis without the support, help and prayers of my respected parents, Aziz Ibrahim and Che Nong Su and family for their never ending love and support. I would like to show gratitude to my seniors, Dr. Nurul Huda and Dr. Zahra Ashur for the advice and helpful discussion contributing to my research. I would like to express my immense gratitude to the rest who contribute to my research work; such as AOMRG members and lab assistants for their support. My sincere appreciation to all who have provided assistance for my research project.

ABSTRACT

This thesis reports the modified optical and magnetic properties of europium doped and manganese oxide nanoparticles (Mn₃O₄NPs) embedded magnesium borotellurite glass. Glass samples with composition of (59-x)TeO₂-30B₂O₃-10MgO- $1Eu_2O_3 - xMn_3O_4$ with $0.0 \le x \le 2.0$ mol % and $(59 - y)TeO_2 - 30B_2O_3 - 10MgO - yEu_2O_3 - 10MgO 1Mn_3O_4$ with $0.0 \le y \le 2.0$ mol % were prepared by melt-quenching technique. The amorphous nature of the glass was determined by X-Ray Diffractometer (XRD) and the presence of Mn₃O₄ NPs was verified by using Transmission Electron Microscope (TEM) and High Resolution Transmission Electron Microscope (HRTEM). The thermal parameters were determined by Differential Thermal Analyzer (DTA) and spectroscopic properties were measured by Raman, Ultraviolet-Visible (UV-Vis) and Photoluminescence (PL) spectrometer. Magnetic properties were determined by Vibrating Sample Magnetometer (VSM) and Electron Spin Resonance (ESR) spectrometer. The XRD patterns confirmed the amorphous nature of all glasses and TEM images manifested the growth of Mn₃O₄ NPs with average diameter 15 nm. HRTEM result revealed that the lattice spacing of Mn₃O₄ NPs was 0.308 nm at (112) plane. The thermal analysis showed that the glass transition temperature, T_{g} increases with the increase of Mn₃O₄ NPs and it was attributed to the arrangement of Mn₃O₄ NPs in the glass matrix. The glass with 1.0 mol % of Mn₃O₄ NPs and Eu₂O₃ showed the highest thermal stability, 126 °C and the glass forming tendency, 0.76. The Raman spectra displayed Mn_3O_4 NPs assisted alteration in the Te-O-Te, BO₃, BO₄, TeO₃ trigonal pyramidal and TeO₄ trigonal bipyramidal bonding vibrations. The UV-Vis spectra consist of three bands attributed to absorption from ground state $({}^{7}F_{0})$ to ${}^{5}D_{0}$, ${}^{5}D_{1}$ and ${}^{5}D_{2}$ excited states. Two surface plasmon resonance (SPR) peaks of Mn_3O_4 NPs were detected at 388 nm and 516 nm. The emission spectra of Eu³⁺ ion under 390 nm excitations revealed four prominent peaks centered at 591 nm, 614 nm, 651 nm and 700 nm assigned to the transitions from ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J=1, 2, 3, 4) states, respectively. Quenching effect in the luminescence intensity due to the incorporation of Mn_3O_4 NPs was ascribed to the energy transfer from the Eu³⁺ ion to Mn_3O_4 NPs. The calculated Judd-Ofelt intensity parameters (Ω_{λ} $\lambda=2, 4, 6$), radiative parameter and stimulated emission cross section of Eu³⁺ ions were found to be strongly influenced by Mn₃O₄ NPs. Prepared glass systems exhibit paramagnetic behavior with glass magnetization and susceptibility at room temperature in the range of $(4.95-13.31\times10^{-2})$ emug⁻¹ and $(4.12-11.09\times10^{-6})$ emuOe⁻¹g⁻¹ respectively. The ESR spectra of all glass samples exhibit two resonance signals with g values at 1.9 and 4.3 with higher signal observed at 1.9. In addition, correlations between the size of Mn_3O_4 NPs with saturation magnetization (M_s) and coercivity (H_c) were established. In conclusion, incorporation of Mn_3O_4 NPs in the glass system has improved the optical and magnetic properties of the glass.

ABSTRAK

Tesis ini melaporkan sifat optik dan magnet terubah suai yang berdopkan europium dan zarah nano mangan oksida (Mn₃O₄ NPs) berbenam kaca magnesium borotellurite. Sampel kaca dengan komposisi (59-x)TeO₂-30B₂O₃-10MgO-1Eu₂O₃ xMn_3O_4 dengan $0.0 \le x \le 2.0$ mol % dan (59-y)TeO₂-30B₂O₃-10MgO-yEu₂O₃- $1Mn_3O_4$ dengan $0.0 \le y \le 2.0$ mol % disediakan menggunakan teknik pelindapan leburan. Sifat amorfus kaca ditentukan oleh diffraktometer Sinar-X (XRD) dan kehadiran Mn₃O₄ NPs disahkan dengan menggunakan mikroskop elektron penghantaran (TEM) dan mikroskop elektron penghantaran beresolusi tinggi (HRTEM). Parameter terma ditentukan dengan penganalisa terma pembeza (DTA) dan sifat spektroskopi diukur dengan spektrometer Raman, penyerapan ultra lembayung boleh nampak (UV-Vis) dan fotoluminesens (PL). Sifat magnet ditentukan menggunakan magnetometer getaran sampel (VSM) dan spektrometer resonans putaran elektron (ESR). Corak XRD mengesahkan sifat amorfus bagi semua kaca dan imej TEM menunjukkan kewujudan Mn₃O₄ NPs dengan diameter purata 15 nm. Keputusan HRTEM mendedahkan jarak kekisi bagi Mn₃O₄ NPs ialah 0.308 nm pada satah (112). Analisis terma menunjukkan bahawa suhu peralihan kaca, T_g meningkat dengan pertambahan Mn₃O₄ NPs yang disebabkan oleh susunan Mn₃O₄ NPs dalam matriks kaca. Kaca dengan 1.0 mol % Mn₃O₄ NPs dan Eu₂O₃ menunjukkan kestabilan terma tertinggi, 126 °C dan kecenderungan pembentukan kaca tertinggi, 0.76. Spektrum Raman menunjukkan Mn_3O_4 NPs mempengaruhi perubahan dalam getaran ikatan Te-O-Te, BO₃, BO₄, piramid trigonal TeO₃ dan bipyramidal trigonal TeO₄. Spektrum UV-Vis terdiri daripada tiga jalur yang berpadanan dengan penyerapan dari keadaan dasar (${}^{7}F_{0}$) kepada keadaan teruja ${}^{5}D_{0}$, ${}^{5}D_{1}$ dan ${}^{5}D_{2}$. Dua puncak resonans plasmon permukaan (SPR) bagi Mn₃O₄ NPs dicerap pada 388 nm dan 516 nm. Spektrum pancaran ion Eu³⁺ apabila diuja pada 390 nm memaparkan empat puncak yang berpusat pada 591 nm, 614 nm, 651 nm dan 700 nm masing-masing merujuk kepada peralihan ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 1, 2, 3, 4). Kesan penurunan keamatan luminesens yang disebabkan oleh kehadiran Mn₃O₄ NPs adalah disebabkan berlakunya pemindahan tenaga daripada Eu^{3+} ion kepada Mn_3O_4 NPs. Pengiraan parameter keamatan Judd-Ofelt ($\Omega_{\lambda} = 2, 4, 6$), parameter sinaran dan keratan rentas pancaran terangsang ion Eu^{3+} sangat dipengaruhi oleh Mn₃O₄ NPs. Semua kaca yang disediakan bersifat paramagnet dengan kemagnetan kaca dan kerentanan pada suhu bilik masing-masing dalam julat $(4.95-13.31 \times 10^{-2})$ emug⁻¹ dan $(4.12-11.09\times10^{-6})$ emuOe⁻¹g⁻¹. Spektrum ESR menunjukkan semua kaca mempamerkan dua isyarat resonans dengan nilai g pada 1.9 dan 4.3 dengan isyarat resonans lebih tinggi pada 1.9. Sebagai tambahan, korelasi antara saiz Mn₃O₄ NPs dengan pemagnetan tepu (M_s) dan coerciviti (H_c) telah ditentukan. Kesimpulannya, kemasukan Mn₃O₄ NPs dalam sistem kaca telah menambahbaikkan sifat optik dan magnet kaca.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xiv
	LIST OF ABBREVATIONS	xxi
	LIST OF APPENDICES	xxii
1	INTRODUCTION	1
	1.1 Background of Study	1
	1.2 Problem Statement	5
	1.3 Objectives of Study	б
	1.4 Scope of Study	7
	1.5 Significance of Study	8

LITERATURE REVIEW 9 9 2.1 Introduction 2.2 Borotellurite (BT) Glass 9 2.2.1 Rare Earth Doped BT Glass 13 2.2.2 Metallic Nanoparticles Embedded into Rare Earth Doped 16 **BT** Glass 2.3 X-Ray Diffraction 20 2.4 Transmission Electron Microscope (TEM) and High Resolution Transmission Electron Microscope (HRTEM) 22 2.5 Raman Spectroscopy 24 2.6 UV-Visible Spectroscopy 27 2.7 Photoluminescence (PL) Spectroscopy 29 2.7.1 Magnetic Field Effect on Luminescence 32 2.7.2 Energy Transfer Process 33 2.7.3 Judd Ofelt and Radiative Transitions 36 2.8 Magnetic Studies 40 2.8.1 Vibrating Sample Magnetometer (VSM) 42 2.8.2 Electron Spin Resonance (ESR) 45 2.9 Heat Treatment Studies 49 **METHODOLOGY** 53 3.1 Introduction 53 3.2 Glass Preparation 53 3.3 Sample Characterization 56 3.3.1 X-Ray Diffraction (XRD) 56 3.3.2 Transmission Electron Microscope (TEM) 57

> 3.3.3 Differential Thermal Analysis (DTA) 58

2

3

	3.3.4 Raman Spectroscopy	60
	3.3.5 UV-Visible Spectroscopy	61
	3.3.6 Photoluminescence (PL) Spectroscopy	62
	3.3.7 Vibrating Sample Magnetometer (VSM)	63
	3.3.8 Electron Spin Resonance (ESR)	64
RE	SULTS AND DISCUSSION	67
4.1	Introduction	67
4.2	Glass Preparation	67
4.3	Results and Discussion for Glass Series I and II	69
	4.3.1 X-Ray Diffraction (XRD)	69
	4.3.2 Transmission Electron Microscopy (TEM) and High	
	Resolution Transmission Electron Microscopy (HRTE	EM)70
	4.3.3 Thermal Analysis	72
	4.3.4 Raman Spectra	75
	4.3.5 UV-Visible Analysis	80
	4.3.6 Photoluminescence (PL) Analysis	85
	4.3.7 Magnetic Studies	99
4.4	Heat Treatment (Series III)	112
	4.4.1 X-ray Diffraction (XRD)	113
	4.4.2 Transmission Electron Microscopy (TEM)	114
	4.4.3 Photoluminescence (PL) Analysis	117
	4.4.4 Magnetic Properties Analysis	122
CO	NCLUSIONS AND RECOMMENDATIONS	129
5.1	Introduction	129

4

5

ix

5.2 Conclusions 129

5.3 Recommendations for Future Study	132
REFERENCES	133
Appendices A-F	150-159

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Thermal stability, (°C), phonon energy (cm^{-1}) ,	
	transmission range (μm) and refractive index (n) for	
	different host	11
2.2	The recent studies on RE doped glass embedded with	
	magnetic NPs	18
2.3	The Raman peak positions and band assignments of BT	
	glasses systems based on selected reports	26
2.4	Wavenumbers and reduced matrix for ${}^5D_0 \rightarrow {}^7F_J$ (J = 0-	
	6) transitions of the studied glass system.	38
2.5	Types of magnetism, magnetic susceptibility and a	
	graphical summary of the different types of magnetic	
	phenomena	41
3.1	Nominal composition of BT glass system containing	
	Mn ₃ O ₄ NPs	54
4.1	Thermal properties of prepared glasses with different	
	concentration of Mn ₃ O ₄ NPs	74
4.2	Thermal properties of prepared glasses with different	
	concentration of Eu ₂ O ₃	74
4.3	The Raman peak positions and band assignments for	
	various concentrations of Mn ₃ O ₄ NPs	78
4.4	The Raman peak positions and band assignments for	
	various concentrations of Eu ₂ O ₃	78

4.5	Indirect optical band gap (E_{opt}), Urbach energy (ΔE)	
	and refractive index (n) of BT glass system with	
	various concentrations of Mn ₃ O ₄ NPs	84
4.6	Indirect optical band gap (E_{opt}), Urbach energy (ΔE)	
	and refractive index (n) of BT glass system with	
	various concentration of Eu ₂ O ₃	84
4.7	Judd-Ofelt ($\times 10^{-20}$ cm ²) intensity parameter of glass	
	samples with different Mn ₃ O ₄ NPs concentration	91
4.8	Judd-Ofelt ($\times 10^{-20}$ cm ²) intensity parameters of glasses	
	with different Eu ₂ O ₃ concentration	92
4.9	Radiative parameters of Eu ³⁺ : Mn ₃ O ₄ NPs synthesis BT	
	glasses for various concentrations of Mn ₃ O ₄ NPs	94
4.10	Radiative parameters of Eu ³⁺ : Mn ₃ O ₄ NPs synthesis BT	
	glasses for various concentrations of Eu ₂ O ₃	95
4.11	Mn ₃ O ₄ NPs concentration dependent for experimental	
	(τ_{exp}) and calculated (τ_{cal}) lifetimes values and quantum	
	efficiency (η) of ${}^{5}D_{0} \rightarrow {}^{7}F_{1,2,4}$ transitions	98
4.12	Eu_2O_3 concentration dependent for experimental (τ_{exp})	
	and calculated (τ_{cal}) lifetimes values and quantum	
	efficiency (η) of ${}^{5}D_{0} \rightarrow {}^{7}F_{1,2,4}$ transitions	98
4.13	Values of $M_{\rm s}$, $M_{\rm r}$, $H_{\rm c}$, $M_{\rm r}/M_{\rm s}$ and $\chi_{\rm m}$ of prepared BT	
	glasses with different concentration of Mn ₃ O ₄ NPs	106
4.14	Values of $M_{\rm s}$, $M_{\rm r}$, $H_{\rm c}$, $M_{\rm r}/M_{\rm s}$ and $\chi_{\rm m}$ of prepared BT	
	glasses with different concentration of Eu ₂ O ₃	106
4.15	Magnetic properties of prepared BT glasses at various	
	concentrations of Mn ₃ O ₄ NPs	110
4.16	Magnetic properties of prepared BT glasses at various	
	concentration of Eu ₂ O ₃	112
4.17	Judd-Ofelt parameter Ω_{λ} for different heat treatment	
	durations of 58TeO ₂ -30B ₂ O ₃ -10MgO-1Eu ₂ O ₃ -1Mn ₃ O ₄	
	glass system	119
4.18	Radiative parameters of heat treated BTMEMn glasses	
	with various durations	121

4.19 Magnetic properties of saturation magnetization (M_s) , remanence magnetization (M_r) , coercivity (H_c) and average particles diameter of BTMEMn glasses at different heat treatment duration 128

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Structured unit of tellurite glass where (a) TeO ₄ trigonal	
	bipyramidal (tbp) (b) TeO_{3+1} and (c) TeO_3 trigonal	
	pyramidal (tp)	10
2.2	Emission spectra of Eu ³⁺ at 1 mol % doped BT glass (at	
	$\lambda_{\rm ex} = 395 \ \rm nm)$	14
2.3	Partial energy level diagram showing the possible	
	emission transitions of Eu ³⁺ ions in BT glass (NR: Non-	
	radiative and R: Radiative)	15
2.4	Illustration of surface plasmon resonance for metallic	
	nanoparticles with polarized light field	17
2.5	The schematic of Bragg law	21
2.6	XRD pattern of Er ³⁺ doped BT glass showing a broad	
	hump	21
2.7	XRD pattern of Mn ₃ O ₄ NPs	22
2.8	The TEM image of as-synthesized Mn_3O_4 NPs with	
	aggregated and non-spherical. Inset shows the SAED	
	pattern which confirms the diffraction from (111), (220)	
	and (311) planes (b) the particles size distribution	
	obtained from TEM image	23
2.9	(a) The TEM image of the sample. Inset shows the	
	histogram of the diameter of the corresponding NPs	
	image (b) HRTEM image of the Mn ₃ O ₄ NPs. Inset	

	shows the Fast Fourier Transform (FFT) of the	
	corresponding HRTEM image for Mn ₃ O ₄ NPs	23
2.10	Three lines of scattered photon by a molecule. Stokes	
	line appears more	25
2.11	A typical Raman spectra of 85TeO2-15B2O3 glass	26
2.12	The absorption spectrum of Mn ₃ O ₄ NPs showing two	
	SPR peaks at 388 nm and 522 nm	29
2.13	A luminescence process in solid. Excitation and	
	emission processes in PL	30
2.14	A schematic energy level diagram representation of	
	fluorescence and phosphorescence	32
2.15	Resonant energy transfer by the donor-acceptor	
	exchange interaction, due to the overlapping of D and A	
	(shaded region)	34
2.16	Ferromagnetic hysteresis loop illustrating the origin of	
	several magnetic parameters	42
2.17	The room temperature magnetization curve for P_2O_5 -	
	ZnO-Er ₂ O ₃ -Fe ₃ O ₄ glasses	44
2.18	The energy level splitting of a free electron in an	
	external magnetic field	46
2.19	The typical of (a) absorption band (b) first derivative of	
	the ESR spectrum	48
2.20	ESR spectra of SrO-ZnO-B ₂ O ₃ glasses containing	
	manganese ions	48
2.21	A schematic illustration for Ostwald ripening process	
	and coalescence of particles	51
3.1	Glass preparation flow chart	55
3.2	Schematic diagram of XRD	56
3.3	Schematic diagram of TEM	58
3.4	Schematic diagram of DTA	59
3.5	The setup of Raman spectrometer	60
3.6	A schematic diagram of UV-Visible Spectroscopy	61
3.7	Schematic diagram of PL experimental setup	63

3.8	Block diagram of VSM	64
3.9	Block diagram of microwave ESR spectrometer	65
3.10	Sample characterisations chart	66
4.1	Glass sample for (a) Series I (b) Series II and (c) Series	
	III	68
4.2	XRD patterns for (a) Series I glasses (b) Series II	
	glasses	69
4.3	(a) TEM image of the BTMEMn2.0 glass (b) HRTEM	
	image at 20 nm, (c) lattice spacing of (112) plane	
	direction, (d) SAED pattern of the red box in (c), and	
	(e) NPs size distribution	71
4.4	DTA curves of synthesized glass for different	
	concentration of Mn ₃ O ₄ NPs system. Exo: Exothermic	
	(upward) and Endo: Endothermic (downward)	73
4.5	(a) Raman spectra of BT glasses containing different	
	concentration of Mn_3O_4 NPs and (b) spectral	
	deconvolution for sample BTMEMn	76
4.6	Raman spectra of BT glasses at various concentration	
	of Eu ₂ O ₃	77
4.7	Typical absorption spectra of BTMEMn0.0 sample	80
4.8	SPR band positions of Mn ₃ O ₄ NPs	81
4.9	Typical Tauc plot for indirect energy band gap of	
	BTMEMn glass sample	82
4.10	Typical graph of ln (α) against photon energy (h ω) for	
	BTMEMn glass	83
4.11	Mn ₃ O ₄ NPs concentration dependent luminescence	
	spectra of synthesized glasses	85
4.12	The variation of intensity against Mn ₃ O ₄ NPs content	
	for 614 nm transition band	86
4.13	A proposed mechanism of interactions between Eu ³⁺	
	and Mn ₃ O ₄ NPs in BT system	88
4.14	Eu ₂ O ₃ concentration dependent luminescence spectra of	
	synthesized glasses	88

4.15	Partial energy diagram of Eu ³⁺ ion in the vicinity of	
	Mn ₃ O ₄ NPs inside the BT glass matrix (GSA: Ground	
	State Absorption, ET: Energy Transfer, R: Radiative	
	Decay and NR: Nonradiative Decay).	90
4.16	Decay curves of the ${}^{5}D_{0}$ excited state of the Eu ³⁺ :	
	Mn ₃ O ₄ NPs synthesis BT glasses for various	
	concentrations of Mn ₃ O ₄ NPs	96
4.17	(a) The magnetization against external magnetic field of	
	prepared glass samples with different Mn_3O_4 NPs	
	concentration (b) The value of $M_{\rm s}$ and $M_{\rm r}$ for	
	BTMEMn2.0 glass as obtained from the graph of M	
	against H. The inset shows the samples coercivity (H_c) .	100
4.18	$M_{\rm s}$ and $M_{\rm r}$ as a function of Mn ₃ O ₄ NPs concentration	101
4.19	Variation of χ_m as a function of Mn_3O_4 NPs	
	concentration	102
4.20	Mn_3O_4 NPs concentration dependent (a) coercivity	
	(H_c), and (b) squareness (M_r/M_s) for all glass samples	103
4.21	Magnetic hysteresis loops of BT glass with different	
	Eu_2O_3 concentration	105
4.22	ESR spectra of glass samples (a) at various	
	concentrations of Mn_3O_4 NPs (b) The g values of 4.3	
	and 1.9 for BTMEMn glass	108
4.23	ESR spectra of glasses at various concentration of	
	Eu_2O_3	110
4.24	XRD patterns of heat treated glass samples at various	
	heat treatment durations	113
4.25	TEM images of all samples displaying the presence of	
	Mn_3O_4 NPs (indicated by red circles), heat treated at	
	temperature 380 °C for (a) 6 h (b) 12 h (c) 18 h and (d)	
	24 h	115
4.26	Size distribution of Mn_3O_4 NPs for heat treatment at	
	temperature 380 °C for (a) 6 h (b) 12 h (c) 18 h and (d)	
	24 h	116

4.27	Heat treatment dependent growth of Mn_3O_4 NPs (dotted	
	line is a guide to the eye).	117
4.28	BTMEMn luminescence spectra for different heat	
	treatment duration	118
4.29	Decay curves of the ${}^{5}D_{0}$ excited state of the Eu $^{3+}$:	
	Mn_3O_4 NPs synthesis BT glasses for varies heat	
	treatment duration	120
4.30	VSM curves of Mn ₃ O ₄ NPs of BTMEMn with various	
	heat treatment durations. The inset shows the M_s of	
	Mn_3O_4 NPs at 6, 12, 18 and 24 h.	122
4.31	Variation of coercivity (H_c) and remenance	
	magnetization (M_r) with heat treatment duration of 6,	
	12, 18 and 24 h.	125
4.32	Relation between coercivity and particle sizes as a	
	function of heat treatment duration	126

LIST OF SYMBOLS

20	-	Angle of diffraction
ΔE	-	Urbach energy
$\Delta H_{ m pp}$	-	Peak-to-peak line width
ΔS	-	Thermal stability
В	-	Magnetic field
d	-	Crystal lattice planar spacing
Ε	-	Energy
$ar{E}$	-	Electric field
$E_{\rm opt}$	-	Optical band gap
8	-	Gyromagnetic
H _c	-	Coercivity
H _r	-	Resonance magnetic field
hv	-	Photon energy
J	-	Angular momentum
Μ	-	Magnetization
$M_{ m s}$	-	Remanence magnetization
$M_{ m r}$	-	Saturation magnetization
n	-	Refractive index
0	-	Orbital
S	-	Spin
α	-	Absorption coefficient
μ_B	-	Bohr magneton
V	-	Wavenumber
χ	-	Susceptibility
T _m	-	Melting temperature

$T_{\rm c}$	-	Crystallization temperature
$T_{ m g}$	-	Transition temperature

LIST OF ABBREVATIONS

BO	-	Bridging oxygens
DTA	-	Differential thermal analysis
ESR	-	Electron spin resonance
ET	-	Energy transfer
GSA	-	Ground state absorption
HRTEM	-	High resolution transmission electron microscope
JCPDS	-	Joint Committee on Powder Diffraction Standard
J-O	-	Judd Ofelt
NBO	-	Non-bridging oxygen
NPs	-	Nanoparticles
NR	-	Nonradiative
PL	-	Photoluminescence
QEs	-	Quantum efficiency
R	-	Radiative
RE	-	Rare earth
SAED	-	Selected area electron diffraction
SPR	-	Surface plasmon resonance
tbp	-	Trigonal bipyramidal
TEM	-	Transmission electron microscope
tp	-	Trigonal pyramidal
UV-Vis	-	Ultra violet visible
VSM	-	Vibrating sample magnetometer
XRD	-	X-ray diffraction

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Batch Calculation Of Glass System	151
В	Thermal Analysis Series II	153
С	Decay Curves Series II	154
D	VSM Analysis Series II	155
E	ESR Analysis	158
F	List Of Publications	159

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Glasses are unique materials that have been used for thousands of years. Glass is defined as material that is produced through melting process and then being cooled to be a solid without going through a crystallization process [1]. Glass has been extensively investigated due to its high temperature resistance, high dielectric constant and good mechanical strength [2]. Furthermore, glass is not only known because of their excellent thermal and mechanical properties but they are potentially to become a good medium for luminescence due to the enhancement of the absorption efficiency of rare earth ions [3]. This excellent property has motivate researcher to further the study in optimizing luminescent and become more suitable material in the development of laser and solid state device.

Over the past few decades, tellurite glasses have gained so much interest over conventional silicate due to their high thermal expansion coefficients, excellent transmission in the visible as well as IR wavelength regions and low melting temperature [4]. These interesting properties making it feasible to be prepared at low temperature. Khafagy *et al.* [5] reported that the structure of tellurite glasses have two basic structural units, i.e as TeO₃ and TeO₄ units. The TeO₃ units dominated in the glass structural network but as the TeO₂ content increase, TeO₃ units transform into TeO₃₊₁ then to TeO₄ units [6]. An intensive study on TeO₂ containing glasses has been conducted because of their properties such as exhibit high refractive indices, good chemical durability, better corrosion resistance and good mechanical strength [7].

Recently, tellurite glasses doped with boron oxide have received great scientific interest because these oxides significantly are able to change the properties of tellurite glasses [8][9]. Additionally, borate is one of the most attracting materials where their structural properties have been studied extensively [10]. Conversely, borate based glasses are prospective due to their flexible random network structure consisting of tetrahedral BO₄ and trigonal boron BO₃ units [11]. Besides, due to the excellent rare earth solubility, good infrared transmission and high thermal stability, borate glasses are attractive for the development of new optical devices [12]. However, the strong hygroscopic nature of borate glasses limits their applications [13]. This drawback can be surmounted by stabilizing the borate network with TeO_2 incorporation, which may offer improved chemical durability via the structural modifications of the tetrahedral boron networks [14].

Previous study by Wang *et al.* [15] claimed that TeO_2 is a conditional glass former which explain the incapability of that compound to form glass on its own. As a result, the introduction of borate into tellurite glass network simultaneously enhances the ability of glass formation. The combination of TeO_2 and B_2O_3 is an intrinsically interesting subject of study due to the stability of borotellurite (BT) compound [16]. Further, BT glass needs another element known as glass modifier such as alkaline earth metal oxide and transition metal oxide to improve the network connectivity then produce a stable BT glass [17] with increasing non-bridging oxygen (NBO). The addition of such modifiers would modify and increase the NBO, consequently open up the glass structure [18]. The substitution of network modifier such as MgO would produce stable BT glass [19].

To this day, rare earth ions (REIs) doped glass material becomes an interesting topic in luminescence material. The synthesis and characterizations of REIs doped binary and ternary glasses are intensively performed due to their advantages in developing efficient photonic devices [20]. Dehelean *et al.* [21] acknowledged that REIs doped glasses exhibit high brightness and improved

efficiency thus are very prospective for broad array of technological applications. Trivalent Eu^{3+} ion is a well-known activator with simple electronic transitions. The Eu^{3+} ions possess prominent laser emissions in the orange or red region [22] and narrow band emission [23] with longer lifetime. Thus, BT glass has emerged as a favorable host for accommodating large amount of REIs. Maheshvaran *et al.* [3] reported that Eu^{3+} doped BT glass has potential for red-emitting glass due to excellent luminescent properties and can be used as optical materials. Hence, Eu^{3+} doped glass has drawn much interest in technological applications especially for optoelectronic materials [24].

Despite many studies, the Judd-Ofelt (J-O) theory has not been applied uniformly to characterize the spectroscopic properties of Eu³⁺ ion doped glasses. Bo and Teruto [25] used ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$, ${}^{7}F_{4}$ and ${}^{7}F_{6}$ emission transitions of the Eu³⁺ ions to obtain the J-O parameters. Van Deun *et al.* [26] studied the absorption spectra of Eu³⁺ ion involving ${}^{7}F_{0} \rightarrow {}^{5}D_{2}, {}^{5}D_{4}$ and ${}^{5}L_{6}$ transitions, where the calculated J-O parameters of Eu³⁺ ions exhibits good agreement with the measured oscillator strengths. However, the study of J-O for glass containing magnetic NPs accompanied with REIs has not much been reported or been discussed in literature. In the present study the method of Bo and Teruto [25] to calculate the J-O parameters of Eu³⁺ ions doped inside BT glasses containing Mn₃O₄ NPs will be applied.

Currently, the development of multifunctional metallic NPs is in full swing [27] due to the feasibility of sundry applications. The research on the modifications in the structural, magnetic and optical properties of REIs doped glasses by embedding various metallic NPs is however still in progress. In this view, several attempts have been made to improve the optical properties of REIs doped glasses by incorporating various metallic NPs (magnetic and nonmagnetic). Lately, various magnetic NPs embedded glass systems are prepared such as Ni NPs incorporated samarium doped zinc phosphate glass [28] and Fe₃O₄ NPs in erbium doped zinc phosphate glass [29]. The impact of Ni²⁺ and Fe²⁺ magnetic NPs on the physical, structural and magneto-optic properties of REIs doped binary glasses have accrescent interest. Literatures hinted that these types of glasses with tailored properties are

greatly potentials for the advancement of magneto-optic devices including isolators, switches and sensors [30].

Synthesis and characterization of magnetic (Fe, Co, Ni and Mn) NPs have ever-growing interest. Amongst all, Mn ions have been frequently used to improve the structural, electrical and magnetic properties of vitreous systems [31]. Manganese ions exist in different valence states in glassy matrices [32]. For example, Mn^{3+} ions in borate glasses exist with octahedral coordination whereas in silicate and germanate glasses they exist as Mn^{2+} ions with both octahedral and tetrahedral coordination [33]. Moreover, these well-known paramagnetic ions (Mn^{2+} and Mn^{3+}) are identified as strong luminescence activators [34]. The incorporation of Mn₃O₄ in glass has paramount importance due to their excellent physical and structural properties [31]. These transition metal ions contribute multi-valence states in the glass network and remarkably influence the properties. The appearance of super-paramagnetic behaviour, softness and large surface area of manganese nanoparticles make them highly potential magnetic materials [35] like manganese zinc ferrites useful for high density magnetic storage devices [36]. High saturation magnetization and magnetocrystalline anisotropy of Mn₃O₄ NPs are useful for creating excellent traps for excited electrons in the glass host. Such electron trapping are advantageous to surmount data corruption in magnetic data storage [37].

Despite much research the impact of Mn_3O_4 NPs on the structural properties of Eu^{3+} doped BT glass system is not yet explored. The incorporation of controlled concentrations of magnetic NPs in BT glass provides an opportunity to develop new stable magnetic glasses useful for nonlinear optical sensor and electronics devices. Additionally, literature shows that not many efforts are dedicated towards the incorporation of Mn_3O_4 NPs in BT glass system for determining their role in improving the structural and optical properties. This motivated to investigate the REIs doped glasses containing Mn_3O_4 NPs. Therefore, a new series of Mn_3O_4 NPs embedded and Eu^{3+} ions doped BT glass systems are prepared and evaluate the Mn_3O_4 NPs concentration dependent on thermal, structural and optical properties. Synthesized glasses are characterized using X-ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM), Differential Thermal Analysis (DTA), Raman Spectroscopy, UV-Visible Spectroscopy and Photoluminescence (PL) Spectroscopy measurements. Meanwhile, Vibrating Sample Magnetometer (VSM) and Electron Spin Resonance (ESR) will be used to study the magnetic moment of the local magnetic properties due to the nature of spin-spin interaction.

1.2 Problem Statement

Plasmonic nanoglass is a new research paradigm with numerous application possibilities. Metallic NPs (such as gold, silver, copper, etc.) embedded REIs doped glass became attractive during past two decades. The inclusion of gold (Au) and silver (Ag) NPs in glass containing REIs [27][38] are exploited to enhance the quantum efficiency to achieve high performance lasing glass system. Yusoff and Sahar [39] have proposed that the enhancement of photoluminescence intensity is deduced by energy transfer from NPs to REIs and large local field in the vicinity of the REIs. Although significant effort continues in the development of the metallic NPs regrettably not many studies are dedicated towards the dispersing magnetic NPs such as manganese, nickel, ferrite and cobalt into rare earth doped glass. To overcome this limitation, the investigation of RE-doped glasses incorporated with magnetic NPs elements are suggested and become interest for magnetic studies.

Research of NPs effect on spectroscopic properties in RE doped oxides glasses have been widely studied [40][41]. It is known that, NPs have been able to enhance quantum efficiency which consequently leads to improve the optical characteristics of oxide glasses [38]. However, there are limited reports found about the influence of Mn_3O_4 NPs in BT glass doped with optimum concentration of europium. Yet, their careful synthesis, detailed characterisation and systematic Judd Ofelt analysis are not reported extensively. Therefore, this research is also devoted to discover laser efficiency of Eu³⁺ ions doped BT glasses with NPs embedment via Judd Ofelt calculation.

In addition to that, the growth and nucleation of magnetic NPs favor the alteration of the local structure of the glass system. Carefully controlled size of Mn₃O₄ NPs through appropriate heat treatment is one of the promising methods to modify and improve the magnetic properties of synthesized glass. The incorporation of Mn₃O₄ NPs in the BT glass with tunable size and their effects on magnetic properties are not extensively studied. However it is a challenging task due to easy crystallization of discovered glass host [42]. In spite of that, this has motivated the researcher to investigate the RE doped glasses containing Mn₃O₄ NPs elements. The role of Mn₃O₄ NPs in the europium doped magnesium BT glass in optical and magnetic properties is far from being understood and requires further attention. There are only some reports on the influence of Eu³⁺ ions doped magnesium BT glass towards optical properties [43]. Therefore, the effects of Mn₃O₄ NPs concentration changes on the thermal, structural and optical properties will be evaluated. Then, the magnetic properties are accomplished from the magnetic moment of the local magnetic properties due to the nature of spin-spin interaction.

1.3 Objectives of Study

The objectives of this study are as follows:

- i. To optimize the concentration of Mn_3O_4 NPs embedded into europium doped magnesium BT glass via melt-quenching method.
- ii. To determine the influence of Mn_3O_4 NPs concentration on the thermal, structural, optical and magnetic properties of Eu³⁺ doped BT glass.
- iii. To complement the experimental spectroscopic data using JO theoretical calculation of intensity parameter.

iv. To control the size of Mn_3O_4 NPs by varying heat treatment durations and investigate its effects on spectral and magnetic features modifications in these glass system.

1.4 Scope of Study

In this study, 3 series of glass of different composition were prepared by melt quenching technique:

- a. Series I : (59-x)TeO₂-30B₂O₃-10MgO-1Eu₂O₃-xMn₃O₄ where $(0.0 \le x \le 2.0 \text{ in mol \%})$
- b. Series II : (59-y)TeO₂-30B₂O₃-10MgO-yEu₂O₃-1Mn₃O₄ where $(0.0 \le y \le 2.0 \text{ in mol } \%)$
- c. Series III : 58TeO₂-30B₂O₃-10MgO-1Eu₂O₃-1Mn₃O₄ glasses at different heat treatment durations

These glasses are chosen due to the optimal performance of TeO₂-B₂O₃-MgO-Eu₂O₃ glass system [44]. As increasing the concentration of TeO₂, BT glass will be more transparent. Nevertheless, the BT glass phase will become opaque if the concentration of B₂O₃ is richer than TeO₂. Burger *et al.* [45] suggested that the optimum concentration of TeO₂ is in the range of 3.9 to 73.6 mol % able to form glass in BT system. Meanwhile, Yardımcı *et al.* [46] determined that the glass forming range for concentration of B₂O₃ in B₂O₃-TeO₂ is system about 5 to 30 mol % and as the concentration increase, the crystallization starts to occur The addition of MgO up to 15 mol % in glass system will increase the structural compactness of glass network [18]. The incorporation of MgO as network modifiers in BT glass cause the formation of more non bridging oxygen (NBO) and 1.0 mol % of Eu³⁺ as a dopant is the optimized concentration and have potential for solid state applications [47].

However, the role played by Mn_3O_4 NPs as magnetic NPs in the structural features of the magnesium BT glass and the interaction of this element in the glass network is still a subject under study. Therefore, in current study the special attention is given to the inclusion of Mn_3O_4 NPs in glass matrix to modify the thermal, structural, optical and magnetic properties of glass. The phase of the glass will be determined by X-ray Diffraction (XRD) and the existence and size of Mn_3O_4 NPs in glass matrix investigated using High Resolution Transmission Electron Microscopy (HRTEM). Then, controlling the size of Mn_3O_4 NPs through heat treatment process with different heat treatment durations above glass transition temperature, T_g which is determined from Differential Thermal Analysis (DTA). In terms of structural and optical properties influence by Mn_3O_4 NPs will be determined by Raman spectroscopy, UV-Visible spectroscopy and Photoluminescence (PL) spectroscopy. Additionally, the magnetic properties will be accomplished from Vibrating Sample Magnetometer (VSM) and Electron Spin Resonance (ESR).

1.5 Significance of Study

Study of BT glass host embedded with Mn_3O_4 NPs provides useful information on the advancement of the glass knowledge. The rapid quench process is used to achieve well transparent glasses which are physically and chemically stable and Eu³⁺ doped BT glass will improve the luminescence properties. Furthermore, embedding Mn_3O_4 NPs in glass network as an alternative for understand the magnetic properties in order to determine the optimum concentration of Mn_3O_4 NPs. This study is great importance to understand and explain the magnetic behaviour of Mn_3O_4 NPs in glass. This may help in the discovery of a new magneto-device material that may contribute towards the development of NPs embedded RE doped photonics glass.

REFERENCES

- 1. Sahar, M.R. (2000). Fizik Bahan Amorfus. (1st ed.). UTM Skudai: DBP.
- Gandhi, Y., Kityk, I. V., Brik, M.G., Rao, P.R., Veeraiah, N. (2010). Influence of tungsten on the emission features of Nd³⁺, Sm³⁺ and Eu³⁺ ions in ZnF₂-WO₃-TeO₂ glasses. *J. Alloys Compd.* 508, 278-291.
- 3. Maheshvaran, K., Veeran, P.K., Marimuthu, K. (2013). Structural and optical studies on Eu³⁺ doped boro-tellurite glasses. *Solid State Sci.* 17, 54-62.
- Stambouli, W., Elhouichet, H., Gelloz, B., Fe, M. (2013). Optical and spectroscopic properties of Eu-doped tellurite glasses and glass ceramics. *J. Lumin.* 138, 201-208.
- Khafagy, A.H., El-Adawy, A.A., Higazy, A.A., El-Rabaie, S., Eid, A.S. (2008). The glass transition temperature and infrared absorption spectra of: (70-x)TeO₂+ 15B₂O₃+15P₂O₅+xLi₂O glasses. *J. Non. Cryst. Solids.* 354, 1460-1466.
- Neov, S., Kozhukharov, V., Gerasimova, I., Krezhov, K., Sidzhimov, B. (1979). A model for structural recombination in tellurite glasses. *J. Phys. C:* Solid State Phys. 12, 715-718.
- Ahmmad, S. Kareem, Samee, M.A., Edukondalu, A., Rahman, S. (2012). Physical and optical properties of zinc arsenic tellurite glasses. *Results Phys.* 2. 85, 175-181.
- Paz, E.C., Lodi, T.A., Gomes, B.R.A., Melo, G.H.A. (2016). Optical and spectroscopic investigation on Calcium Borotellurite glass system. *Solid State Sci.* 55, 106-111.
- 9. Patil, S.D., Jali, V.M. (2013). Optical properties of Neodymium doped Borotellurite glasses. *Int. J. Sci. Res.* 1, 317-320.

- Yano, T., Kunimine, N., Shibata, S., Yamane, M. (2003). Structural investigation of sodium borate glasses and melts by Raman spectroscopy. I. Quantitative evaluation of structural units. J. Non. Cryst. Solids. 321, 137–146.
- Gaafar, M.S., Marzouk, S.Y., Zayed, H.A., Soliman, L.I., Serag El-Deen, A.H. (2013). Structural studies and mechanical properties of some borate glasses doped with different alkali and cobalt oxides. *Curr. Appl. Phys.* 13, 152-158.
- Lakshminarayana, G., Kaky, K.M., Baki, S.O., Lira, A. (2017). Physical, structural, thermal, and optical spectroscopy studies of TeO₂-B₂O₃-MoO₃-ZnO-R₂O (R = Li, Na, and K)/MO (M = Mg, Ca, and Pb) glasses. *J. Alloys Compd.* 690, 799-816.
- Said Mahraz, Z.A., Sahar, M.R., Ghoshal, S.K. (2014). Band gap and polarizability of boro-tellurite glass: Influence of erbium ions. *J. Mol. Struct.* 1072, 238-241.
- Wang, J. S., Vogel, E.M. and Snitzer, E. (1994). 1.3μ Emission of Neodymium and Praseodymium in Tellurite-Based Glasses, J. Non-Cryst. Solids. 178 109-113
- Sudhakar Reddy, B., Hwang, H.-Y., Jho, Y.-D., Seung Ham, B. (2015). Optical properties of Nd³⁺-doped and Er³⁺-Yb³⁺ codoped borotellurite glass for use in NIR lasers and fiber amplifiers. *Ceram. Int.* 41, 3684-3692.
- Azlan, M.N., Halimah, M.K., Shafinas, S.Z., Daud, W.M. (2015). Electronic polarizability of zinc borotellurite glass system containing erbium nanoparticles. *Mater. Express.* 5, 211-218.
- Doweidar, H., El-Damrawi, G., Mansour, E., Fetouh, R.E. (2012). Structural role of MgO and PbO in MgO-PbO-B₂O₃ glasses as revealed by FTIR; A new approach. *J. Non. Cryst. Solids*. 358, 941–946.
- Smith, C.E., Brow, R.K. (2014). The properties and structure of zinc magnesium phosphate glasses. J. Non. Cryst. Solids. 390, 51-58.
- Judd, B.R. (1962). Optical absorption intensities of rare-earth ions. *Phys. Rev.* 127, 750-761.
- 20. Dehelean, A., Culea, E. (2009). Magnetic behaviour of europium ions in some tellurite glasses obtained by the sol-gel method. *J. Phys. Conf. Ser*. 182, 12064.
- 21. Pisarski, W.A., Pisarska, J., Maczka, M., Ryba-Romanowski, W. (2006).

Europium-doped lead fluoroborate glasses: Structural, thermal and optical investigations. *J. Mol. Struct.* 93, 207-211.

- Sazali, E.S., Sahar, M.R., Ghoshal, S.K. (2013). Influence of Europium Ion on Structural, Mechanical and Luminescence Behavior of Tellurite Nanoglass. J. Phys. Conf. Ser. 431, 12008.
- Akamatsu, H., Fujita, K., Nakatsuka, Y., Murai, S., Tanaka, K. (2013). Magneto-optical properties of Eu²⁺-containing aluminoborosilicate glasses with ferromagnetic interactions. *Opt. Mater.* 35, 1997-2000.
- 24. Bo., P., Teturo, I., (1994). The Fluorescence Properties of Eu³⁺ in Various Glasses and the Energy Transfer Between Eu³⁺ and Sm³⁺ in Borosilico-phosphate Glass. *Rev. Laser Eng.* 22, 16-27
- Van Deun, R., Binnemans, K., Görller-Walrand, C., Adam, J.L. (1999). Judd-Ofelt intensity parameters of trivalent lanthanide ions in a NaPO₃-BaF₂ based fluorophosphate glass. *J. Alloys Compd.* 283, 59-65.
- Ashur Said Mahraz, Z., Sahar, M.R., Ghoshal, S.K., Dousti, M.R., Amjad, R.J. (2013). Silver nanoparticles enhanced luminescence of Er³⁺ ions in boro-tellurite glasses. *Mater. Lett.* 112, 136-138.
- Azmi, S.A.M., Sahar, M.R. (2015). Optical response and magnetic characteristic of samarium doped zinc phosphate glasses containing nickel nanoparticles. *J. Magn. Magn. Mater.* 393, 341-346.
- Anigrahawati, P., Sahar, M.R., Ghoshal, S.K. (2015). Influence of Fe₃O₄ nanoparticles on structural, optical and magnetic properties of erbium doped zinc phosphate glass. *Mater. Chem. Phys.*152, 155-161.
- Malakhovskii, A. V., Edelman, I.S., Radzyner, Y., Yeshurun, Y. (2003). Magnetic and magneto-optical properties of oxide glasses containing Pr³⁺, Dy³⁺ and Nd³⁺ ions. *J. Magn. Magn. Mater.* 263, 161-172.
- Ramesh Babu, A., Rajyasree, C., Vinaya Teja, P.M., Yusub, S., Krishna Rao,
 D. (2012). Influence of manganese ions on spectroscopic and dielectric properties of LiF-SrO-B₂O₃ glasses. *J. Non. Cryst. Solids.* 358, 1391-1398.
- Manzan, R.S., Donoso, J.P., Magon, C.J., Silva, I. d'Anciães A. (2015).
 Optical and Structural Studies of Mn²⁺ Doped SbPO₄-ZnO-PbO Glasses. J. Braz. Chem. Soc. 26, 2607-2614.

- Kiran, N., Kesavulu, C.R., Suresh Kumar, A., Rao, J.L. (2011). Spectral studies on Mn²⁺ ions doped in sodiumlead borophosphate glasses. *Phys. B Condens. Matter.* 406, 3816-3820.
- Sumalatha, B., Omkaram, I., Rajavardhana Rao, T., Linga Raju, C. (2013). The structural, optical and magnetic parameter of manganese doped strontium zinc borate glasses. *Phys. B Condens. Matter.* 411, 99-105.
- Portehault, D., Cassaignon, S., Jolivet, J. (2009). Structural and morphological control of manganese oxide nanoparticles upon soft aqueous precipitation through MnOMn²⁺ reaction. *J. Mater. Chem.* 19, 2407-2416.
- Edelman, I., Ivanova, O., Ivantsov, I., Velikanov, D., Pesktrakovskaja, E., Artemenko, A., Curely, J. (2011). Magnetic properties and morphology of manganese ferrite nanoparticles in glasses. *Mater. Sci. Engin.* 25, 012017.
- Laffont, L., Gibot, P. (2010). High resolution electron energy loss spectroscopy of manganese oxides: Application to Mn₃O₄ nanoparticles. *Mater. Charact.* 61, 1268-1273.
- Sazali, E.S., Sahar, M.R., Ghoshal, S.K., Arifin, R. (2014). Optical properties of gold nanoparticle embedded Er³⁺ doped lead-tellurite glasses. *J. Alloys Compd.* 607, 85-90.
- Yusoff, N.M., Sahar, M.R. (2015). The incorporation of silver nanoparticles in samarium doped magnesium tellurite glass: Effect on the characteristic of bonding and local structure. *Phys. B Condens. Matter.* 470-471, 6-14.
- Dousti, M.R., Poirier, G.Y., Camargo, A.S.S. (2015). Structural and spectroscopic characteristics of Eu³⁺-doped tungsten phosphate glasses. *Opt. Mater.* 45, 185-190.
- Awang, A., Ghoshal, S.K., Sahar, M.R., Dousti, M.R. (2013). Enhanced spectroscopic properties and Judd Ofelt parameters of Er-doped tellurite glass : Effect of gold nanoparticles. *Curr. Appl. Phys.* 13, 1813-1818.
- Rehana, P., Ravi, O., Ramesh, B., Dillip, G.R. (2016). Photoluminescence studies of Eu³⁺ ions doped calcium zinc niobium borotellurite glasses. *Adv. Mater. Lett.* 7, 170-174.
- 42. Maheshvaran, K., Marimuthu, K. (2012). Concentration dependent Eu³⁺ doped boro-tellurite glasses-Structural and optical investigations. *J. Lumin.* 132,

2259-2267.

- H. Bürger, W. Vogel, V. Kozhukharov, M. Marinov. (1984). Phase equilibrium, glass-forming, properties and structure of glasses in the TeO₂-B₂O₃ system. *J. Mater. Sci.* 19, 403-412.
- Yardimci, D., Çelikbilek, M., Ersundu, A.E., Aydin, S. (2013). Thermal and microstructural characterization and crystallization kinetic studies in the TeO₂-B₂O₃ system. *Mater. Chem. Phys.* 137, 999-1006.
- Das, S., Amarnath Reddy, A., Vijaya Prakash, G., Near white light emission from K⁺ ion compensated CaSO₄:Dy³⁺,Eu³⁺ phosphors. *Ceram. Int.* 2012, 38, 5769-5773.
- Dimitriev, Y., Kashchieva, E. (1975). Immiscibility in the TeO₂-B₂O₃ system.
 J. Mater. Sci. 10, 1419-1424.
- 47. Elkhoshkhany, N., El-Mallawany, R. (2015). Optical and kinetics parameters of lithium boro-tellurite glasses. *Ceram. Int.* 41, 3561-3567.
- Swapna, Upender, G., Prasad, M. (2016). Raman, FTIR, thermal and optical properties of TeO₂-Nb₂O₅-B₂O₃-V₂O₅ quaternary glass system. *J. Taibah Univ. Sci.*
- 49. Kaur, N., Khanna, A. (2014). Structural characterization of borotellurite and alumino-borotellurite glasses. *J. Non. Cryst. Solids*. 404, 116–123.
- Biirger, H., Kneipp, K., Vogel, W., Kozhukharov, V., Neov, S. (1992). Glass formation, properties and structure of glasses in the. *J. Non. Cryst. Solids*. 151, 134–142.
- 51. Wang, J.S., Vogel, E.M. (1994). Tellurite glass: a new candidate for fiber devices. *Opt. Mater.* 3, 187-203.
- Suthanthirakumar, P., Karthikeyan, P., Manimozhi, P.K., Marimuthu, K. (2015). Structural and spectroscopic behavior of Er³⁺/Yb³⁺ co-doped boro-tellurite glasses. *J. Non. Cryst. Solids.* 410, 26–34.
- 53. Saddeek, Y.B., Gaafar, M.S. (2009). Physical and structural properties of some bismuth borate glasses. *Mater. Chem. Phys.* 115, 280-286.
- 54. Suresh, S., Prasad, M., Upender, G., Kamalaker, V., Mouli, V.C. (2009). ESR, IR, Raman and optical absorption studies of 60B₂O₃+10TeO₂+5TiO₂+24R₂O: 1CuO (where R=Li, Na, K) quaternary glasses. *Indian J. Pure Appl. Phys.* 47,

163–169.

- 55. Maheshvaran, K., Veeran, P.K., Marimuthu, K., Structural and optical studies on Eu³⁺ doped boro-tellurite glasses. *Solid State Sci.* 2013, 17, 54–62.
- 56. Halimah, M.K., Daud, W.M., Sidek, H. A A, Zainal, A. S. (2007). Structural analysis of borotellurite glass. *Am. J. Appl. Sci.* 4, 323-327.
- Bhat, M.H., Ganguli, M., Rao, K.J. (2004). Investigation of the mixed alkali effect in boro-tellurite glasses -The role of NBO-BO switching in ion transport. *Curr. Sci.* 86, 676–691.
- 58. Rajkumar, G., Rajendran, V., Aravindan, S. (2012). Role of MgO on the HAp forming ability in phosphate based glasses. *Ceram. Int.* 38, 3781-3790.
- 59. Hussin, R., Salim, M.A., Alias, N.S., Abdullah, M.S. (2009). Vibrational Studies of Calcium Magnesium Ultraphosphate Glasses. *Sci. York.* 5, 41-53.
- Watts, S.J., Hill, R.G., O'Donnell, M.D., Law, R. V. (2010). Influence of magnesia on the structure and properties of bioactive glasses. *J. Non. Cryst. Solids*. 356, 517-524.
- Babu, A.M., Jamalaiah, B.C., Suhasini, T., Rao, T.S., Moorthy, L.R. (2011).
 Optical properties of Eu³⁺ ions in lead tungstate tellurite glasses. *Solid State Sci*.13, 574-578.
- Sailaja, S., Dhoble, S.J., Sudhakar Reddy, B. (2011). Synthesis and photoluminescence properties of Sm³⁺ and Dy³⁺ ions activated Ca₂Gd₂W₃O₁₄ phosphors. *J. Mol. Struct.* 1003, 115-120.
- Anand Pandarinath, M., Upender, G., Narasimha Rao, K., Suresh Babu, D. (2016). Thermal, optical and spectroscopic studies of boro-tellurite glass system containing ZnO. *J. Non. Cryst. Solids.* 433, 60-67.
- Melo, G.H.A., Dias, J.D.M., Lodi, T.A., Barboza, M.J. (2016). Optical and spectroscopic properties of Eu₂O₃ doped CaBAl glasses. *Opt. Mater.* 54, 98-103.
- Graça, M.P.F., Valente, M.A., Silva, C.C., Peres, M. (2009). Synthesis and optical properties of a lithium niobiosilicate glass doped with europium. *Mater*. *Sci. Eng. C.* 29, 894-898.
- Arunkumar, S., Marimuthu, K. (2013). Structural and luminescence studies on Eu³⁺: B₂O₃-Li₂O-MO-LiF (M=Ba, Bi2, Cd, Pb, Sr2 and Zn) glasses. *J. Lumin.*

139, 6-15.

- 67. Awang, A., Ghoshal, S.K., Sahar, M.R., Arifin, R., Nawaz, F. (2014). Nonspherical gold nanoparticles mediated surface plasmon resonance in Er³⁺ doped zinc-sodium tellurite glasses: Role of heat treatment. *J. Lumin*.149, 138-143.
- Amjad, R.J., Dousti, M.R., Sahar, M.R., Shaukat, S.F. (2014). Silver nanoparticles enhanced luminescence of Eu³⁺-doped tellurite glass. *J. Lumin*. 154, 316-321.
- Said Mahraz, Z.A., Sahar, M.R., Ghoshal, S.K. (2015). Enhanced luminescence from silver nanoparticles integrated Er³⁺-doped boro-tellurite glasses: Impact of annealing temperature. *J. Alloys Compd.* 649, 1102–1109.
- Reza Dousti, M., Sahar, M.R., Ghoshal, S.K., Amjad, R.J., Samavati, A.R. (2013). Effect of AgCl on spectroscopic properties of erbium doped zinc tellurite glass. *J. Mol. Struct.* 1035, 6-12.
- Mohan Babu, A., Jamalaiah, B.C., Sasikala, T., Saleem, S.A., Rama Moorthy, L. (2011). Absorption and emission spectral studies of Sm³⁺-doped lead tungstate tellurite glasses. *J. Alloys Compd.* 509, 4743-4747.
- 72. Zhang, J.Z., Noguez, C. (2008). Plasmonic optical properties and applications of metal nanostructures. *Plasmonics*. 3, 127-150.
- 73. Awang, A., Ghoshal, S.K., Sahar, M.R., Arifin, R., Nawaz, F. (2014). Nonspherical gold nanoparticles mediated surface plasmon resonance in Er³⁺ doped zinc-sodium tellurite glasses: Role of heat treatment. *J. Lumin.* 149, 138–143.
- Jiménez, J. A., Sendova, M. (2012). In situ isothermal monitoring of the enhancement and quenching of Sm³⁺ photoluminescence in Ag co-doped glass. *Solid State Commun.* 152, 1786-1790.
- Amjad, R.J., Dousti, M.R., Sahar, M.R., Shaukat, S.F. (2014). Silver nanoparticles enhanced luminescence of Eu³⁺-doped tellurite glass. *J. Lumin*. 154, 316–321.
- Bose, V.C., Biju, V. (2015). Optical, electrical and magnetic properties of nanostructured Mn₃O₄ synthesized through a facile chemical route. *Phys. E Low-dimensional Syst. Nanostructures*. 66, 24-32.
- 77. Widanarto, W., Sahar, M.R.R., Ghoshal, S.K.K., Arifin, R. (2013). Effect of natural Fe₃O₄ nanoparticles on structural and optical properties of Er³⁺ doped

tellurite glass. J. Magn. Magn. Mater. 326, 123-128.

- Azmi, S.A.M., Sahar, M.R. (2015). Optical response and magnetic characteristic of samarium doped zinc phosphate glasses containing nickel nanoparticles. *J. Magn. Magn. Mater.* 393, 341-346.
- Ghoshal, S. K., Zake, N. S. M., Arifin, R. (2015). Optical and structural behavior of Sm³⁺ doped tellurite glass containing Mn₃O₄ NPs. *Solid State Sci. Technol.* 23, 82-89.
- 80. Pike, J., Hanson, J., Zhang, L., Chan, S. (2007). Synthesis and redox behavior of nanocrystalline Hausmannite (Mn₃O₄). *Chem. Mater.* 42, 5609-5616.
- Silva G. C., Almeida, F. S., Ferreira A. M., Ciminellia. V, S. T. (2012). Preparation and Application of a Magnetic Composite (Mn₃O₄/Fe₃O₄) for Removal of As (III) from Aqueous Solutions. *Mater. Res.* 15, 403-408.
- Yusub, S., Srinivasa Rao, P., Krishna Rao, D. (2016). Ionic conductivity, dielectric and optical properties of lithium lead borophosphate glasses combined with manganese ions. *J. Alloys Compd.* 663, 708-717.
- Hashim, S. P. H. S., Sidek, H. A. A., Halimah, M. K., Matori, K.A., Yusoff, W.M.D.W. (2011). Physical properties of borotellurite glass doped with Manganese. *Solid State Sci. Technol.* 19, 342-347
- Nurbaisyatul, E.S., Azman, K., Azhan, H., Razali, W.A.W., Noranizah, A. (2014). The structural properties of trivalent rare earth ions (Er³⁺) doped borotellurite glass. *J. Teknol. Sciences Eng.* 69, 97-100.
- Kole, A. K., Kumbhakar, P. (2012). Effect of manganese doping on the photoluminescence characteristics of chemically synthesized zinc sulfide nanoparticles. *Appl. Nanosci.* 2, 15–23.
- Tang, J., Albrecht, A.C. (1970). *Raman Spectroscopy*. (1st ed.) New York: Springer, Boston, MA.
- Kundu, R.S., Dhankhar, S., Punia, R., Nanda, K., Kishore, N. (2014). Bismuth modified physical, structural and optical properties of mid-IR transparent zinc boro-tellurite glasses. *J. Alloys Compd.* 587, 66-73.
- Kesavulu, C.R., Chakradhar, R.P.S., Jayasankar, C.K., Rao, J.L. (2010). EPR, Optical, photoluminescence studies of Cr³⁺ ions in Li₂O-Cs₂O-B₂O₃ glasses-An evidence of mixed alkali effect. *J. Mol. Struct.* 975, 93-99.

- Dimitrov, V., Sakka, S. (1996). Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79, 1736.
- Amjad, R.J., Sahar, M.R., Ghoshal, S.K., Dousti, M.R. (2012). Enhanced infrared to visible upconversion emission in Er³⁺ doped phosphate glass: Role of silver nanoparticles. *J. Lumin.* 132, 2714-2718.
- Vázquez-Olmos, A., Redón, R., Rodríguez-Gattorno, G., Mata-Zamora, M.E. (2005). One-step synthesis of Mn₃O₄ nanoparticles: Structural and magnetic study. *J. Colloid Interface Sci.* 291, 175-180.
- Reisfeld, R., Pietraszkiewicz, M., Saraidarov, T., Levchenko, V. (2009). Luminescence intensification of lanthanide complexes by silver nanoparticles incorporated in sol-gel matrix. *J. Rare Earths*. 27, 544-549.
- Rivera, V.A.G., El-Amraoui, M., Ledemi, Y., Messaddeq, Y., Marega, E. (2014). Expanding broadband emission in the near-IR via energy transfer between Er³⁺-Tm³⁺ co-doped tellurite-glasses. *J. Lumin.* 145, 787-792.
- Martínez, P. L. H., Govorov, A., Demir, H. V. (2017). Understanding and Modeling Förster-type Resonance Energy Transfer (FRET). (2nd ed.) Singapore: Springer Singapore.
- 95. William, M. Y., Shionoya, S. Yamamoto, H. (2007). *Fundamentals of phosphors*. (1st ed.). New York: Taylor & Francis Group, LLC.
- Sreedhar, V.B., Basavapoornima, C., Jayasankar, C.K. (2014). Spectroscopic and fluorescence properties of Sm³⁺-doped zincfluorophosphate glasses. *J. Rare Earths.* 32, 918-926.
- Sreedhar, B., Sumalatha, C., Kojima, K. (1995). EPR and optical absorption spectra of some paramagnetic ions in lithium fluoroborate glasses. *J. Non. Cryst. Solids.* 192-193, 203-206.
- 98. Luo, W., Liao, J., Li, R., Chen, X. (2010). Determination of Judd-Ofelt intensity parameters from the excitation spectra for rare-earth doped luminescent materials. *Phys. Chem. Chem. Phys.* 12, 3276-3282.
- Nawaz, F., Sahar, M.R., Ghoshal, S.K., Awang, A., Ahmed, I. (2014). Concentration dependent structural and spectroscopic properties of Sm³⁺/Yb³⁺ co-doped sodium tellurite glass. *Phys. B Condens. Matter.* 433, 89-95.
- 100. Jorgensen, C.K., Reisfeld, R. (1983). Judd-Ofelt parameters and chemical

bonding. J. Less-Common Met. 93, 107-112.

- Ofelt, G.S. (1962). Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511–520.
- Vijayakumar, R., Marimuthu, K. (2016). Luminescence studies on Ag nanoparticles embedded Eu³⁺doped boro-phosphate glasses. *J. Alloys Compd.* 665, 294-303.
- 103. Qiao, X., Luo, Q., Fan, X., Wang, M. (2008). Local vibration around rare earth ions in alkaline earth fluorosilicate transparent glass and glass ceramics using Eu³⁺ probe. *J. Rare Earths*. 26, 883-888.
- 104. Ferhi, M., Bouzidi, C., Horchani-Naifer, K., Elhouichet, H., Ferid, M. (2015).
 Judd-Ofelt analysis of spectroscopic properties of Eu³⁺ doped KLa(PO₃)₄. J.
 Lumin. 157, 21-27.
- 105. Arunkumar, S., Venkata Krishnaiah, K., Marimuthu, K. (2013). Structural and luminescence behavior of lead fluoroborate glasses containing Eu³⁺ ions. *Phys. B Condens. Matter.* 416, 88-100.
- 106. Selvaraju, K., Marimuthu, K., Seshagiri, T.K., Godbole, S. V. (2011). Thermal, structural and spectroscopic investigations on Eu³⁺ doped boro-tellurite glasses. *Mater. Chem. Phys.* 131, 204-210.
- Hervault, A., Thanh, N.T.K. (2014). Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. *Nanoscale*. 6, 11553-11573.
- 108. Widanarto, W., Sahar, M.R., Ghoshal, S.K., Arifin, R. (2013). Effect of natural Fe₃O₄ nanoparticles on structural and optical properties of Er³⁺ doped tellurite glass. *J. Magn. Magn. Mater.* 326, 123-128.
- 109. Weckhuysen, B. M., Heidler, R., Schoonheydt, R.A. (2004). *Electron Spin Resonance Spectroscopy*. (1st ed.) New York: Springer, Berlin, Heidelberg.
- Ardelean, I., Mureşan, N., Păşcuţă, P. (2007). EPR and magnetic susceptibility studies of manganese ions in 70TeO₂-25B₂O₃-5SrO glass matrix. *Mater. Chem. Phys.* 101, 177-181.
- Du, J., Gao, Y., Chai, L., Zou, G. (2006). Hausmannite Mn₃O₄ nanorods: synthesis, characterization and magnetic properties. *Nanotechnology*. 17, 4923-4928.

- 112. Yusub, S., Srinivasa Rao, P., Krishna Rao, D. (2016). Ionic conductivity, dielectric and optical properties of lithium lead borophosphate glasses combined with manganese ions. *J. Alloys Compd.* 663, 708-717.
- 113. Massera, J., Sevrette, B., Petit, L., Koponen, J. (2014). Effect of partial crystallization on the thermal, optical, structural and Er³⁺ luminescence properties of silicate glasses. *Mater. Chem. Phys.* 147, 1099-1109.
- 114. Turba, T., Norton, M.G., Niraula, I., McIlroy, D.N. (2009). Ripening of nanowire-supported gold nanoparticles. *J. Nanoparticle Res.* 11, 2137–2143.
- 115. Viswanatha, R., Sarma, D., Rao, C., Müller, N. (2007). Growth of nanocrystals in a solution, *Nanomater. Chem.* 18, 139-170.
- 116. Shirsath, S.E., Mane, M.L., Yasukawa, Y., Liu, X., Morisako, A. (2014). Selfignited high temperature synthesis and enhanced super-exchange interactions of Ho³⁺-Mn²⁺-Fe³⁺-O²⁻ ferromagnetic nanoparticl. *Phys. Chem. Chem. Phys.* 16, 2347-2357.
- 117. Wendlandt, W. W. (1986). *Thermal Analysis*. (3rd ed.). New York: WileyInterscience.
- Gayathri Pavani, P., Sadhana, K., Chandra Mouli, V. (2011). Optical, physical and structural studies of boro-zinc tellurite glasses. *Phys. B Condens. Matter*. 406, 1242-1247.
- Gazzali, P.M., Kanimozhi, V., Priyadharsini, P., Chandrasekaran, G. (2014).
 Structural and Magnetic properties of Ultrafine Magnesium Ferrite Nanoparticles. *Adv. Mater. Res.* 938, 128-133.
- 120. Djerdj, I., Arcon, D., Jaglicic, Z., Nedererberger, M. (2007). Nonaqueous Synthesis of Manganese Oxide Nanoparticles, Structural Characterization, and Magnetic Properties. J. Phys. Chem C. 111, 3614-3623.
- 121. Yang, F., Zhao, M., Sun, Q., Qiao, Y. (2015). A novel hydrothermal synthesis and characterisation of porous Mn₃O₄ for supercapacitors with high rate capability. *RSC Adv.* 5, 9843-9847.
- 122. Yusoff, N.M., Sahar, M.R., Ghoshal, S.K. (2015). Sm³⁺:Ag NPs assisted modification in absorption features of magnesium tellurite glass. *J. Mol. Struct.* 1079, 167-172.
- 123. Vemasevana Raju, K., Sailaja, S., Nageswara Raju, C., Sudhakar Reddy, B.

(2011). Optical characterization of Eu³⁺ and Tb³⁺ ions doped cadmium lithium alumino fluoro boro tellurite glasses. *Spectrochim. Act -Part A Mol. Biomol. Spectrosc.* 79, 87-91.

- Ravi, O., Reddy, C.M., Manoj, L., Prasad, B.D. (2012). Structural and optical studies of Sm³⁺ ions doped niobium borotellurite glasses. *J. Mol. Struct.* 1029, 53–59.
- 125. Amjad, R.J., Sahar, M.R., Dousti, M.R., Ghoshal, S.K., Jamaludin, M.N. (2013). Surface enhanced Raman scattering and plasmon enhanced fluorescence in zinc-tellurite glass. *Opt. Express.* 21, 14282-90.
- 126. Davis, E.A., Mott, N.F. (2017). Conduction in non-crystalline systems V. Conductivity,optical absorption and photoconductivity in amorphous semiconductors. J. Mol. Struct. 179, 0903-0922.
- 127. Faznny, M.F., Halimah, M.K., Azlan, M.N. (2016). Effect of Lanthanum Oxide on Optical Properties of Zinc Borotellurite Glass System. J. Optoelectron. Biomed. Mater. 8, 49-59.
- Maheshvaran, K., Arunkumar, S., Venkata Krishnaiah, K., Marimuthu, K. (2014). Investigations on luminescence behavior of Er³⁺/Yb³⁺ co-doped boro-tellurite glasses. *J. Mol. Struct.* 1079, 130-138.
- 129. Lakshminarayana, G., Kaky, K.M., Baki, S.O., Lira, A. (2017). Physical, structural , thermal, and optical spectroscopy studies of $TeO_2-B_2O_3-MoO_3-ZnO-R_2O(R = Li, Na, and K) MO$ (M = Mg, Ca, and Pb) glasses. *J. Alloys Compd.* 690, 799-816.
- Azmi, S.A.M., Sahar, M.R., Ghoshal, S.K., Arifin, R. (2015). Modification of structural and physical properties of samarium doped zinc phosphate glasses due to the inclusion of nickel oxide nanoparticles. *J. Non. Cryst. Solids.* 411, 53-58.
- 131. Selvi, S., Marimuthu, K., Murthy, N.S., Muralidharan, G. (2016). Red light generation through the lead boro À telluro À phosphate glasses activated by Eu³⁺ ions. J. Mol. Struct. 1119, 276–285.
- 132. Selvi, S., Marimuthu, K., Muralidharan, G. (2015). Structural and luminescence behavior of Sm³⁺ ions doped lead boro-telluro-phosphate glasses. *J. Lumin.* 159, 207-218.

- Nurhafizah, H., Rohani, M.S., Ghoshal, S.K. (2016). Er³⁺:Nd³⁺concentration dependent spectral features of lithium-niobate-tellurite amorphous media. *J. Non. Cryst. Solids.* 443, 23-32.
- 134. Bandi, V.R., Grandhe, B.K., Woo, H.-J., Jang, K. (2012). Luminescence and energy transfer of Eu³⁺or/and Dy³⁺co-doped in Sr₃AlO₄F phosphors with NUV excitation for WLEDs. *J. Alloys Compd.* 538, 85-90.
- Zhu, C., Chaussedent, S., Liu, S., Zhang, Y. (2013). Composition dependence of luminescence of Eu and Eu/Tb doped silicate glasses for LED applications. *J. Alloys Compd.* 555, 232-236.
- 136. Silva, G.H., Anjos, V., Bell, M.J. V, Carmo, A.P. (2014). Eu³⁺ emission in phosphate glasses with high UV transparency. *J. Lumin.* 154, 294-297.
- Tanko, Y.A., Ghoshal, S.K., Sahar, M.R. (2016). Ligand field and Judd-Ofelt intensity parameters of samarium doped tellurite glass. *J. Mol. Struct.* 1117, 64–68.
- Ferhi, M., Bouzidi, C., Horchani-Naifer, K., Elhouichet, H., Ferid, M. (2014). Judd-Ofelt analysis and radiative properties of LiLa(1-x)Eux(PO₃)₄. *Opt. Mater.* 37, 607-613.
- 139. Xiangping Li, Baojiu Chen, Rensheng Shen, Haiyang Zhong. (2011). Fluorescence quenching of ${}^{5}D_{J}$ (J = 1, 2 and 3) levels and Judd–Ofelt analysis of Eu³⁺ in NaGdTiO₄ phosphors. J. Phys. D : Appl. Phys. 44, 1-6.
- Sreedhar, V.B., Basavapoornima, C., Jayasankar, C.K. (2014). Spectroscopic and fluorescence properties of Sm³⁺-doped zincfluorophosphate glasses. *J. Rare Earths.* 32, 918-926.
- 141. Wan, M.H., Wong, P.S., Hussin, R., Lintang, H.O., Endud, S. (2014). Structural and luminescence properties of Mn²⁺ ions doped calcium zinc borophosphate glasses. *J. Alloys Compd.* 595, 39-45.
- 142. Vijayakumar, R., Maheshvaran, K., Sudarsan, V., Marimuthu, K. (2014). Concentration dependent luminescence studies on Eu³⁺ doped telluro fluoroborate glasses. *J. Lumin.* 154, 160-167.
- 143. Rivera, V. A G., Ledemi, Y., El-Amraoui, M., Messaddeq, Y., Marega, E. (2014). Green-to-red light tuning by up-conversion emission via energy transfer in Er³ ⁺-Tm³⁺-codoped germanium-tellurite glasses. J. Non. Cryst.

Solids. 392-393, 45-50.

- 144. Maheshvaran, K., Linganna, K., Marimuthu, K. (2011). Composition dependent structural and optical properties of Sm³⁺ doped boro-tellurite glasses. J. Lumin.131, 2746-2753.
- 145. Zhang, L., Zhang, Y. (2009). Fabrication and magnetic properties of Fe₃O₄ nanowire arrays in different diameters. *J. Magn. Magn. Mater.* 321, 15-20.
- 146. Berkowitz, A.E., Rodriguez, G.F., Hong, J.I., An, K. (2008). Monodispersed MnO nanoparticles with epitaxial Mn₃O₄ shells. J. Phys. D: Appl. Phys. 41, 134007.
- 147. Buckelew, B.A., Galµn-mascarós, J.R., Dunbar, K.R. (2002). Facile Conversion of the Face-Centered Cubic Spinel Oxide Mn₃O₄ at the Solid/Water. Adv. Mater. 14, 1646-1648.
- Tadić, M., Panjan, M., Marković, D., Milošević, I., Spasojević, V. (2011). Unusual magnetic properties of NiO nanoparticles embedded in a silica matrix. *J. Alloys Compd.* 509, 7134-7138.
- Liang, X., Shi, H., Jia, X., Yang, Y., Liu, X. (2011). Dispersibility, Shape and Magnetic Properties of Nano-Fe₃O₄ Particles. *Mater. Sci. Appl.* 2, 1644-1653.
- Issa, B., Obaidat, I.M., Albiss, B.A., Haik, Y. (2013). Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. *Int. J. Mol. Sci.* 14, 21266-21305.
- Wakde, G.C., Kakde, A.S., Gaikar, P.S., Dudhe, C.M., Arjunwadkar, P.R. (2016). Influence of Aluminum Doping on the Magnetic Properties of Li-Zn Spinel Ferrite. *Appl. Sci. Engin. Technol.* 4, 311-316.
- 152. Edelman, I.S., Ivanova, O.S., Petrakovskaja, E. A., Velikanov, D. A. (2015). Formation, characterization and magnetic properties of maghemite γ-Fe₂O₃ nanoparticles in borate glasses. *J. Alloys Compd.* 624, 60-67.
- 153. Djerdj, I., Arcon, D., Jaglicic, Z., Nedererberger, M. (2007). Nonaqueous Synthesis of Manganese Oxide Nanoparticles, Structural Characterization, and Magnetic Properties. J. Phys. Chem C. 111, 3614-3623.
- 154. Singh, V., Chakradhar, R.P.S., Rao, J.L., Kim, D.K. (2008). EPR and luminescence properties of combustion synthesized LiAl₅O₈:Mn phosphors. *Mater. Chem. Phys.* 110, 43-51.

- 155. Sambasivam, S., Li, G.J., Jeong, J.H., Choi, B.C. (2012). Structural, optical, and magnetic properties of single-crystalline Mn₃O₄ nanowires. *J. Nanopart Res.* 14, 1138
- 156. Srisittipokakun, N., Kedkaew, C., Kaewkhao, J. (2009). Electron Spin Resonance (ESR) and Optical Absorption Spectra of a Manganese Doped Soda-Lime-Silicate Glass System. *Kasetsart J. (Nat. Sci.)*. 43, 360-364.
- 157. Sreekanth Chakradhar, R.P., Sivaramaiah, G., Rao, J.L., Gopal, N.O. (2005). EPR and optical investigations of manganese ions in alkali lead tetraborate glasses. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 62, 761-768.
- 158. Augustin, M., Fenske, D., Bardenhagen, I., Westphal, A. (2015). Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence. *Beilstein J. Nanotechnol.* 6, 47-59.
- 159. Naseri, M.G., Saion, E.B., Hashim, M., Shaari, A.H., Ahangar, H.A. (2011). Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method. *Solid State Commun.* 151, 1031-1035.
- Nicolae, E., Pascuta, P., Pustan, M., Tamas-gavrea, D.R. (2015). Effects of Eu: Ag codoping on structural, magnetic and mechanical properties of lead tellurite glass ceramics. *J. Non. Cryst. Solids.* 408, 18-25.
- 161. Wang, M.-C., Cheng, H.-Z., Lin, H.-J., Wang, C.-F., Hsi, C.-S. (2013). Crystallization and magnetic properties of a 10Li₂O-9MnO₂-16Fe₂O₃-25CaO-5P₂O₅-35SiO₂ glass. *Mater. Chem. Phys.* 140, 16-23.
- 162. Said Mahraz, Z.A., Sahar, M.R., Ghoshal, S.K. (2016). Impact of annealing time on silver nanoparticles growth assisted spectral features of erbium-zincboro-tellurite glass. J. Lumin. 180, 1-7.
- 163. Hu, P., Zhang, S., Wang, H., Pan, D. (2011). Heat treatment effects on Fe₃O₄ nanoparticles structure and magnetic properties prepared by carbothermal reduction. *J. Alloys Compd.* 509, 2316-2319.
- 164. Soltani, I., Hraiech, S., Horchani-Naifer, K., Elhouichet, H. (2016). Growth of silver nanoparticles stimulate spectroscopic properties of Er³⁺ doped phosphate glasses: Heat treatment effect. *J. Alloys Compd.* 686, 556-563.
- 165. Mahraz, Z.A.S., Sahar, M.R., Ghoshal, S.K., Reduction of non-radiative decay rates in boro-tellurite glass via silver nanoparticles assisted surface plasmon

impingement: Judd Ofelt analysis. J. Lumin. 2017, 190, 335-343.

- 166. Langar, A., Bouzidi, C., Elhouichet, H., Férid, M. (2014). Er-Yb codoped phosphate glasses with improved gain characteristics for an efficient 1.55 μm broadband optical amplifiers. *J. Lumin.* 148, 249-255.
- 167. Qi, J., Xu, T., Wu, Y., Shen, X. (2013). Ag nanoparticles enhanced near-IR emission from Er³⁺ ions doped glasses. *Opt. Mater.* 35, 2502-2506.
- 168. Sun, H., Ge, F., Zhao, J., Cai, Z. (2016). Template-directed synthesis of hierarchically mesporous superparamagnetic carbon-coated nickel nanoplates. *Mater. Lett.* 164, 152-155.
- 169. Abbas, M., Nazrul Islam, M. and C.K. (2014). *High Magnetization Superparamagnetic Core-Shell Nanoparticles*. P.Sabbas, N. (Ed.) Magnetic Nanoparticles: Synthesis, Physicochemical Properties and Role in Biomedicine (pp.113-116). United States of America: Nova Science Publisher, Inc.
- Alagiri, M., Muthamizhchelvan, C., Ponnusamy, S. (2011). Structural and magnetic properties of iron, cobalt and nickel nanoparticles. *Synth. Met.* 161, 1776–1780.
- 171. Ai, L., Jiang, J. (2010). Influence of annealing temperature on the formation, microstructure and magnetic properties of spinel nanocrystalline cobalt ferrites. *Curr. Appl. Phys.* 10, 284-288.
- 172. Rajendran, M., Pullar, R.C., Bhattacharya, A.K., Das, D. (2001). Magnetic properties of nanocrystalline CoFe₂O₄ powders prepared at room temperature: Variation with crystallite size. *J. Magn. Magn. Mater.* 232, 71-83.
- 173. Roy, S., Dubenko, I., Edorh, D.D., Ali, N. (2004). Size induced variations in structural and magnetic properties of double exchange La0.8Sr0.2MnO₃ nanoferromagnet. J. Appl. Phys. 96, 1202-1208.
- 174. Roca, A.G., Niznansky, D., Poltierova-Vejpravova, J., Bittova, B. (2009).
 Magnetite nanoparticles with no surface spin canting. J. Appl. Phys. 88,105-118
- 175. Ajroudi, L., Mliki, N., Bessais, L., Madigou, V. (2014). Magnetic, electric and thermal properties of cobalt ferrite nanoparticles. *Mater. Res. Bull.* 59, 49-58.
- 176. Battistini, L., Benasciutti, R., Tassi, A. (1994). Effects of heat treatment on crystallographic and magnetic properties of magnetic steels. *J. Magn. Magn.*

Mater. 133, 603-606.

- 177. Bretcanu, O., Verné, E., Cöisson, M., Tiberto, P., Allia, P. (2006). Temperature effect on the magnetic properties of the coprecipitation derived ferrimagnetic glass-ceramics. J. Magn. Magn. Mater. 300, 412-417.
- 178. Shankhwar, N., Kothiyal, G.P., Srinivasan, A. (2014). Understanding the magnetic behavior of heat treated CaO-P₂O₅-Na₂O-Fe₂O₃-SiO₂ bioactive glass using electron paramagnetic resonance studies. *Phys. B Condens. Matter.* 448, 132-135.
- 179. Bhowmik, R.N., Satya, A.T., Bharathi, A. (2013). Synthesis of Co_{1.5}Fe_{1.5}O₄ spinel ferrite with high magnetic squareness and study its magnetic property by annealing the chemical routed sample at different temperatures. *J. Alloys Compd.* 559, 134–141.
- 180. Yang, L., Wang, Z., Zhai, B., Shao, Y. (2013). Magnetic properties of Eu³⁺ lightly doped ZnFe₂O₄ nanoparticles. *Ceram. Int.* 2013, 39, 8261–8266.