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This thesis reports the modified optical and magnetic properties of europium 

doped and manganese oxide nanoparticles (Mn3O4NPs) embedded magnesium 

borotellurite glass. Glass samples with composition of (59-x)TeO2-30B2O3-10MgO-

1Eu2O3-xMn3O4 with 0.0 ≤ x ≤ 2.0 mol % and (59-y)TeO2-30B2O3-10MgO-yEu2O3-

1Mn3O4 with 0.0 ≤ y ≤ 2.0 mol % were prepared by melt-quenching technique. The 

amorphous nature of the glass was determined by X-Ray Diffractometer (XRD) and 

the presence of Mn3O4 NPs was verified by using Transmission Electron Microscope 

(TEM) and High Resolution Transmission Electron Microscope (HRTEM). The 

thermal parameters were determined by Differential Thermal Analyzer (DTA) and 

spectroscopic properties were measured by Raman, Ultraviolet-Visible (UV-Vis) and 

Photoluminescence (PL) spectrometer. Magnetic properties were determined by 

Vibrating Sample Magnetometer (VSM) and Electron Spin Resonance (ESR) 

spectrometer. The XRD patterns confirmed the amorphous nature of all glasses and 

TEM images manifested the growth of Mn3O4 NPs with average diameter 15 nm. 

HRTEM result revealed that the lattice spacing of Mn3O4 NPs was 0.308 nm at (112) 

plane. The thermal analysis showed that the glass transition temperature, Tg increases 

with the increase of Mn3O4 NPs and it was attributed to the arrangement of Mn3O4 

NPs in the glass matrix. The glass with 1.0 mol % of Mn3O4 NPs and Eu2O3 showed 

the highest thermal stability, 126 ᵒC and the glass forming tendency, 0.76. The 

Raman spectra displayed Mn3O4 NPs assisted alteration in the Te-O-Te, BO3, BO4, 

TeO3 trigonal pyramidal and TeO4 trigonal bipyramidal bonding vibrations. The UV-

Vis spectra consist of three bands attributed to absorption from ground state (
7
F0) to 

5
D0, 

5
D1 and 

5
D2 excited states. Two surface plasmon resonance (SPR) peaks of 

Mn3O4 NPs were detected at 388 nm and 516 nm. The emission spectra of Eu
3+ 

ion 

under 390 nm excitations revealed four prominent peaks centered at 591 nm, 614 nm, 

651 nm and 700 nm assigned to the transitions from 
5
D0→

7
FJ (J=1, 2, 3, 4) states, 

respectively. Quenching effect in the luminescence intensity due to the incorporation 

of Mn3O4 NPs was ascribed to the energy transfer from the Eu
3+

 ion to Mn3O4 NPs. 

The calculated Judd-Ofelt intensity parameters (Ωλ  λ=2, 4, 6), radiative parameter 

and stimulated emission cross section of Eu
3+

 ions were found to be strongly 

influenced by Mn3O4 NPs. Prepared glass systems exhibit paramagnetic behavior 

with glass magnetization and susceptibility at room temperature in the range of 

(4.95-13.31×10
-2

) emug
-1

 and (4.12-11.09×10
-6

) emuOe
-1

g
-1 

respectively. The ESR 

spectra of all glass samples exhibit two resonance signals with g values at 1.9 and 4.3 

with higher signal observed at 1.9. In addition, correlations between the size of 

Mn3O4 NPs with saturation magnetization (Ms) and coercivity (Hc) were established. 

In conclusion, incorporation of Mn3O4 NPs in the glass system has improved the 

optical and magnetic properties of the glass. 
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Tesis ini melaporkan sifat optik dan magnet terubah suai yang berdopkan 

europium dan zarah nano mangan oksida (Mn3O4 NPs) berbenam kaca magnesium 

borotellurite. Sampel kaca dengan komposisi (59-x)TeO2-30B2O3-10MgO-1Eu2O3-

xMn3O4 dengan 0.0 ≤ x ≤ 2.0 mol % dan (59-y)TeO2-30B2O3-10MgO-yEu2O3-

1Mn3O4 dengan 0.0 ≤ y ≤ 2.0 mol % disediakan menggunakan teknik pelindapan 

leburan. Sifat amorfus kaca ditentukan oleh diffraktometer Sinar-X (XRD) dan 

kehadiran Mn3O4 NPs disahkan dengan menggunakan mikroskop elektron 

penghantaran (TEM) dan mikroskop elektron penghantaran beresolusi tinggi 

(HRTEM). Parameter terma ditentukan dengan penganalisa terma pembeza (DTA) 

dan sifat spektroskopi diukur dengan spektrometer Raman, penyerapan  ultra  

lembayung boleh nampak (UV-Vis) dan fotoluminesens (PL). Sifat magnet 

ditentukan menggunakan magnetometer getaran sampel (VSM) dan spektrometer 

resonans putaran elektron (ESR). Corak XRD mengesahkan sifat amorfus bagi 

semua kaca dan imej TEM menunjukkan kewujudan Mn3O4 NPs dengan diameter 

purata 15 nm. Keputusan HRTEM mendedahkan jarak kekisi bagi Mn3O4 NPs ialah 

0.308 nm pada satah (112). Analisis terma menunjukkan bahawa suhu peralihan 

kaca, Tg meningkat dengan pertambahan Mn3O4 NPs yang disebabkan oleh susunan 

Mn3O4 NPs dalam matriks kaca. Kaca dengan 1.0 mol % Mn3O4 NPs dan Eu2O3 

menunjukkan kestabilan terma tertinggi, 126 ᵒC dan kecenderungan pembentukan 

kaca tertinggi, 0.76. Spektrum Raman menunjukkan Mn3O4 NPs mempengaruhi 

perubahan dalam getaran ikatan Te-O-Te, BO3, BO4, piramid trigonal TeO3 dan 

bipyramidal trigonal TeO4. Spektrum UV-Vis terdiri daripada tiga jalur yang 

berpadanan dengan penyerapan dari keadaan dasar (
7
F0) kepada keadaan teruja 

5
D0, 

5
D1 dan 

5
D2. Dua puncak resonans plasmon permukaan (SPR) bagi Mn3O4 NPs 

dicerap pada 388 nm dan 516 nm. Spektrum pancaran ion Eu
3+

 apabila diuja pada 

390 nm memaparkan empat puncak yang berpusat pada 591 nm, 614 nm, 651 nm 

dan 700 nm masing-masing merujuk kepada peralihan 
5
D0 → 

7
FJ (J = 1, 2, 3, 4). 

Kesan penurunan keamatan luminesens yang disebabkan oleh kehadiran Mn3O4 NPs 

adalah disebabkan berlakunya pemindahan tenaga daripada Eu
3+

 ion kepada Mn3O4  

NPs. Pengiraan parameter keamatan Judd-Ofelt (Ωλ = 2, 4, 6), parameter sinaran dan 

keratan rentas pancaran terangsang ion Eu
3+

 sangat dipengaruhi oleh Mn3O4 NPs. 

Semua kaca yang disediakan bersifat paramagnet dengan kemagnetan kaca dan 

kerentanan pada suhu bilik masing-masing dalam julat (4.95-13.31×10
-2

) emug
-1

 dan 

(4.12-11.09×10
-6

) emuOe
-1

g
-1

. Spektrum ESR menunjukkan semua kaca 

mempamerkan dua isyarat resonans dengan nilai g pada 1.9 dan 4.3 dengan isyarat 

resonans lebih tinggi pada 1.9. Sebagai tambahan, korelasi antara saiz Mn3O4 NPs 

dengan pemagnetan tepu (Ms) dan coerciviti (Hc) telah ditentukan. Kesimpulannya, 

kemasukan Mn3O4 NPs dalam sistem kaca telah menambahbaikkan sifat optik dan 

magnet kaca. 
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 CHAPTER 1

 

 

 

INTRODUCTION 

1.1 Background of Study 

 

Glasses are unique materials that have been used for thousands of years. 

Glass is defined as material that is produced through melting process and then being 

cooled to be a solid without going through a crystallization process [1]. Glass has 

been extensively investigated due to its high temperature resistance, high dielectric 

constant and good mechanical strength [2]. Furthermore, glass is not only known 

because of their excellent thermal and mechanical properties but they are potentially 

to become a good medium for luminescence due to the enhancement of the 

absorption efficiency of rare earth ions [3]. This excellent property has motivate 

researcher to further the study in optimizing luminescent and become more suitable 

material in the development of laser and solid state device.  

 

Over the past few decades, tellurite glasses have gained so much interest 

over conventional silicate due to their high thermal expansion coefficients, 

excellent transmission in the visible as well as IR wavelength regions and low 

melting temperature [4]. These interesting properties making it feasible to be 

prepared at low temperature. Khafagy et al. [5] reported that the structure of 

tellurite glasses have two basic structural units, i.e as TeO3 and TeO4 units. The 

TeO3 units dominated in the glass structural network but as the TeO2 content 

increase, TeO3 units transform into TeO3+1 then to TeO4 units [6]. An intensive 

study on TeO2 containing glasses has been conducted because of their properties 
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such as exhibit high refractive indices, good chemical durability, better corrosion 

resistance and good mechanical strength [7].  

 

Recently, tellurite glasses doped with boron oxide have received great 

scientific interest because these oxides significantly are able to change the properties 

of tellurite glasses [8][9]. Additionally, borate is one of the most attracting materials 

where their structural properties have been studied extensively [10]. Conversely, 

borate based glasses are prospective due to their flexible random network structure 

consisting of tetrahedral BO4 and trigonal boron BO3 units [11]. Besides, due to the 

excellent rare earth solubility, good infrared transmission and high thermal stability, 

borate glasses are attractive for the development of new optical devices [12]. 

However, the strong hygroscopic nature of borate glasses limits their applications 

[13]. This drawback can be surmounted by stabilizing the borate network with TeO2 

incorporation, which may offer improved chemical durability via the structural 

modifications of the tetrahedral boron networks [14].  

 

Previous study by Wang et al. [15] claimed that TeO2 is a conditional glass 

former which explain the incapability of that compound to form glass on its own. As 

a result, the introduction of borate into tellurite glass network simultaneously 

enhances the ability of glass formation. The combination of TeO2 and B2O3 is an 

intrinsically interesting subject of study due to the stability of borotellurite (BT) 

compound [16]. Further, BT glass needs another element known as glass modifier 

such as alkaline earth metal oxide and transition metal oxide to improve the network 

connectivity then produce a stable BT glass [17] with increasing non-bridging 

oxygen (NBO). The addition of such modifiers would modify and increase the NBO, 

consequently open up the glass structure [18]. The substitution of network modifier 

such as MgO would produce stable BT glass [19].  

 

To this day, rare earth ions (REIs) doped glass material becomes an 

interesting topic in luminescence material. The synthesis and characterizations of 

REIs doped binary and ternary glasses are intensively performed due to their 

advantages in developing efficient photonic devices [20]. Dehelean et al. [21] 

acknowledged that REIs doped glasses exhibit high brightness and improved 
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efficiency thus are very prospective for broad array of technological applications. 

Trivalent Eu
3+

 ion is a well-known activator with simple electronic transitions. The 

Eu
3+

 ions possess prominent laser emissions in the orange or red region [22] and 

narrow band emission [23] with longer lifetime. Thus, BT glass has emerged as a 

favorable host for accommodating large amount of REIs. Maheshvaran et al. [3] 

reported that Eu
3+

 doped BT glass has potential for red-emitting glass due to 

excellent luminescent properties and can be used as optical materials. Hence, Eu
3+

 

doped glass has drawn much interest in technological applications especially for 

optoelectronic materials [24]. 

 

Despite many studies, the Judd-Ofelt (J-O) theory has not been applied 

uniformly to characterize the spectroscopic properties of Eu
3+

 ion doped glasses. Bo 

and Teruto [25] used 
5
D0 →

7
F2, 

7
F4 and 

7
F6 emission transitions of the Eu

3+ 
ions to 

obtain the J-O parameters. Van Deun et al. [26] studied the absorption spectra of 

Eu
3+ 

ion involving 
7
F0 →

5
D2,

5
D4 and 

5
L6 transitions, where the calculated J-O 

parameters of Eu
3+

 ions exhibits good agreement with the measured oscillator 

strengths. However, the study of J-O for glass containing magnetic NPs accompanied 

with REIs has not much been reported or been discussed in literature. In the present 

study the method of Bo and Teruto [25] to calculate the J-O parameters of Eu
3+

 ions 

doped inside BT glasses containing Mn3O4 NPs will be applied. 

 

Currently, the development of multifunctional metallic NPs is in full swing 

[27] due to the feasibility of sundry applications. The research on the modifications 

in the structural, magnetic and optical properties of REIs doped glasses by 

embedding various metallic NPs is however still in progress. In this view, several 

attempts have been made to improve the optical properties of REIs doped glasses by 

incorporating various metallic NPs (magnetic and nonmagnetic). Lately, various 

magnetic NPs embedded glass systems are prepared such as Ni NPs incorporated 

samarium doped zinc phosphate glass [28] and Fe3O4 NPs in erbium doped zinc 

phosphate glass [29]. The impact of Ni
2+

 and Fe
2+

 magnetic NPs on the physical, 

structural and magneto-optic properties of REIs doped binary glasses have accrescent 

interest. Literatures hinted that these types of glasses with tailored properties are 
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greatly potentials for the advancement of magneto-optic devices including isolators, 

switches and sensors [30]. 

  

 Synthesis and characterization of magnetic (Fe, Co, Ni and Mn) NPs have 

ever-growing interest. Amongst all, Mn ions have been frequently used to improve 

the structural, electrical and magnetic properties of vitreous systems [31]. Manganese 

ions exist in different valence states in glassy matrices [32]. For example, Mn
3+

 ions 

in borate glasses exist with octahedral coordination whereas in silicate and germanate 

glasses they exist as Mn
2+

 ions with both octahedral and tetrahedral coordination 

[33]. Moreover, these well-known paramagnetic ions (Mn
2+

 and Mn
3+

) are identified 

as strong luminescence activators [34]. The incorporation of Mn3O4 in glass has 

paramount importance due to their excellent physical and structural properties [31]. 

These transition metal ions contribute multi-valence states in the glass network and 

remarkably influence the properties. The appearance of super-paramagnetic 

behaviour, softness and large surface area of manganese nanoparticles make them 

highly potential magnetic materials [35] like manganese zinc ferrites useful for high 

density magnetic storage devices [36]. High saturation magnetization and 

magnetocrystalline anisotropy of Mn3O4 NPs are useful for creating excellent traps 

for excited electrons in the glass host. Such electron trapping are advantageous to 

surmount data corruption in magnetic data storage [37].  

  

 Despite much research the impact of Mn3O4 NPs on the structural properties 

of Eu
3+

 doped BT glass system is not yet explored. The incorporation of controlled 

concentrations of magnetic NPs in BT glass provides an opportunity to develop new 

stable magnetic glasses useful for nonlinear optical sensor and electronics devices. 

Additionally, literature shows that not many efforts are dedicated towards the 

incorporation of Mn3O4 NPs in BT glass system for determining their role in 

improving the structural and optical properties. This motivated to investigate the 

REIs doped glasses containing Mn3O4 NPs. Therefore, a new series of Mn3O4 NPs 

embedded and Eu
3+ 

ions doped BT glass systems are prepared and evaluate the 

Mn3O4 NPs concentration dependent on thermal, structural and optical properties. 

Synthesized glasses are characterized using X-ray Diffraction (XRD), High 

Resolution Transmission Electron Microscopy (HRTEM), Differential Thermal 
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Analysis (DTA), Raman Spectroscopy, UV-Visible Spectroscopy and 

Photoluminescence (PL) Spectroscopy measurements. Meanwhile, Vibrating Sample 

Magnetometer (VSM) and Electron Spin Resonance (ESR) will be used to study the 

magnetic moment of the local magnetic properties due to the nature of spin-spin 

interaction. 

1.2 Problem Statement 

Plasmonic nanoglass is a new research paradigm with numerous application 

possibilities. Metallic NPs (such as gold, silver, copper, etc.) embedded REIs doped 

glass became attractive during past two decades. The inclusion of gold (Au) and 

silver (Ag) NPs in glass containing REIs [27][38] are exploited to enhance the 

quantum efficiency to achieve high performance lasing glass system. Yusoff and 

Sahar [39] have proposed that the enhancement of photoluminescence intensity is 

deduced by energy transfer from NPs to REIs and large local field in the vicinity of 

the REIs. Although significant effort continues in the development of the metallic 

NPs regrettably not many studies are dedicated towards the dispersing magnetic NPs 

such as manganese, nickel, ferrite and cobalt into rare earth doped glass. To 

overcome this limitation, the investigation of RE-doped glasses incorporated with 

magnetic NPs elements are suggested and become interest for magnetic studies. 

  

 Research of NPs effect on spectroscopic properties in RE doped oxides 

glasses have been widely studied [40][41]. It is known that, NPs have been able to 

enhance quantum efficiency which consequently leads to improve the optical 

characteristics of oxide glasses [38]. However, there are limited reports found about 

the influence of Mn3O4 NPs in BT glass doped with optimum concentration of 

europium. Yet, their careful synthesis, detailed characterisation and systematic Judd 

Ofelt analysis are not reported extensively. Therefore, this research is also devoted to 

discover laser efficiency of Eu
3+

 ions doped BT glasses with NPs embedment via 

Judd Ofelt calculation.  
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 In addition to that, the growth and nucleation of magnetic NPs favor the 

alteration of the local structure of the glass system. Carefully controlled size of 

Mn3O4 NPs through appropriate heat treatment is one of the promising methods to 

modify and improve the magnetic properties of synthesized glass. The incorporation 

of Mn3O4 NPs in the BT glass with tunable size and their effects on magnetic 

properties are not extensively studied. However it is a challenging task due to easy 

crystallization of discovered glass host [42]. In spite of that, this has motivated the 

researcher to investigate the RE doped glasses containing Mn3O4 NPs elements. The 

role of Mn3O4 NPs in the europium doped magnesium BT glass in optical and 

magnetic properties is far from being understood and requires further attention. 

There are only some reports on the influence of Eu
3+

 ions doped magnesium BT 

glass towards optical properties [43]. Therefore, the effects of Mn3O4 NPs 

concentration changes on the thermal, structural and optical properties will be 

evaluated. Then, the magnetic properties are accomplished from the magnetic 

moment of the local magnetic properties due to the nature of spin-spin interaction. 

1.3 Objectives of Study 

The objectives of this study are as follows: 

 

i. To optimize the concentration of Mn3O4 NPs embedded into europium 

doped magnesium BT glass via melt-quenching method. 

 

ii. To determine the influence of Mn3O4 NPs concentration on the thermal, 

structural, optical and magnetic properties of Eu
3+

 doped BT glass. 

 

iii. To complement the experimental spectroscopic data using JO theoretical 

calculation of intensity parameter.  
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iv. To control the size of Mn3O4 NPs by varying heat treatment durations and 

investigate its effects on spectral and magnetic features modifications in 

these glass system. 

1.4 Scope of Study 

In this study, 3 series of glass of different composition were prepared by melt 

quenching technique: 

 

a. Series I : (59-x)TeO2-30B2O3-10MgO-1Eu2O3-xMn3O4 where (0.0 ≤ x ≤ 

2.0 in mol %)  

b. Series II : (59-y)TeO2-30B2O3-10MgO-yEu2O3-1Mn3O4 where (0.0 ≤ y ≤ 

2.0 in mol %)  

c. Series III : 58TeO2-30B2O3-10MgO-1Eu2O3-1Mn3O4 glasses at different 

heat treatment durations  

These glasses are chosen due to the optimal performance of TeO2-B2O3-MgO-Eu2O3 

glass system [44]. As increasing the concentration of TeO2, BT glass will be more 

transparent. Nevertheless, the BT glass phase will become opaque if the 

concentration of B2O3 is richer than TeO2. Burger et al. [45] suggested that the 

optimum concentration of TeO2 is in the range of 3.9 to 73.6 mol % able to form 

glass in BT system. Meanwhile, Yardımcı et al. [46] determined that the glass 

forming range for concentration of B2O3 in B2O3-TeO2 is system about 5 to 30 mol % 

and as the concentration increase, the crystallization starts to occur  The addition of 

MgO up to 15 mol % in glass system will increase the structural compactness of 

glass network [18]. The incorporation of MgO as network modifiers in BT glass 

cause the formation of more non bridging oxygen (NBO) and 1.0 mol % of Eu
3+

 as a 

dopant is the optimized concentration and have potential for solid state applications 

[47].  
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However, the role played by Mn3O4 NPs as magnetic NPs in the structural 

features of the magnesium BT glass and the interaction of this element in the glass 

network is still a subject under study. Therefore, in current study the special attention 

is given to the inclusion of Mn3O4 NPs in glass matrix to modify the thermal, 

structural, optical and magnetic properties of glass. The phase of the glass will be 

determined by X-ray Diffraction (XRD) and the existence and size of Mn3O4 NPs in 

glass matrix investigated using High Resolution Transmission Electron Microscopy 

(HRTEM). Then, controlling the size of Mn3O4 NPs through heat treatment process 

with different heat treatment durations above glass transition temperature, Tg which 

is determined from Differential Thermal Analysis (DTA). In terms of structural and 

optical properties influence by Mn3O4 NPs will be determined by Raman 

spectroscopy, UV-Visible spectroscopy and Photoluminescence (PL) spectroscopy. 

Additionally, the magnetic properties will be accomplished from Vibrating Sample 

Magnetometer (VSM) and Electron Spin Resonance (ESR). 

1.5 Significance of Study 

 Study of BT glass host embedded with Mn3O4 NPs provides useful 

information on the advancement of the glass knowledge. The rapid quench process is 

used to achieve well transparent glasses which are physically and chemically stable 

and Eu
3+

 doped BT glass will improve the luminescence properties. Furthermore, 

embedding Mn3O4 NPs in glass network as an alternative for understand the 

magnetic properties in order to determine the optimum concentration of Mn3O4 NPs. 

This study is great importance to understand and explain the magnetic behaviour of 

Mn3O4 NPs in glass. This may help in the discovery of a new magneto-device 

material that may contribute towards the development of NPs embedded RE doped 

photonics glass.  
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