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ABSTRACT

In elimination theory, particularly when using the matrix method to compute
multivariate resultant, the ultimate goal is to derive or construct techniques that give
a resultant matrix that is of considerable size with simple entries. At the same time,
the method should be able to produce no or less superfluous factors. In this thesis,
three different techniques for computing the resultant matrix are presented, namely the
Jouanolou-Jacobian method, the Dixon-Jouanolou methods for bivariate polynomials,
and their generalizations to the multivariate case. The Dixon-Jouanolou method is
proposed based on the existing Jouanolou matrix method which is subjected to bivariate
systems. To further extend this method to multivariate systems, the entry formula for
computing the Dixon resultant matrix is first generalized. This extended application
of the loose entry formula leads to the possibility of generalizing the Dixon-Jouanolou
method for the bivariate systems of three polynomials to systems of n+ 1 polynomials
with n variables. In order to implement the Dixon-Jouanolou method on systems of
polynomials over the affine and projective space, respectively, the concept of pseudo-
homogenization is introduced. Each space is subjected to its respective conditions;
thus, pseudo-homogenization serves as a bridge between them by introducing an
artificial variable. From the computing time analysis of the generalized loose entry
formula used in the computation of the Dixon matrix entries, it is shown that the
method of computing the Dixon matrix using this approach is efficient even without
the application of parallel computations. These results show that the cost of computing
the Dixon matrix can be reduced based on the number of additions and multiplications
involved when applying the loose entry formula. These improvements can be more
pronounced when parallel computations are applied. Further analyzing the results
of the hybrid Dixon-Jouanolou construction and implementation, it is found that
the Dixon-Jouanolou method had performed with less computational cost with cubic
running time in comparison with the running time of the standard Dixon method which
is quartic. Another independent construction produced in this thesis is the Jouanolou-
Jacobian method which is an improvement of the existing Jacobian method since it
avoids multi-polynomial divisions. The Jouanolou-Jacobian method is also able to
produce a considerably smaller resultant matrix compared to the existing Jacobian
method and is therefore less computationally expensive. Lastly all the proposed
methods have considered a systematic way of detecting and removing extraneous
factors during the computation of the resultant matrix whose determinant gives the
polynomial resultant.
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ABSTRAK

Dalam teori penghapusan, khususnya apabila menggunakan kaedah matriks untuk
mengira hasilan multivariat, matlamat utama ialah untuk menerbitkan atau membina
teknik yang boleh memberikan matriks hasilan yang mempunyai saiz yang bersesuaian
dengan pemasukan unsur yang ringkas. Pada masa yang sama kaedah tersebut berupaya
menghasilkan sedikit atau langsung tiada faktor lebihan. Dalam tesis ini tiga kaedah
berbeza untuk mengira matriks hasilan dibentangkan iaitu kaedah Jouanolou-Jacobian,
kaedah Dixon-Jouanolou bagi polinomial dua pembolehubah dan pengitlakannya kepada
kes multivariat. Kaedah Dixon-Jouanolou dicadangkan berasaskan kepada kaedah
matriks Jouanolou yang sedia ada tertakluk kepada sistem dua pembolehubah. Untuk
melanjutkan kaedah ini kepada sistem multivariat, rumus pemasukan bagi pengiraan
matriks hasilan Dixon terlebih dahulu diitlakkan. Dengan menggunakan rumus
pemasukan unsur teritlak dapat membawa kepada lanjutan kaedah matriks hasilan Dixon-
Jouanolou, daripada tertakluk kepada sistem tiga polinomial dengan dua pembolehubah
kepada sistem n + 1 polinomial dengan n pembolehubah. Bagi melaksanakan kaedah
Dixon-Jouanolou terhadap sistem polinomial masing-masing ke atas ruang afin dan ruang
unjuran, konsep penghomogenan pseudo diperkenalkan. Setiap ruang ini tertakluk kepada
syarat tertentu; oleh itu, penghomogenan pseudo ini menghubung kaitkan keduanya
dengan memperkenalkan satu pembolehubah buatan. Analisis pengiraan masa bagi
perlaksanaan rumus pemasukan unsur teritlak dalam pengiraan pemasukan matriks
Dixon mendapati bahawa kaedah pengiraan matriks Dixon menggunakan pendekatan
berkesan walaupun tidak melibatkan pengiraan selari. Keputusan ini menunjukkan
bahawa kos pengiraan matriks Dixon dapat dikurangkan berdasarkan kepada bilangan
operasi penambahan dan pendaraban yang dilakukan dalam rumus pemasukan unsur
tersebut. Penambahbaikan ini akan lebih ketara apabila menggunakan pengiraan
selari. Seterusnya, analisis keputusan perlaksanaan kaedah hibrid Dixon-Jouanolou
menunjukkan bahawa kos pengiraan kaedah Dixon-Jouanolou adalah lebih baik, dengan
masa perlaksanaan kubik berbanding dengan kos pengiraan matriks Dixon piawai yang
mempunyai masa pengiraan kuartik. Satu lagi kaedah yang dihasilkan daripada tesis
ini ialah kaedah Jouanolou-Jacobian yang bertujuan mengelakkan pengiraan pembeza
melibatkan pembahagian multipolinomial. Kaedah baharu ini dapat menghasilkan
saiz matriks hasilan yang jauh lebih kecil berbanding kaedah Jouanolou yang sedia
ada dan oleh itu kos pengiraannya dapat dikurangkan. Akhir sekali, semua kaedah
yang dicadangkan telah mempertimbangkan satu pendekatan sistematik yang berupaya
mengesan dan menghapuskan faktor lebihan dalam pengiraan matriks hasilan di mana
penentunya memberikan polinomial hasilan.
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CHAPTER 1

INTRODUCTION

1.1 Preface

The role played by a system of polynomial equations in scientific research has a

variety of applications in real life situations. For example, in modelling the components

in computer-aided design represented by the Bezier Bernstein splines [1], detecting

whether a moving robot will collide with an obstacle or not [2], designing curves and

surfaces [3], differential elimination [4] and application of Global Positioning System

(GPS) in geodesy and geoinformatics [5]. Another important application is the modelling

of geometric and kinematics constraints where a well-constrained system of polynomials

equations are used to represent the motion of a camera.

Dealing with the above-mentioned applications requires a technique of variables

elimination. There are three powerful elimination techniques; Grobner basis [6, 7], set

characteristics or Ritt-Wu method [8] and the resultant matrix method [9, 10]. Some of

the disadvantages of both Grobner basis and Ritt-Wu as reported in [11, 12] are:

1. These methods require large storage capacity during the computations.

2. High computational complexity.
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The matrix method for computing the resultant is a popular tool used in eliminating

variables which reduces the system of polynomial equations into simpler forms. The

resultant of a system of polynomial equations can be obtained from the determinant

of the resultant matrix. The determinant of the resultant matrix is also referred to

as the projection operator. Exact resultant can be achieved if the projection operator

exactly equals the resultant. Otherwise, the projection operator consists of a product of

polynomials which are multiples of the resultant. These other factors of the projection

operator besides the resultant polynomial are called extraneous factors. The presence of

extraneous factors in the resultant formulation gives rise to the problem of extracting the

resultant polynomial from the determinant.

Much of the concern in researches related to multivariate polynomials resultant is to

determine a method that can give exact resultant. In most cases, exact resultant only exist

on certain classes of the generic system of polynomial equations and these conditions are

determined and proven to give exact resultant. Besides finding methods that can produce

a determinantal formula which can give exact resultant, a method that can reduce the

presence of extraneous factors in the resultant matrix formulation reduces the complexity

of the problem. It becomes the aim of this thesis to find new methods that can reduce the

complexity of computing the resultant matrix and resultant polynomial.

The rest of this chapter is as follows. Section 1.2 gives the research background leading to

the problem statement in Section 1.3. The objectives of the study are given in Section 1.4

followed by the scope of the study, the significance of the study and thesis organization.

1.2 Research Background

When dealing with systems of polynomials in more than one variable, there are

basically two matrix base constructions which depend on the nature of the resultant

matrix [13]. If each entry of the matrix is either the coefficient of one of the polynomials or
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zero, the matrix is regarded as Sylvester type [14]. Sometimes the entries of the resultant

matrix are polynomials in terms of the coefficients of the given system of polynomial

equations, such type is referred to as Cayley/Dixon type. Methods such as Macaulay,

Jouanolou (Generalized Macaulay), Newton sparse, incremental and Salmon Jacobian

which is also referred as Sturmfel resultant [5] are considered to be Sylvester type while

Dixon is regarded as Cayley/Dixon type [15–17]. All Cayley/Dixon resultant matrix

have complicated entries, but with relatively small matrix [18–23]. On the other hand,

Sylvester type resultant matrix have simple entries with large size matrix [24, 25].

In a situation where the resultant matrix is constructed based on the two types of the

constructions, such formulation is referred to as the hybrid resultant matrix [26]. The

foundation work for hybrid resultant was first introduced in [27], derived for certain class

of the multivariate polynomials of multi-graded type. Independently, in 1999 Chionh et al.

in [28] had proposed another hybrid construction which possibly is the first construction

that can be applied to a more general class of system of polynomials.

Apart from the classical hybrid resultant matrix, the sparse hybrid formulation was

constructed, due to the frequent appearance of such systems in many engineering

applications [29]. However, it is not clear whether or not the constructions can generate

exact resultant. Another construction was given by [30] and unlike the work of [29],

Khetan presents his formulation and computes the hybrid resultant matrix based on certain

examples. His construction also only considers systems of polynomials with unmixed

support and the size of the matrix can still be very large [30]. A complete implementation

of the Sylvester-Bezout construction is given by Ahmad in [13] giving conditions that can

give optimal resultant matrix and describes some limitations in the implementations.

Apart from the matrix method for computing resultant, the second most commonly used

algorithmic method is the Ritt-Wu’s approach introduced by Ritt in [31] and further

improved by the Chinese mathematician Wu Wen-Tsün. The method has two important

steps namely reduction to triangular form and successive pseudo-division [32, 33].
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A triangular set of polynomials with almost the same set of common solutions as the

original system of equations is defined as the characteristic set of a set of polynomials [8,

34]. Ritt presents the first algorithm to compute the characteristic set that was resurrected

by Wu and Ritt respectively in [8, 31]. Characteristic sets are typically computed by

eliminating variables sequentially in some predetermined order using successive pseudo-

division of polynomials.

Ritt-Wu’s method requires a large storage capacity during the computation. For

example, Heymann’s question can be resolved using the matrix method within 300

seconds, compared to almost 19 hours using characteristics set method [11, 18]. The

implementation by Gao and Wang in [11] is carried out using SUN 4/470.

The Grobner basis of a polynomial ideal is a basis with many useful properties

and provides answers to most of the theoretic questions about the ideals, such as

ideal description and membership problem. The notion generalizes three well-known

algorithms namely; Gaussian elimination algorithm, particularly reduced row echelon

form for linear systems, the Euclidean algorithm for computing the greatest common

divisor of both univariate and multivariate polynomials and lastly, the simplex algorithm

for minimizing or maximizing linear and non-linear functions.

Buchberger’s algorithms resolved the issue of the ideal membership using S−polynomial

of f1, f2 · · · , fn ∈ k [x1, . . . , xn] which is defined to be S (f1, f2) =
xα

LT(f1)
f1 −

xα

LT(f2)
f2, where LT is the leading term of fi and xα is the least common multiple (LCM)

of the leading monomials LM of f1 and f2 (xα = lcm(LM(f1),LM(f2))) [32, 35].

The first algorithm to compute the Grobner basis of an ideal is given by [7, 36] and since

then, many efficient variations have been proposed. Along with other resultant methods,

Grobner basis can be considered as an effective tool for solving a polynomial equation

which also include finding the solutions of the system of polynomial equations, variables

elimination and ideal membership problem. The approach of Grobner basis provides a

criterion for which a polynomial must satisfy in order to be a member of a certain ideal.
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The Grobner basis method can also be used in a variety of applications such as solving

polynomials systems and implicitization of curves and surfaces. This method computes

the exact resultant [18, 37]. However, the Grobner basis approach is not as simple as the

matrix method and run out of time when the total degree is very large since it requires

large storage capacity during the computations.

The Grobner basis method also is less effective, when computing the resultant of a

polynomial system, for example, deriving the implicit equation of a bi cubic surface

takes only 50 seconds using the matrix method, compared to almost 10,000 seconds using

Grobner basis. In an implementation using SUN 4/470, sometimes the system runs out of

memory before the computation ends [11, 18].

Another setback of the Grobner basis method reported by Zheng et al. [12] is that the

approach fails to generate the implicit equation of some parametric equations with base

points as given in Equation (1.1). On the other hand, the matrix method of computing the

resultant is able to compute the implicit equation despite having these base points. For

rational parametric equations defined as

x =
x(s, t)

w(s, t)
, y =

y(s, t)

w(s, t)
and z =

z(s, t)

w(s, t)
,

a base point is a value (s, t) for which x(s, t) = y(s, t) = z(s, t) = w(s, t) = 0. At this

point the values x, y and z are not defined. Another implication of the base point is that,

no matter what values the coefficients of the rational curves or surfaces will be, there is

always a common solution at infinity.

F =



x(s, t) = 2t3 + 4t2 + 2t+ 4st+ s2t+ 2 + 3s+ s2

y(s, t) = −2st2 − 2t− st+ 2 + s− 2s2 − s3

z(s, t) = 2t2 − 3st2 − 2t− 3st− 2s2t− 2s− 3s2 − s3

w(s, t) = t3 + t2 − t+ st − 1− s+ s2 + s3

(1.1)
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In the implementation of the Grobner basis method, some of the reasons for large

storage requirement and the CPU time is the swell of intermediate system of equations

encountered during the computation of the basis. These intermediate polynomials do

not satisfy the requirement of the basis, thus, are not included in the resulting Grobner

basis [38, 39].

Figure 1.1 Usual routines when computing resultant

In an attempt to improve the effectiveness of the Grobner basis, several algorithms were

introduced by different scholars such as signature base algorithm [40, 41], F4, F5, F5C
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algorithms among others [42–44]. Until today reducing the cost of computing Grobner

bases remain an open area of research. Figure 1.1 shows the different techniques of

computing resultant and how they are related.

Since both Ritt-Wu and Grobner basis techniques require large storage capacity and huge

CPU time while computing the resultant polynomial, this work focuses on the matrix

approach of computing the resultant. Existing methods are revisited giving emphasis on

the method of construction, complexity, size of the matrix, nature of the entries, size of

the unwanted factors and space requirement in the implementation of these methods.

1.3 Statement of the Problem

The resultant techniques for solving multivariate polynomial equations have

received lots of attention with emphasis on eliminating or at least reducing the terms of the

extraneous factors in the projection operator. This is because the presence of extraneous

factors constitute to one of the biggest problem common to all matrix methods. These

factors do not provide any information on the solutions of the polynomials; thus can be

misleading and the process of identifying them is time-consuming.

Recent research on the resultant matrix methods focus on the hybrid resultant

formulations. However, the existing hybrid resultant matrix methods either produce a

large resultant matrix size or extraneous factors embedded in the projection operator

[13, 29]. On the other hand, there exist hybrid resultant matrix that gives exact resultant

[30], but the method is confined to certain class of polynomials. The Sylvester Bezout

type resultant matrix is implemented by [13] and proven to produce an exact result, but

under certain conditions, the method had failed to generate the desired Bezout block of

the matrix.

Generally, for any given system of multivariate polynomials, none of the existing resultant
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matrix methods can give exact resultant. However, in some special cases, almost all

existing method can produce exact resultant [45] which is due to the special structure of

the Newton polytopes corresponding to the system. Among the factors that contribute

to the effectiveness and the efficiency of the resultant matrix method is the nature of the

matrix elements and the large matrix size. If the entries of the matrix are polynomials,

the symbolic computation of the determinant will be more complex then if the entries are

numerical values [46]. Therefore the nature of the matrix entries as well as the size of the

matrix determine the efficiency of computing the resultant polynomial.

Several formulations have been given with notable improvements. Yet the problem of

reducing the size of the resultant matrix and reducing or eliminating extraneous factors

is still an open problem in the study of resultant. Thus, deriving or constructing a new

hybrid resultant matrix with considerable size, that can eliminate, or at least reduce, the

number of extraneous factors remains an important problem of research, which when

solved adequately will produce positive dividends.

1.4 Objectives of the Study

Based on the formulated problem, the following research objectives are outlined:

1. To derive, construct and implement the Dixon-Jouanolou methods for bivariate

systems of polynomial equations and Jouanolou-Jacobian method for n polynomial

equations based on the Dixon, Jouanolou and Jacobian matrices.

2. To generalize the loose entry formula for computing the entries of the Dixon matrix

and generalize the construction of Dixon-Jouanolou method to multivariate systems

of n+ 1 polynomials with n variables, applying the generalize loose entry formula

to compute the entries of the Dixon-Jouanolou matrix.

3. To determine the computational complexity of computing the Dixon-Jouanolou and

Jouanolou-Jacobian matrices and compare with the complexity of computing the



9

Dixon and Jouanolou matrices respectively.

4. To determine the possible causes for the existence of extraneous factors and provide

a suitable approach of eliminating them.

1.5 Scope of the Study

The research focuses on the construction of the hybrid resultant matrix methods

for computing the resultant of a system of multivariate polynomial equation. The methods

involved elimination theory, an area under algebraic geometry. The polynomials under

consideration are assumed to be unmixed, generic and symbolic. Although, the new

hybrid methods can handle n system of polynomials with n or n− 1 variables, depending

on the requirements of the method, the examples given in this thesis only include system

of polynomials with at most four variables. Basic tools of algebraic geometry are applied

in solving some problems encountered throughout this research. The computer algebra

system Maple version 2015 is used to evaluate the resultant matrices.

1.6 Significance of the Study

So far most of the matrix-based elimination techniques fail to produce an exact

resultant. Instead, these methods generate a polynomial called a projection operator

which is a multiple of the resultant containing some unwanted factors which looks like

an integral part of the resultant. For lower dimensional cases the approach of computing

and extracting the resultant is well understood [47], but for higher dimensional cases the

problem is still subjected to further research. The contribution of this work is to be able to

produce new resultant matrix method that can eliminate or minimize the difficulties faced

when extracting the resultant from the projection operator. This study will be beneficial

to many industrial applications, in areas like computer-aided design, robot design and

control, modeling of geometric object and many other applications within the scope of
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algebraic geometry.

1.7 Thesis Organization

Chapter 1 introduces the concept of polynomial resultant which begins with

preface, research background, statement of the problem, objectives of the study, scope of

the study and finally the significance of the study. This chapter provides the introduction

to the research area and highlights some of the existing problems. This chapter served as

introductory part of this research work.

Chapter 2 serves as the review of the existing literatures. Referring to Figure 1.2, this

chapter contains eight sections which include introduction, preliminary definitions and

theorems and the matrix methods for computing resultant. Others are Dixon resultant,

Macaulay resultant, Jouanolou resultant and the hybrid resultants. This chapter highlights

major setbacks of the existing classical and hybrid techniques of computing resultant.

Based on these limitations, the research problem have been identified. Hence the new

constructions presented in Chapter 4, 5 and 6 are designed to reduce the size of extraneous

factors, space requirements and cost of computations. The eighth section concludes the

chapter.

Chapter 3 presents the methodology of this research work. As described in Figure 1.2, this

chapter contains five sections which include introduction, research assumptions, research

framework and computational tools. Details of the three constructions are provided with

explanation. The chapter describes how these methods are designed to produce relatively

smaller resultant matrix. Finally, the fifth section concludes the methodology.

Chapter 4 presents the Jouanolou-Jacobian constructions, To provide a clear presentation,

this chapter contains four sections. The first three sections are introduction, Jacobian

block and construction of Jouanolou-Jacobian method. The fourth section presents
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the complexity analysis of the Jouanolou-Jacobian method. This complexity analysis

provides a yardstick for comparison with the existing Jouanolou method to determine

whether the Jouanolou-Jacobian technique is computationally expensive or not. Referring

to Figure 1.2, the fifth section concludes the chapter.

Chapter 5 presents the Dixon-Jouanolou constructions of type 1 and 2. This chapter

contains four sections which include introduction, pseudo-homogenization and Dixon-

Jouanolou formulations for bivariate systems. The fourth section concludes the chapter.

The concept of pseudo-homogenization allows the constructions to switch from a

projective space to affine space using an artificial variable.

Chapter 6 presents the generalization of the Dixon-Jouanolou method, from the bivariate

system to the system of n + 1 equations with n variables. The loose entry formula for

computing the Dixon resultant matrix is generalized to the system of n+1 equations with

n variables. This allows the generalization of the Dixon-Jouanolou method. Figure 1.2

shows that this chapter contained five sections which include introduction, generalized

Dixon resultant matrix, generalized entry formula and the generalized Dixon-Jouanolou

method is presented followed by conclusion.

Chapter 7 presents the summary of the thesis and highlights how each of the objectives are

achieved. This chapter also provide the direction for further research. These suggestions

are derived from the conclusions of this chapter.
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Figure 1.2 Thesis organization
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