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ABSTRACT 

 

 

 

 

 The study of the voltammetric behaviour of five types of pesticides, namely 

paraquat dichloride, metsulfuron-methyl, lindane, chlorothalonil and glyphosate were 

carried out. The electrodes used were hanging mercury drop electrode (HMDE), 

glassy carbon electrode (GCE), HB pencil electrode (HBPE), boron doped diamond 

electrode (BDDE) and screen printed electrode (SPE). Due to the toxicity of mercury 

and to improve the detectivity for the determination of these pesticides, nylon-6,6 

was used as modifier to modify the electrodes to produce nylon-6,6-modified glassy 

carbon electrode (Nyl-MGCE), nylon-6,6-modified HB pencil electrode (Nyl-

MHBPE), nylon-6,6-modified boron doped diamond electrode (Nyl-MBDDE), and 

nylon-6,6-modified screen printed electrode (Nyl-MSPE). All measurements were 

performed using differential pulse cathodic stripping voltammetry technique 

(DPCSV) vs. Ag/AgCl (3.0 M KCl). Experimental parameters such as pH of Britton-

Robinson buffer (BRB), accumulation time, accumulation potential and initial 

potential were optimized for the pesticides determination. Linear calibration plots for 

the paraquat dichloride and metsulfuron-methyl were obtained with the limit of 

detection (LOD) value of 3.66 × 10−8 M and 8.86 × 10‒8 M, respectively on HMDE. 

The detectivity of DPCSV with nylon-6,6-modified solid electrodes were more 

effective compared to bare solid electrodes, where the LOD values for paraquat 

dichloride were 2.75 × 10−8 M (GCE), 6.42 × 10−9 M (Nyl-MGCE), 2.37 × 10−8 M 

(HBPE), 1.33 × 10−8 M (Nyl-MHBPE), 2.52 × 10−8 M (SPE), 1.05 × 10−8 M (Nyl-

MSPE), 2.86 × 10−8 M (BDDE), and 1.54 × 10−8 M (Nyl-MBDDE). The novel 

sensors, Nyl-MSPE and Nyl-MHBPE were utilized for lindane and chlorothalonil 

analysis, and the LODs obtained were 4.26 × 10−8 M and 2.13 × 10−8 M, 

respectively. Efforts to study the electroactivity behaviour of metsulfuron-methyl and 

glyphosate were unsuccessful at all types of working electrodes that have been 

assessed in this study except HMDE for metsulfuron-methyl. There was no 

significant interfering metal ions effect found for voltammetric determination on the 

selected pesticides. Approximately 90% recovery was achieved for pesticides 

analyses. It can be concluded that the proposed DPCSV methods with nylon-6,6-

modified solid electrodes were efficiently applied in this study and verified in real 

water samples analysis. The proposed DPCSV methods were also comparatively 

selective and have good coefficient of determination (R2 = 0.995).  

 

 

 

 

 

 

 

 



19 

 

 

 

 

 

ABSTRAK 

 

 

 

 

Kajian tingkah laku voltammetri terhadap lima jenis racun perosak, iaitu 

parakuat diklorida, metsulfuron-metil, lindane, klorotalonil dan glifosat telah 

dijalankan. Elektrod yang telah digunakan ialah elektrod titisan merkuri (HMDE), 

elektrod karbon bak kaca (GCE), elektrod pensel HB (HBPE), elektrod berlian 

didopkan boron (BDDE), dan elektrod cetakan skrin (SPE). Disebabkan oleh 

ketoksikan merkuri dan untuk meningkatkan pengesanan bagi penentuan racun 

perosak, nilon-6,6 telah digunakan untuk mengubahsuai elektrod-elektrod tersebut 

untuk menghasilkan karbon bak kaca terubahsuai nilon-6,6 (Nyl-MGCE), elektrod 

pensel HB terubahsuai nilon-6,6 (Nyl-MHBPE), elektrod berlian didopkan boron 

terubahsuai nilon-6,6 (Nyl-MBDDE) dan elektrod cetakan skrin terubahsuai nilon-

6,6 (Nyl-MSPE). Semua pengukuran dijalankan dengan menggunakan teknik 

voltammetri pelucutan katod denyut pembezaan (DPCSV) vs. Ag/AgCl (3.0 M KCl). 

Parameter eksperimen misalnya pH penimbal Britton-Robinson (BRB), masa 

pengumpulan, potensi pengumpulan dan potensi awal telah dioptimumkan untuk 

penentuan racun perosak. Lakaran penentukuran linear bagi parakuat diklorida dan 

metsulfuron-metil diperoleh dengan nilai had pengesanan (LOD) masing-masing 

adalah 3.66 × 10-8 M dan 8.86 × 10-8 M pada HMDE. Pengesanan DPCSV dengan 

elektrod pepejal terubahsuai nilon-6,6 adalah lebih efektif berbanding dengan 

elektrod pepejal biasa, dengan nilai LOD untuk parakuat diklorida 2.75 × 10-8 M 

(GCE), 6.42 × 10-9 M (Nyl-MGCE), 2.37 × 10-8 M (HBPE), 1.33 × 10-8 M (Nyl-

MHBPE), 2.52 × 10-8 M (SPE), 1.05 × 10-8 M (Nyl-MSPE), 2.86 × 10-8 M (BDDE) 

dan 1.54 × 10-8 M (Nyl-MBDDE). Sensor baharu Nyl-MSPE dan Nyl-MHBPE telah 

digunakan untuk menganalisis lindane dan klorotalonil dengan LOD yang diperoleh 

masing-masing ialah 4.26 × 10-8 M dan 2.13 × 10-8 M. Usaha untuk mengkaji tingkah 

laku elektroaktiviti metsulfuron-metil dan glifosat telah tidak berjaya pada semua 

jenis elektrod yang digunakan dalam kajian ini kecuali HMDE bagi metsulfuron-

metil. Tiada kesan ion logam yang ketara bagi penentuan voltammetri racun perosak 

yang terpilih. Perolehan semula 90% telah dicapai dalam analisis racun-racun 

perosak. Dapat disimpulkan bahawa kaedah DPCSV dengan elektrod pejal 

terubahsuai nilon-6,6 yang dicadang telah diaplikasikan dengan berkesan dalam 

kajian ini dan disahkan dalam analisis sampel air. Secara perbandingan, kaedah 

DPCSV yang dicadangkan juga selektif dan mempunyai pekali penentuan yang baik 

(R2 = 0.995). 
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4.1 Effect of pH on DPCSV peak current of 1.5×10‒6 M 

paraquat dichloride.The experimental conditions 

were as follows: Ei = 0 V, Ef = −1.2 V, tacc= 30 s, ʋ= 

20 mV s‒1 and pulse amplitude = −50 mV 
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4.2 (A) Plot peak potential vs. pH and (B) DPCS 

voltammogram of 1.5×10‒6 M paraquat dichloride at 

different pH BRB. The experimental conditions 

were as follows: Ei = 0 V, Ef = −1.2 V, tacc = 30 s, ʋ= 

20 mV s‒1 and pulse amplitude = −50 mV 
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4.3 DPCS voltammogram of paraquat dichloride at pH 

2.0 of 0.04 M BRB. Concentration of analyte: (a) 0, 

(b) 0.5×10‒6 M, (c) 1.5×10‒6 M, and (d) 2.5×10‒6 M.  

The experimental conditions were as follows: Ei= 0 

V, Ef= −1.2 V, tacc= 30 s, ʋ= 20 mV s‒1 and pulse 

amplitude = −50 mV 
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4.4 Optimization of operating parameters for 1.5×10‒6 M 

paraquat dichloride determination using HMDE: (A) 

Ei, (B) Eacc and (C) tacc. The experimental conditions 

were as follows: pH 2.0 of 0.04 M BRB, ʋ= 20 mV 

s−1 and pulse amplitude = −50 mV 
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4.5 (A) DPCS voltammogram corresponding to the 

calibration curve of paraquat dichloride with 

concentrations: (a) 0, (b) 2.5×10−7 M, (c) 5.0×10−7 

M, (d) 7.5×10−7 M, (e) 1.0×10−6 M, (f) 1.25×10−6 M, 

(g) 1.5×10−6 M, and (h) 1.75×10−6 M and (B) 

Calibration plot for DPCSV of paraquat dichloride. 

The experimental conditions were as follows: pH 2.0 

of 0.04 M BRB, Ei= −0.6 V, Ef= −0.7 V, tacc= 30 s, 

ʋ= 20 mV s‒1 and pulse amplitude = −50 mV 
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4.6 DPCS voltammogram of paraquat dichloride with 

increasing concentration: (a) 0, (b) 0.5×10−6 M, (c) 

1.5×10−6 M, and (d) 2.5×10−6 M at pH 2.0 of 0.04 M 

BRB. The experimental conditions were as follows: 

Ei= −0.6 V, Ef= −0.7 V, tacc= 30 s, ʋ= 20 mV s‒1 and 

pulse amplitude = −50 mV 

  

 

 

 

 

60 

4.7 

 

(A) DPCS voltammogram of paraquat dichloride 

after the addition of Cd2+ ion (B) Effect of Cd2+ ion 

on peak current and (C) The effects of metal ion 

concentrations on Ip of paraquat dichloride. The 

experimental conditions were as follows: pH 2.0 of 

0.04 M BRB, Ei= −0.6 V, Ef= −0.7 V, tacc= 30 s, ʋ= 

20 mV s‒1 and pulse amplitude = −50 mV 
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4.8 DPCS voltammogram of 2.5×10‒6 M of 

metsulfuron-methyl in 0.04 M BRB at pH (a) pH 

2.0, (b) pH 3.0 and (c) pH 4.0. The experimental 

conditions were as follows: Ei = 0 V, Ef = −1.2 V, 

tacc = 30 s, ʋ= 20 mV s‒1, pulse amplitude = −50 mV 
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4.9 DPCS voltammogram of metsulfuron-methyl as a 

function of concentration in pH 2.0 of 0.04 M BRB. 

Concentration of analyte: (a) 0, (b) 0.5×10‒6 M, (c) 

1.5×10‒6 M, and (d) 2.5×10‒6 M.  The experimental 

conditions were as follows: Ei= 0 V, Ef= −1.2 V, 

tacc= 30 s, ʋ= 20 mV s‒1 and pulse amplitude = −50 

mV 
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4.10 Optimization of operating parameters for 1.5×10‒6 M 

metsulfuron-methyl determination using HMDE: 

(A) Ei, (B) Eacc and (C) tacc. The experimental 

conditions were as follows: pH 2.0 of 0.04 M BRB, 

ʋ= 20 mV s‒1 and pulse amplitude = −50 mV 
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4.11 (A) DPCS voltammogram corresponding to the 

calibration curve of metsulfuron-methyl with 

concentrations: (a) 0, (b) 2.5×10‒7 M, (c) 5.0×10‒7 

M, (d) 7.5×10‒7 M, (e) 1.0×10‒6 M, (f) 1.25×10‒6 M, 

(g) 1.5×10‒6 M, (h) 1.75×10‒6 M, and (i) 2.00×10‒6 

and (B) Calibration plot for DPCSV of metsulfuron-

methyl. The experimental conditions were as 

follows: pH 2.0 of 0.04 M BRB, Ei= −0.5 V, Ef= 

−0.5 V, tacc= 60 s, ʋ= 20 mV s‒1 and pulse amplitude 

= −50 mV 
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4.12 DPCSV voltammogram of metsulfuron-methyl with 

increasing concentration: (a) 0, (b) 0.5×10‒6 M, (c) 

1.5×10‒6 M, and (d) 2.5×10‒6 M in pH 2.0 of 0.04 M 

BRB. The experimental conditions were as follows: 

Ei= −0.5 V, Ef= −0.5 V, tacc= 60 s ʋ= 20 mV s‒1 and 

pulse amplitude = −50 mV 
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4.13 (A) DPCS voltammogram of metsulfuron-methyl 

with increasing concentration of Pb2+ ion (B) Effect 

of Pb2+ion on Ip and (C) The effects of metal ion 

concentrations on Ip of metsulfuron-methyl. The 

experimental conditions were as follows: pH 2.0 of 

0.04 M BRB, Ei= −0.5 V, Ef= −0.5 V, tacc= 60 s, ʋ= 

20 mV s‒1 and pulse amplitude = −50 mV 
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5.1 DPCS voltammogram of 2.5×10−5 M paraquat 

dichloride at different pH of 0.04 M BRB: (A) bare 

BDDE and (B) Nyl-MBDDE. The experimental 

conditions were as follows: Ei = 0 V, Ef = –1.4 V, 

Eacc = 0 V, tacc = 30 s, ʋ = 20 mV s–1 and pulse 

amplitude = –50 mV 
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5.2 Plot of peak current vs. pH for 2.5×10−5 M paraquat 

dichloride at bare and Nyl-MBDDE. The 

experimental conditions were as follows: Ei= 0 V, 

Ef= −1.4 V, Eacc= 0 V, tacc = 30 s, ʋ= 20 mV s–1 and 

pulse amplitude = −50 mV 
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5.3 DPCS voltammogram of paraquat dichloride at 

optimum pH 10.0 of 0.04 M BRB: (A) bare BDDE 

and (B) Nyl-MBDDE: (a) 0, (b) 0.5×10−5 M, (c) 

1.5×10−5 M, (d) 2.5×10−5 M. The experimental 

conditions were as follows: Ei = 0 V, Ef = −1.4 V, 

Eacc = 0 V, tacc = 30 s, ʋ= 20 mV s–1 and pulse 

amplitude = −50 mV 
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5.4 Effect of voltammetric operating variables on peak 

current at 2.5×10−6 M of paraquat dichloride at 

optimum pH 10.0 of BRB. (A) Ei, (B) Eacc, and (C) 

tacc. The experimental conditions were as follows: 

Ef= −1.4 V, ʋ= 20 mV s–1 and pulse amplitude= −50 

mV 
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5.5 DPCS voltammogram of 2.5×10−6 M paraquat 

dichloride at optimum pH 10.0 of BRB: (A) Nyl-

MBDDE and (B) bare BDDE: The experimental 

conditions were as follows: Ei= −0.3 V, Ef = −1.4 V, 

Eacc= −0.4 V, tacc = 30 s, ʋ= 20 mV s–1 and pulse 

amplitude = −50 mV 
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5.6 Calibration curves and calibration plots for DPCSV 

of (A) bare BDDE and (B) Nyl-MBDDE: (a) 0 (b) 

2.0×10−7 M, (c) 3.0×10−7 M, (d) 4.0×10−7 M, (e) 

5.0×10−7 M, (f) 6.0×10−7 M and (g) 7.0×10−7 M. The 

experimental conditions were as follows: Ei= −0.3 

V, Ef= −1.4 V, Eacc= −0.4 V, tacc= 30 s, ʋ= 20 mV s–1 

and pulse amplitude= −50 mV 
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5.7 Graph peak current of paraquat dichloride vs. added 

concentration of metal ions. (A) bare BDDE and (B) 

Nyl-MBDDE. The experimental conditions were as 

follows: Ei= −0.3 V, Ef= −1.4 V, Eacc= −0.4 V, tacc= 

30 s, ʋ= 20 mV s–1 and pulse amplitude= −50 mV 
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5.8 DPCSV voltammogram of paraquat dichloride (A) 

bare BDDE and (B) Nyl-MBDDE with increasing 

concentration of Cu2+ ion (a) pH 10.0 of 0.04 M 

BRB (b) 2.5×10−6 M paraquat dichloride (c) 0.1 ppm 

Cu2+ ion, (d) 0.3 ppm Cu2+ ion and (e) 0.5 ppm Cu2+ 

ion. The experimental conditions were as follows: 

Ei=  ̶ 0.3 V, Ef=  ̶ 1.4 V, Eacc=  ̶ 0.4 V, tacc = 30 s, ʋ= 

20 mV s–1 and pulse amplitude=  ̶ 50 mV 
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5.9 SEM micrographs of (A) bare BDDE and (B) Nyl-

MBDDE 
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5.10 DPCS voltammograms of 2.5×10 ̶ 5 M of paraquat 

dichloride at different pH BRB: (A) GCE and (B) 

Nyl- MGCE.  The experimental conditions were as 

follows: Ei = 0 V, Ef = −1.4 V, Eacc = 0 V, tacc = 30 s, 

ʋ = 20 mV s–1 and pulse amplitude = −50 mV 

 

  

 

 

 

88 

5.11 Plot of peak current vs. pH for 2.5×10 ̶ 5 M paraquat 

dichloride at bare GCE and Nyl-MGCE. The 

experimental conditions were as follows: Ei= 0 V, Ef 

= −1.4 V, Eacc = 0 V,   tacc = 30 s, ʋ = 20 mV s–1 and 

pulse amplitude = −50 mV 
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5.12 DPCS voltammograms of paraquat dichloride at (A) 

bare GCE (at pH 11.0 BRB) and (B) Nyl-MGCE (at 

pH 10.0 BRB)  with the increasing concentrations 

(a) 0, (b) 0.5×10 ̶ 5 M, (c) 1.5×10 ̶ 5 M, (d)2.5×10 ̶ 5 

M. The experimental conditions were as follows: pH 

BRB 11.0, Ei= 0 V, Ef= −1.4 V, Eacc= 0 V, tacc= 30 s, 

ʋ = 20 mV s–1 and pulse amplitude = −50 mV 
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5.13 Optimization of operating parameters for 2.5×10−6 

M paraquat dichloride determination using bare 

GCE (pH 11.0 of 0.04 M BRB)  and Nyl-MGCE 

(pH10.0 of 0.04 M BRB): (A) Ei, (B) Eacc, and (C) 

tacc. The experimental conditions were as follows: 

Ef= −1.4 V, ʋ = 20 mV s–1 and pulse amplitude= −50 

mV 
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5.14 DPCS voltammogram for  2.5×10−6 M paraquat 

dichloride at (a) bare GCE and (b) Nyl-MGCE at 

optimum conditions as listed in Table 5.6 
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5.15 Calibration curves and calibation plots for  2.5×10−6 

M paraquat dichloride using (A) bare GCE and (B) 

Nyl-MGCE. The experimental conditions were as in 

Table 5.6 
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5.16 Effects of metal ions on the peak current of 2.5×10−5 

M paraquat dichloride at bare GCE in BRB 0.04 M 

at pH 11.0. The experimental conditions were as in 

Table 5.6 
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5.17 Effects of metal ions on the peak current of 2.5×10−5 

M paraquat dichloride at Nyl-MGCE in BRB 0.04 

M at pH 10.0. The experimental conditions were as 

in Table 5.6 
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5.18 Calibration plots for paraquat dichloride using UV-

vis spectrophotometry 
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6.1 Effects of pH on 2.5×10–5 M paraquat dichloride 

analysis at Nyl-MSPE: (A) DPCS voltammogram, 

(B) Peak current vs. pH and (C) Peak potential vs. 

pH. The experimental conditions were as follows: 

Ei= 0 V, Ef= –1.2 V, Eacc= 0 V, tacc= 30 s, ʋ= 20 mV 

s–1 and pulse amplitude = –50 mV 
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6.2 DPCS voltammogram of paraquat dichloride: (A) 

bare SPE (optimal pH 10.0) and (B) Nyl-MSPE 

(optimal pH 9.0): (a) 0, (b) 0.5×10–5 M, (c) 1.5×10–5 

M, (d) 2.5×10–5 M. The experimental conditions 

were as follows: Ei= 0 V, Ef= –1.4 V, Eacc= 0 V, 

tacc= 30 s, ʋ= 20 mV s–1 and pulse amplitude = –50 

mV 
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6.3 Effect of optimization parameters: (A) Ei, (B) Eacc 

and (C) tacc at bare and modified SPE. The 

experimental conditions were as follows: Ef = –1.4 

V, ʋ= 20 mV s–1 and pulse amplitude = –50 mV 
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6.4 

 

DPCS voltammogram for 2.5×10−6 M paraquat 

dichloride at (a) bare SPE and (b) Nyl-MSPE at 

optimum conditions as listed in Table 6.2 
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6.5 Calibration curves and calibration plots for DPCSV 

of (A) bare SPE and (B) Nyl-MSPE at optimum 

conditions (a) 0, (b) 1×10–7 M (c) 2×10–7 M, (d) 

3×10–7 M, (e) 4×10–7 M, (f) 5×10–7 M and (g) 6×10–7 

M. The experimental conditions were as in Table 6.2 
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6.6 (A) DPCS voltammogram of 2.5×10–6 M paraquat 

dichloride analysis using bare SPE with the addition 

of Pb2+ ion, (B) Graph peak current of paraquat 

dichloride vs. added concentration of Pb2+ ion and 

(C) Interference studies of other metal ions. The 

experimental conditions were as in Table 6.2 
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6.7 (A) DPCS voltammogram of 2.5×10–6 M paraquat 

dichloride analysis using Nyl-SPE with the addition 

of Fe3+ ion, (B) Graph peak current of paraquat 

dichloride vs. added concentration of Fe3+ ion and 

(C) Interference studies of other metal ions. The 

experimental conditions were as in Table 6.2 
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6.8 DPCS voltammogram of 3×10–7 M paraquat 

dichloride for water samples analysis at bare SPE 

and Nyl-MSPE: (A) drinking water taken from 

water dispenser, (B) tap water and (C) river water. 

The experimental conditions were as in Table 6.2 
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6.9 SEM micrographs of (A) bare SPE and (B) Nyl-

MSPE 
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6.10 Effects of pH on 2.5×10–5 M paraquat dichloride 

analysis at Nyl-HBPE: (A) DPCS voltammogram, 

(B) peak current vs. pH and (C) DPCS 

voltammogram at optimal pH 10.0: (a) 0, (b) 

0.5×10–5 M, (c) 1.5×10–5 M, (d) 2.5×10–5 M. The 

experimental conditions were as follows: Ei = 0 V, 

Ef = –1.2 V, Eacc = 0 V, tacc = 30 s, ʋ = 20 mV s–1 

and pulse amplitude = –50 mV 
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6.11 Optimization of operating parameters for 2.5×10–6 M 

paraquat dichloride determination using bare HBPE 

(pH 8.0 of 0.04 M BRB)  and Nyl-MHBPE (pH10.0 

of 0.04 M BRB): (A) Ei, (B) Eacc,and (C) tacc. 

Experimental conditions were as follows: Ef= –1.4 

V, ʋ= 20 mV s–1 and pulse amplitude = –50 mV 
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6.12 DPCS voltammogram for  2.5×10–6 M paraquat 

dichloride at bare HBPE and Nyl-HBPE at optimum 

conditions. The experimental conditions were as 

follows: Ei= −0.2 V, Ef= −1.4 V, Eacc= −0.4 V, tacc= 

60 s, ʋ= 20 mV s–1 and pulse amplitude= −50 mV 
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6.13 Calibration curve and calibration plot for paraquat 

dichloride using Nyl-MHBPE at pH 10.0 of 0.04 M 

BRB . The experimental conditions were as follows: 

Ei= −0.2 V, Ef= −1.4 V, Eacc= −0.4 V, tacc= 60 s, ʋ= 

20 mV s–1 and pulse amplitude= −50 mV 
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6.14 Effects of metal ions on the peak current of paraquat 

dichloride at (A) bare HBPE and (B) Nyl-MHBPE. 

The experimental conditions were as follows: Ei= –

0.3 V, Ef= –1.4 V, Eacc= –0.4 V, tacc= 60 s, ʋ= 20 

mV s–1 and pulse amplitude = –50 mV 
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7.1 DPCS voltammogram of 2.5×10−5 M lindane at 

different pH of 0.04 M BRB: (A) bare HBPE: (b) 

pH 6.0, (c) pH 7.0, (d) pH 8.0, (e) pH 9.0, (f) pH 

10.0, (g) pH 11.0 and (B) Nyl-HBPE: (a) pH 5.0, (b) 

pH 6.0, (c) pH 7.0, (d) pH 8.0, (e) pH 9.0. The 

experimental conditions were as follows: Ei= 0 V, 

Ef= −1.4 V, Eacc= 0 V, tacc= 30 s, ʋ= 20 mV s−1 and 

pulse amplitude = −50 mV 
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7.2 Plot of peak current vs. pH for 2.5×10−5 M lindane at 

bare HBPE and Nyl-MHBPE. The experimental 

conditions were as follows: Ei= 0 V, Ef= −1.4 V, 

Eacc= 0 V, tacc= 30 s, ʋ= 20 mV s−1 and pulse 

amplitude = −50 mV 
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7.3 Plot of peak potential vs. pH for 2.5×10−5 M lindane 

at bare HBPE and Nyl-MHBPE. The experimental 

conditions were as follows: Ei= 0 V, Ef= −1.4 V, 

Eacc= 0 V, tacc= 30 s, ʋ = 20 mV s−1 and pulse 

amplitude = −50 mV 
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7.4 DPCS voltammogram of lindane at optimum pH of 

0.04 M BRB: (A) bare HBPE (at pH 8.0) and (B) 

Nyl-MHBPE (at pH 7.0): (a) 0, (b) 0.5×10–5 M, (c) 

1.5×10–5 M, (d) 2.5×10–5 M. The experimental 

conditions were as follows: Ei= 0 V, Ef= −1.4 V, 

Eacc= 0 V, tacc= 30 s, ʋ= 20 mV s−1 and pulse 

amplitude = −50 mV 
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7.5 Effect of Eacc on peak current of 2.5×10–6 M lindane 

at bare HBPE and Nyl-MHBPE.  The experimental 

conditions were as follows: Ei= −0.1 V, Ef= −1.2 V, 

tacc= 30 s, ʋ= 20 mV s−1 and pulse amplitude= −50 

mV 
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7.6 Effect of tacc on peak current of 2.5×10–6 M of 

lindane at bare HBPE and Nyl-MHBPE. The 

experimental conditions were as follows: Ei= −0.1 

V, Ef= −1.2 V, Eacc= −0.1, ʋ = 20 mV s−1 and pulse 

amplitude= −50 mV    
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7.7 DPCS voltammogram of lindane at optimum 

condition: (A) bare HBPE and (B) Nyl-MHBPE: (a) 

0, (b) 0.5×10–6 M, (c) 1.5×10–6 M, (d) 2.5×10–6 M. 

The experimental conditions were as in Table 7.2 
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7.8 Calibration curves and calibration plots for DPCSV 

of (A) bare HBPE and (B) Nyl-MHBPE: (a) 0, (b) 

1×10–7 M, (c) 2×10–7 M, (d) 3×10–7 M, (e) 4×10–7 M, 

(f) 5×10–7 M, (g) 6×10–7 M and (h) 7×10–7 M. The 

experimental conditions were as in Table 7.2 
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7.9 (A) DPCSV voltammogram of lindane with 

increasing concentration of Fe3+ ion (a) BRB pH 8.0 

(b) 2.5×10–6 M lindane (c) 0.1 ppm Fe3+ ion, (d) 0.3 

ppm Fe3+ ion and (e) 0.5 ppm Fe3+ ion under 

optimum operating parameters with scan rate 20 mV 

s−1, (B) Effect of Fe3+ on peak current of lindane and 

(C) Effect of other interfering metal ions on peak 

current of lindane 
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7.10 (A) DPCSV voltammogram of lindane with 

increasing concentration of Cd2+ ion (a) BRB pH 7.0 

(b) 2.5×10–6 M lindane (c) 0.1 ppm Cd2+ ion, (d) 0.3 

ppm Cd2+ ion and (e) 0.5 ppm Cd2+ ion under 

optimum operating parameters with scan rate 20 mV 

s−1 (B) Effect of Cd2+ on peak current of lindane and 

(C) Effect of other interfering metal ions on peak 

current of lindane 
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7.11 DPCS voltammogram of 2.5×10–5 M chlorothalonil 

at different pH of 0.04 M BRB: (A) bare HBPE: (a) 

pH 6.0, (b) pH 7.0, (c) pH 8.0, (d) pH 9.0, (e) pH 

10.0, (f) pH 11.0, (g) pH 12.0 and (B) Nyl-MHBPE: 

(a) pH 4.0, (b) pH 5.0, (c) pH 6.0, (d) pH 7.0, (e) pH 

8.0,  (f) pH 9.0, (g) pH 10.0. The experimental 

conditions were as follows: Ei= 0 V, Ef= −1.4 V, 

Eacc= 0 V, tacc= 30 s, ʋ= 20 mV s−1 and pulse 

amplitude = −50 mV 
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7.12 Plot of peak current vs. pH for 2.5×10–5 M 

chlorothalonil. (A) bare HBPE and (B) Nyl-

MHBPE. The experimental conditions were as 

follows: Ei= 0 V, Ef= −1.4 V, Eacc= 0 V, tacc= 30 s, ʋ 

= 20 mV s−1 and pulse amplitude = −50 mV 
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7.13 Plot of peak potential vs. pH for 2.5×10–5 M 

chlorothalonil at bare HBPE and Nyl-MHBPE. The 

experimental conditions were as follows: Ei= 0 V, 

Ef= −1.4 V, Eacc= 0 V, tacc= 30 s, ʋ= 20 mV s−1 and 

pulse amplitude = −50 mV 
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7.14 DPCS voltammogram of chlorothalonil at optimum 

pH of 0.04 M BRB: (A) bare HBPE (at pH 9.0) and 

(B) Nyl-MHBPE (at pH 8.0): (a) 0, (b) 0.5×10–5 M, 

(c) 1.5×10–5 M, (d) 2.5×10–5 M. The experimental 

conditions were as follows: Ei= 0 V, Ef= −1.4 V, 

Eacc= 0 V, tacc= 30 s, ʋ= 20 mV s−1 and pulse 

amplitude = −50 mV 
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7.15 Effect of Eacc for 2.5×10–6 M chlorothalonil analysis 

at both electrodes. The experimental conditions were 

as follows: Ei= −0.1 V, Ef= −1.2 V, tacc= 30 s, ʋ= 20 

mV s−1 and pulse amplitude = −50 mV 
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7.16 Effect of tacc for 2.5×10–6 M chlorothalonil analysis 

at both electrodes. The experimental conditions were 

as follows: Ei = −0.1 V, Ef = −1.2 V, Eacc= −0.1 V, ʋ 

= 20 mV s−1 and pulse amplitude= −50 mV 
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7.17 DPCS voltammogram of chlorothalonil at optimum 

condition: (A) bare HBPE (at pH 9.0) and (B) Nyl- 

MHBPE (at pH 8.0): (a) 0, (b) 0.5×10–6 M, (c) 

1.5×10–6 M, (d) 2.5×10–6 M. The experimental 

conditions were as follows: Ei= −0.1 V, Ef= −1.4 V, 

Eacc= −0.1 V, tacc= 30 s, ʋ= 20 mV s−1 and pulse 

amplitude = −50 mV 
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7.18 Calibration curves and calibration plots for DPCSV 

of (A) bare HBPE and (B) Nyl-MHBPE: (a) 0, (b) 

1×10–7 M, (c) 2×10–7 M, (d) 3×10–7 M, (e) 4×10–7 M, 

(f) 5×10–7 M, (g) 6×10–7 M and (h) 7×10–7 M. The 

experimental conditions were as follows: Ei = −0.1 

V, Ef = −1.4 V, Eacc = −0.1 V, tacc = 30 s, ʋ = 20 mV 

s−1 and pulse amplitude = −50 mV 
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7.19 DPCSV voltammogram of chlorothalonil (A) bare 

HBPE (at pH 9.0) and (B) Nyl-MHBPE (at pH 8.0) 

with increasing concentration of Cd2+ ion (a) 0 (b) 

2.5×10–6 M chlorothalonil  (c) 0.1 ppm Cd2+ ion, (d) 

0.3 ppm Cd2+  ion and (e) 0.5 ppm Cd2+  ion. The 

experimental conditions were as follows: Ei = −0.1 

V, Ef = −1.4 V, Eacc = −0.1 V, tacc = 30 s, ʋ = 20 mV 

s−1 and pulse amplitude = −50 mV 
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7.20 (A) Plot of peak current vs. pH for 2.5×10–5 M 

chlorothalonil at HMDE and (B) DPCS 

voltammogram of chlorothalonil at optimum pH 8.0 

of 0.04 M BRB: (a)0, (b) 0.5×10–5 M, (c) 1.5×10–5 

M, (d) 2.5×10–5 M. The experimental conditions 

were as follows: Ei= 0 V, Ef= −1.4 V, Eacc= 0 V, 

tacc=30 s, ʋ= 20 mV s−1and pulse amplitude=−50 mV 

  

 

 

 

 

 

152 



43 

7.21 Comparison on electrode performance for 2.5×10–5 

M chlorothalonil analysis at pH 8.0 of 0.04 M BRB. 

The experimental conditions were as follows:          

Ei= 0 V, Ef = −1.4 V, Eacc= 0 V, tacc= 30 s, ʋ= 20 mV 

s−1 and pulse amplitude = −50 mV 
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Nyl-MSPE. The experimental conditions were as 
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ʋ = 20 mV s−1 and pulse amplitude = −50 mV 
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both bare SPE and Nyl-MSPE. The experimental 

conditions were as follows: Ei= 0 V, Ef= −1.4 V, 
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amplitude = −50 mV 
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both bare SPE and Nyl-MSPE. The experimental 
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s−1 and pulse amplitude = −50 mV 
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7.26 Effect of Ei for 2.5×10–6 M lindane analysis at both 

bare SPE and Nyl-MSPE. The experimental 

conditions were as follows: pH 5.0 of 0.04 M BRB, 

Ef = −1.2 V, tacc = 30 s, ʋ = 20 mV s−1 and pulse 

amplitude= −50 mV 
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SPE and Nyl-MSPE. The experimental conditions 

were as follows: pH 5.0 of 0.04 M BRB, Ef = −1.2 

V, tacc= 30 s, ʋ= 20 mV s−1 and pulse amplitude= 

−50 mV   
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7.29 DPCS voltammogram of lindane at optimum 

conditions: (A) bare SPE and (B) Nyl-MSPE: (a) 0, 

(b) 0.5×10–6 M, (c) 1.5×10–6 M, (d) 2.5×10–6 M. The 

experimental conditions were as follows: pH 5.0 of 

0.04 M BRB, Ei = −0.3 V, Ef = −1.4 V, Eacc = −0.3 

V, tacc = 30 s, ʋ = 20 mV s−1 and pulse amplitude = 

−50 mV 
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7.30 Calibration curves and calibration plots for DPCSV 

of lindane (A) bare SPE and (B) Nyl-MSPE: (a) 0, 

(b) 1×10–7 M, (c) 2×10–7 M, (d) 3×10–7 M, (e) 4×10–7 

M, (f) 5×10–7 M, (g) 6×10–7 M and (h) 7×10–7 M. 

The experimental conditions were as follows: pH 5.0 

of 0.04 M BRB, Ei = −0.3 V, Ef = −1.4 V, Eacc = 

−0.3 V, tacc = 30 s, ʋ = 20 mV s−1 and pulse 

amplitude = −50 mV 

 

  

 

 

 

 

 

 

160 

7.31 (A) DPCS voltammogram of lindane with increasing 

concentration of Cd2+ ion (a) 0, (b) 2.5×10–6 M 

lindane (c) 0.1 ppm Cd2+ ion, (d) 0.3 ppm Cd2+ ion 

and (e) 0.5 ppm Cd2+ ion under optimum operating 

parameters with scan rate 20 mV s−1, (B) Graph 

peak current of lindane vs. added concentration of 

Cd2+ ion and (C) Effect of metal ions on peak 

current of lindane 
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7.32 (A) DPCS voltammogram of lindane with increasing 

concentration of Cd2+ ion (a) 0, (b) 2.5×10–6 M 

lindane (c) 0.1 ppm Cd2+ ion, (d) 0.3 ppm Cd2+ ion 

and (e) 0.5 ppm Cd2+ ion under optimum operating 

parameters with ʋ= 20 mV s−1, (B) Graph peak 

current of lindane vs. added concentration of Cd2+ 

ion and (C) Effect of metal ions concentration on 

peak current of lindane 
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7.33 DPCS voltammogram of 2.5×10–5 M chlorothalonil 

at different pH of 0.04 M BRB: (A) bare SPE and 

(B) Nyl-MSPE. The experimental conditions were 

as follows: Ei= 0 V, Ef= −1.4 V, Eacc= 0 V, tacc= 30 

s, ʋ= 20 mV s−1 and pulse amplitude = −50 mV 
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experimental conditions were as follows: Ei= 0 V, 

Ef= −1.4 V, Eacc= 0 V, tacc= 30 s, ʋ = 20 mV s−1 and 

pulse amplitude = −50 mV 
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7.35 Plot of peak potential vs. pH for 2.5×10–5 M 

chlorothalonil at bare SPE and Nyl-MSPE. The 

experimental conditions were as follows: Ei= 0 V, 

Ef= −1.4 V, Eacc= 0 V, tacc= 30 s, ʋ= 20 mV s−1 and 

pulse amplitude = −50 mV 
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7.36 DPCS voltammogram of chlorothalonil at optimum 

pH 6.0 of 0.04 M BRB: (A) bare SPE and (B) Nyl-

MSPE: (a) 0, (b) 0.5×10–5 M, (c) 1.5×10–5 M, (d) 

2.5×10–5 M. The experimental conditions were as 

follows: Ei= 0 V, Ef= −1.4 V, Eacc= 0 V, tacc= 30 s, ʋ 

= 20 mV s−1 and pulse amplitude = −50 mV 
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bare SPE and Nyl-MSPE. The experimental 

conditions were as follows: pH 6.0 of 0.04 M BRB, 

Ef= −1.2 V, tacc= 30 s, ʋ= 20 mV s−1 and pulse 

amplitude= −50 mV 
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at bare SPE and Nyl-MSPE. The experimental 

conditions were as follows: pH 6.0 of 0.04 M BRB, 

Ei = −0.5 V (bare SPE), Ei= −0.6 V (Nyl-MSPE), 
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amplitude= −50 mV 
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7.39 Effect of accumulation time for 2.5×10–6 M 

chlorothalonil analysis at optimal pH 6.0 of 0.04 M 

BRB: (A) bare SPE and (B) Nyl-MSPE. The 

experimental conditions were as follows: Ei = −0.5 
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7.40 DPCS volltamograms for 2.5×10–6 M chlorothalonil 

analysis at optimal pH 6.0 of 0.04 M BRB: (A) bare 

SPE and (B) Nyl-MSPE. The experimental 

conditions were as in Table 7.16 
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7.42 (A) DPCS voltammogram of chlorothalonil with 

increasing concentration of Cd2+ ion (a) BRB pH 6.0 

(b) 2.5×10–6 M chlorothalonil (c) 0.1 ppm Cd2+ ion, 

(d) 0.3 ppm Cd2+ ion and (e) 0.5 ppm Cd2+ion under 

optimum operating parameters with scan rate 20 mV 

s–1, (B) Graph peak current of chlorothalonil vs. 

added concentration of Cd2+ ion and (C) Effect of 

metal ions on peak current of chlorothalonil 
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7.43 (A) DPCS voltammogram of chlorothalonil with 

increasing concentration of Cd2+ ion (a) BRB pH 6.0 

(b) 2.5×10–6 M chlorothalonil (c) 0.1 ppm Cd2+ ion, 

(d) 0.3 ppm Cd2+  ion and (e) 0.5 ppm Cd2+ ion 

under optimum operating parameters with scan rate 

20 mV s–1, (B) Graph peak current of chlorothalonil 

vs. added concentration of Cd2+ ion and (C) Effect of 

metal ions on peak current of chlorothalonil 
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7.44 Calibration plots for lindane using UV-vis 

spectrophotometry 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Water operators or waterworks facilities mainly use conventional treatment 

processes for removing contaminants from the raw water in order to produce safe 

drinking water, as shown in Figure 1.1. The operator generally determines the 

combination of treatment processes that is most appropriate to treat the contaminants 

present in the raw water. The most commonly used processes include coagulation 

and flocculation, sedimentation, filtration, disinfection, and storage followed by the 

distribution of the treated water to the consumers (Verlicchi and Masotti, 2001; 

Berger et al., 2009; Zhou and Haynes, 2010; Chidya et al., 2012; Manda et al., 

2016). The conventional water treatment plant has generally being designed and 

operated to remove mainly the suspended solids and other soluble contaminants 

including micro-pollutants (Jurate et al., 2010; Zhang et al., 2016).  

 

 
 

Figure 1.1 Water treatment processes 
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Micro-pollutants can be defined as the synthetic and natural trace of 

contaminants that are present in the water at lower concentration. The amount of 

micro-pollutants (such as natural organic matter (NOM), antibiotics, pesticides and 

other bioactive chemicals)  present in water resources worldwide are rising thus it 

deteriorates the water quality (Bakouri et al., 2009; Inam et.al., 2013; Writer et al., 

2013; Carmona et al., 2014; Luo et al., 2014; Schaider et al., 2014; Wen et al., 2014; 

Gavrilescu et al., 2015; Rozman et al., 2015; Knopp et al., 2016;). Some of these 

chemicals eg; heavy metals are present in the water naturally, however many are 

synthetic compounds that are produced by human activities which includes industrial 

chemicals, cleaning agents, medicines, pesticides and flame retardants for furniture 

and plastics (Rodrigues, 2007; Jin and Peldszus, 2011; Luo et al., 2014; Postigo and 

Barcelo, 2015). In the treatment process, not all compounds are completely removed 

and the treated water may contain up to several micrograms per litre of 

pharmaceutical products (Vieno et al., 2006; Houtman, 2010; Luo et al., 2014; 

Zhang et al., 2016). Conventional water treatment plants are not able to remove these 

micro-pollutants efficiently (Abdullah, 2003; Nieto et al., 2009; Benner et al., 2013; 

Luo et al., 2014). 

  

Agriculture has always been an important sector of Malaysian economy, also 

it is currently one of the world’s primary exporters of palm oil and natural rubber.  

These together with pepper, pineapple, cocoa and tobacco includes the main crops 

responsible for the growth of this sector. The pesticide industry is one of the most 

important industry that supports the agriculture industries which are utilized to secure 

agricultural or farming products and destroying the pests transmitting risky infectious 

diseases (Manisankar et al., 2005b; Nieto et al., 2009; Boxall, 2012; Inam et al., 

2013; Gill and Grag, 2014; Montory et al., 2016).  

 

Researchers in the pesticide industry are designing new formulations of 

pesticides to meet the global demand where the pesticides should be biodegradable 

and eco-friendly to some range  and only be toxic to the target organisms                 

(Rosell et al., 2008; Gill and Grag, 2014). Conversely, most of the pesticides are 

non-specific and may kill the organisms that are harmless and beneficial to the 

ecosystem. In addition, it has been estimated that only about 0.1% of the pesticides 

reach the target organisms and the residual substance contaminates the surrounding 

http://www.sciencedirect.com/science/article/pii/S0043135416306339#bib60
http://www.sciencedirect.com/science/article/pii/S0043135416306339#bib60
http://www.sciencedirect.com/science/article/pii/S0043135416306339#bib46
http://www.sciencedirect.com/science/article/pii/S0043135416306339#bib57
http://www.sciencedirect.com/science/article/pii/S0043135416306339#bib9
http://www.sciencedirect.com/science/article/pii/S0043135416306339#bib9
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environment such as water, air and soil ecosystem (Gill and Grag, 2014). The 

distribution of pesticides in air, water, soil and organisms is influenced by several 

physical, chemical and biological factors (Priyantha and Weliwegamage, 2008; 

Raghu et al., 2012). There are different ways by which pesticides can get into water 

such as industrial effluent, accidental spillage, surface run off and transport from 

pesticide treated soils including drift into river water, ponds and lakes (Singh and 

Mandal, 2013; Agarwal et al., 2015). Commonly, the pesticides move from fields to 

various water bodies by runoff or in drainage induced by rain or irrigation (Larson et 

al., 2010; Ali et al., 2014). 

 

 To date, numerous analytical techniques have been applied for the 

determination of pesticides in water and other environmental matrices due to their 

effect towards our ecosystem. This includes the developed techniques of 

chromatography (Kafilzadeh, 2015; Caldas et al., 2016; Gui et al., 2016; Lang et al., 

2016), capillary electrophoresis (Rojano-Delgado and Luque de Castro, 2014; 

Elbashir and Aboul-Enein, 2015; Chang et al., 2016; Songa and Okonkwo, 2016; Wu 

et al., 2017), colorimetry (Shi et al., 2013; Bai et al., 2015), spectrophotometry 

(Sharma et al., 2012; Chen et al., 2015; Takegami et al., 2015) and 

electrochemiluminescence (Hu, 2015; Marzari et al., 2017). These described 

methods are associated with some drawbacks such as time consuming involving 

some manipulation steps and expensive.  

 

 Therefore, in an effort to improve difficulties from these methods, the highly 

detective, quick, simple and selective electroanalytical technique for determining 

pesticides has been suggested as an alternative. The electrochemical methods which 

also known as electroanalytical techniques are routinely used in analytical chemistry 

and  they also have been established for measurements in the laboratory regularly for 

fundamental research (Bard and Faulkner, 2001; Shrivastava et al., 2013). The 

electrochemical methods can be catogerized into three techniques such as 

potentiometry, coulometry and voltammetry (Wang, 2004; Shrivastava et al., 2013). 

The voltammetry technique is mostly suitable for the environmental monitoring of 

pesticides (Tonle and Ngameni, 2011; Fischer et al., 2012; Guziejewski et al., 2012).  

http://www.sciencedirect.com/science/article/pii/S0045653516318689#bib1
http://www.sciencedirect.com/science/article/pii/S0045653516318689#bib2
http://www.sciencedirect.com/science/article/pii/S0039914016302855
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 The mercury electrodes including hanging drop mercury, dropping mercury 

and thin mercury film also have been widely used for more than ninety years after 

their introduction and are probably the best sensors for the determination of 

pesticides (Fischer et al., 2012; Barek, 2013). However, this method is not popular 

due to the toxicity of mercury (Fischer et al., 2012; Barek, 2013; Syaza, 2017). 

According to Barek (2013), the recent trends in the field of electroanalytical 

chemistry are focused on the development of electrodes or sensors by using various 

chemical, biological or nanoparticles-based systems. To date, a number voltammetry 

techniques have been developed for the determination of pesticides (Oudou et al., 

2004; Erdogdu and Titretir, 2007; Gaal et al., 2007; Yatmaz and Uzman, 2009; 

Guziejewski et al., 2012; Chen and Chen, 2013; Garcia et al., 2013; Inam et al., 

2013). The use of voltammetric techniques have significant drawbacks due to the 

non-electroactive behaviour of the analyte, resulting in low analytical sensitivities 

and reproducibility of the electroanalytical responses (Gaal et al., 2007; Garcia et al., 

2013).  

 

Lately, modifications of electrodes for the detection of desired analyte by 

means of conductive polymers have received considerable attention because of its 

superior electrical conductivities, good adhesion properties and suitable structural 

characteristics (Manisankar et al., 2006; Swarupa et al., 2013). In view of this, 

several modifed working electrodes have been proposed in this study to replace 

mercury based electrodes. This study has also led to the development of highly 

detective, simple and rapid voltammetric methods for the determination of selected 

pesticides on modified working electrodes.  

 

 

 

1.2       Problem Statement 

 

 

In the second half of the past century, agriculture practices have been 

completely modified when synthetic pesticides have been used to control the pests. 

However, the application of these compounds became a major problem due to the 

possibility of contaminating the ground and surface waters, also having a consequent 
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potential impact on the environment and public health. It also caused the regulatory 

agencies, United States Environmental Protective Agency (USEPA) to establish a 

maximum concentration of 3 μg L-1 in natural waters, while the European 

Community established 0.1 μg L-1 for the same kind of sample (Springer and Lista, 

2010; Wu et al., 2015).  

 

On the other hand, voltammetry technique offers advantages for pesticides 

determinations such as simplicity, high sensitivity and easy operation. Besides, 

stripping techniques are usually accredited due to the exceptional ability to 

preconcentrate the target pesticides through the accumulation step (Syaza, 2017). 

Mercury based electrode was the choice of electrode material for many years and it 

has been extensively used in voltammetry studies. Nonetheless, the toxicity of 

mercury and have restricted the use of mercury electrode (Deylova et al., 2011; 

Syaza, 2017). Thus, an alternative electrode materials are highly preferred in 

voltammetry studies.  

 

The development of “green sensor”, which aims to reduce or eliminate the 

use of substances hazardous to ecosystem is always essential. Therefore, some 

“green sensors” which are safe, detective and simple have been proposed in this 

study for the determination of pesticides with the main target of avoiding the use of 

mercury. By modification of the working electrodes using polymer, it also enhances 

the detectivity of electrodes for pesticides determination. Hence, this study reports on 

the development of highly detective, rapid and simple stripping voltammetry 

technique for the pesticides determination in water samples.  

 

 

 

1.3 Objectives of Study 

 

 

 The aim of this research is to develop new electrochemical sensors for 

determination of selected pesticides in water samples with the following objectives: 
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i. To study the voltammetric behaviour of selected pesticides on different 

types of working electrodes using differential pulse cathodic stripping 

voltammetry (DPCSV). 

ii. To optimize the voltammetric operating parameters for the determination 

of pesticides. 

 

iii. To develop “green sensors” for the determination of selected pesticides 

by utilizing nylon-6,6 as modifier. 

 

iv. To apply the developed methods for determination of selected pesticides 

in real water samples. 

 

 

 

1.4       Scope of Study 

 

 

The determination of pesticides was carried out using DPCSV which has been 

well-recognized as dominant tools for pesticides determinations because of its 

simplicity and easy operation. Although mercury is toxic, hanging mercury drop 

electrode (HMDE) was used to compare with carbon based electrodes (glassy carbon 

electrode (GCE), HB pencil lead electrode (HBPE), screen printed electrode (SPE) 

and boron doped diamond electrode (BDDE)) were used as the working electrodes in 

this study. Five type of pesticides; paraquat dichloride, glyphosate, metsulfuron 

methyl, lindane and chlorothalonil were selected as the target compounds in this 

study. 

 

The first part of this study was focused on the determination of 

electrochemical behaviour of pesticides at various pH using DPCSV. The HMDE, 

GCE, HBPE, SPE and BDDE were applied as the working electrodes to carry out 

this analysis. The operating parameters such as pH of Britton-Robinson buffer, 

accumulation time, accumulation potential and initial potential were optimized in this 

study. 
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The second part of this study was about the application of nylon 6,6 modified 

solid electrodes (glassy carbon electrode (Nyl-MGCE), HB pencil lead electrode 

(Nyl- MHBPE), screen printed electrode (Nyl- MSPE) and boron doped diamond 

electrode (Nyl-MBDDE) for the selected pesticides determination. The potential of 

nylon 6,6 to enhance the detectivity of the proposed methods was evaluated. 

 

In the third part, the optimized parameters were used to analyse pesticides in 

real water samples. The interferences studies was also conducted to observe the 

matrix effects toward determination of the pesticides. Several metal ions such as 

Cu2+, Cd2+, Fe3+, Pb2+ and Zn2+ were used for this interference analysis. The 

efficiency and precision of the newly developed voltammetric methods were 

compared with an analytical method (UV-vis spectrophotometry). 

 

 

 

1.5 Significance of Study 

 

 

Pesticides are widely used throughout the world, they are reported to be 

highly toxic and its presence in the environment poses several serious problems due 

to long-term exposure. Hence, the prevention of their negative effect requires a 

systematic control of its content persistent in the agricultural products, food, soil and 

water. Techniques, such as thin layer chromatography (TLC), high performance 

liquid chromatography (HPLC), gas chromatography (GC), capillary electrophoresis 

(CE) and colorimetry are commonly used for the determination of pesticides. 

However, owing to the high maintenance cost, requires more time and complex 

analysis, these methods are fairly difficult for measurement. On the contrary, the 

electrochemical techniques have attracted increasing levels of interest. This is due to 

the fact that electrochemical methods possess relatively low detection limit and it 

emerged as a better technique in analysing the pesticides or other organic 

compounds.   

 

For this study, the DPCSV with working electrode modifications using nylon 

6,6 were applied for measuring the trace level of pesticides. The development of 

these modified solid electrodes were examined to be more detective for the 
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determination of pesticides. In addition, potential of using nylon 6,6 as modifier on 

the surface of solid electrodes also enhanced the detectivity of DPCSV technique in 

the current pesticides study. Besides that, the results of this research gave an account 

on the application of new electrochemical methods for pesticides study in water 

samples. The developed modified working electorde were presumed more simple and 

safe as compared to mercury electrode. The novelty of this research includes: 

 

i. A novel and detective method for the determination of paraquat 

dichloride, lindane and chlorothalonil on simple and safe “green sensors” 

compared to mercury based electrode (HMDE). 

 

ii. Development of new modified electrodes using nylon 6,6 as modifier 

with better detection performance than the unmodified electrode for 

determination of pesticides in environmental aqueous samples.  

 

 

 

1.6 Thesis Outline 

 

 

 This thesis contains of eight chapters. The first chapter of this thesis 

elaborates comprehensively the basic introduction, problem statement, objectives, 

scope including significance of the study. Chapter 2 compiles the literature review on 

the importance and effect of pesticides, analytical methods for pesticides 

determinations, voltammetry and its application for pesticides analyses. The details 

on conductive polymers and polymeric modification on working electrodes has been 

explained in brief. Chapter 3 explains in details the experimental works of this 

voltammetric studies of selected pesticides, electrodes modification, application of 

newly developed sensors in real water samples, UV-vis analyses as well as 

morphological studies on surface of the developed sensor using SEM. 

 

 The results of this study is discussed in four main chapters. Chapter 4 reports 

on the differential pulse cathodic stripping voltammetric determination of paraquat 

dichloride and metsulfuron-methyl in aqueous samples using hanging mercury drop 

electrode. The obtained optimum voltammetric operating parameters using HMDE 
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