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ABSTRACT 

 

 

 

 

 Low density, biodegradable and non-toxicity magnesium (Mg) has received 

great attention as biodegradable medical implants as it does not require second 

surgical procedure to remove the implant. However, poor corrosion resistance, rapid 

degradation and hydrogen gas evolution in human body fluid have limited its clinical 

application. This research is aimed to investigate the effect of bismuth (Bi) on the 

microstructures and corrosion behavior of Mg based alloy. The first stage of the 

research was focused on the effect of Bi on the binary Mg-Ca alloy by the addition of 

Bi from 0.5 to 12wt.%. The same process was repeated in the second stage by 

replacing binary Mg–Ca alloy with ternary Mg–Ca–Zn alloy. Microstructural 

analysis was conducted by optical microscopy, X-ray diffractometry (XRD), 

scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy 

(EDS). The corrosion resistance was investigated by using in vitro immersion tests 

and electrochemical test in Kokubo simulated body fluid (SBF). The results show 

that the grain size decreased with addition of Bi contents in both Mg-Ca-xBi and Mg-

Ca-Zn-xBi alloys. SEM micrograph shows that the amount of intermetallic phases 

increased with increasing of Bi content in both ternary and quaternary alloys. The 

addition of 0.5 wt.% Bi content was found to enhance the corrosion resistance of 

both Mg based alloys and produced the lowest dissolution rate. Further addition of Bi 

content up to 12wt.% have deteriorate the corrosion resistance. These results show 

that the Bi element would enhance the corrosion behavior of Mg based alloys when it 

is solutes inside the α-Mg matrix. The precipitation of the intermetallic phases was 

detrimental to the corrosion resistance. The overall results show that Mg–Ca–0.5Bi 

and Mg–Ca–Zn–0.5Bi alloys presented highest corrosion resistance hence it can be 

good candidates for biomedical implant applications. 
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ABSTRAK 

 

 

 

 

Magnesium (Mg) mempunyai ketumpatan yang rendah, biodegradasi dan 

tidak beracun telah mendapat penumpuan sebagai bahan implan biodegradasi kerana 

tidak memerlukan pembedahan tambahan untuk menanggalkan implan. Namun 

begitu, rintangan kakisan yang rendah, kadar degradasi yang tinggi dan pembebasan 

gas hidrogen telah mengehadkan aplikasi klinikal aloi Mg. Kajian ini bertujuan untuk 

menyelidik kesan bismuth (Bi) atas struktur mikro dan rintangan kakisan aloi Mg. 

Peringkat pertama kajian ini memberi tumpuan kepada kesan Bi dalam aloi binari 

Mg–Ca dengan penambahan unsur Bi daripada 0.5 ke 12wt.%. Proses yang sama 

telah diulang pada peringkat kedua dengan menggantikan aloi binari Mg–Ca kepada 

aloi ternari Mg–Ca–Zn. Analisis stuktur mikro telah dijalankan dengan 

menggunakan teknik mikroskop optik, pembelauan sinar-x (XRD), mikroskopi 

elektron imbasan (SEM) dan spektrometer serakan tenaga (EDS). Rintangan kakisan 

telah dikaji dengan menggunakan ujian rendaman dan kajian elektrokimia dalam 

larutan Kokubo pada suhu bilik. Keputusan kajian menunjukkan bahawa saiz bijian 

menurun dengan penambahan kandungan Bi ke atas aloi Mg–Ca dan Mg–Ca–Zn. 

Mikrograf SEM pula menunjukkan bahawa fasa antara logam meningkat dengan 

penambahan kandungan Bi. Penambahan 0.5 wt.% Bi ke dalam aloi juga dikenalpasti 

dapat meningkatkan rintangan kakisan dalam kedua-dua aloi dan menghasilkan kadar 

keterlarutan yang paling rendah dan rintangan kakisan yang paling tinggi. Namun 

begitu, penambahan seterusnya hingga 12 wt.% Bi telah mengurangkan rintangan 

kakisan. Keputusan ini menunjukkan bahawa unsur Bi hanya meningkatkan 

rintangan kakisan aloi Mg apabila unsur tersebut terlarut di dalam matriks α-Mg. 

Mendakan fasa antara logam telah mengurangkan rintangan terhadap kakisan. 

Keputusan keseluruhan kajian ini menunjukkan aloi Mg–Ca–0.5Bi dan Mg–Ca–Zn–

0.5Bi memberikan sifat rintangan kakisan tertinggi. Oleh itu, aloi ini boleh 

digunakan dalam aplikasi bahan implan bioperubatan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Background of Study 

 

 

Nowadays, metallic biomaterials have become the trend to produce 

biomedical implants.  According to M. Niinomi et al. [1] metallic biomaterials 

acquire remarkable effect for reconstruction of failed tissue, especially hard tissue.  It 

can help to improve the quality of life of the patient.  Its excellent mechanical 

strength and fracture toughness have made it become the most common implant 

materials [1].  The demand of these implants increased rapidly since the world 

population is getting older and it can help to improve the movement of these elderly 

people.  However, degradation products that formed during the corrosion process of 

metallic biomaterials might generate some unexpected metallic ion when in contact 

with the biological environment which may be toxic [2].  The studies on the toxicity 

potential and inflammatory effect on the release of degradation products to the 

surrounding tissues of metallic biomaterials have become fundamental issues. All of 

this is related to the biodegradable and corrosion behavior of the biomaterials. Thus, 

the studies on these prospective are essential in order to find potential alloys for 

biomaterials.  
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Biodegradable implants are getting substantial attention in biomedical 

applications especially when impermanent orthopedic placement is required.  By 

using these implants, the need for secondary surgery to eliminate them is 

unnecessary [3]. This kind of implant will dissolve and subsequently excreted 

through the urine at a certain pace [4].  The implant aimed to provide the strength 

required during healing process and eventually will absorb by the body [3-5].  No 

implant removal or secondary surgery that might be fatal to the patient especially 

elderly people is required.  In contrast, the use of representative practical metallic 

biomaterials such as stainless steels, titanium (Ti) and cobalt-chromium-based (Co-

Cr) alloys can cause allergies and sensitization in the human body [4].  According to 

Y. Shi et al. [5] the permanent presence of this metallic implant in human body could 

be a trouble since the implant might cause osteoporosis due to mismatch in 

mechanical properties with human bones.  Therefore, metals based on physiological 

trace element like magnesium (Mg) and calcium (Ca) seem to be promising as an 

alternative to current implant materials in cardiovascular and musculoskeletal 

applications [5]. 

 

 

Recently, biodegradable polymers have become the primary materials for 

tissue engineering applications and bone repair implant [6].  Basically, there are two 

types of biodegradable polymer which are natural-based materials (proteins) and 

synthetic polymers (polylactic acid) [6].  Biodegradable polymer have been 

demonstrated to be biocompatible and degraded in vivo into non-toxic components 

with controllable degradation rates by Tan et al. [6].  However, biodegradable 

polymers have relatively low mechanical strength, X-ray transparency and the non-

specificity foreign body reaction, thus their application are normally limited to low 

load-bearing application [6,7].  Metal based biodegradable materials are attracting 

much attention for biomedical applications as the alternative of biodegradable 

polymers owing to their higher load-bearing capacity [7].   

 

 

 Mg–based metals, including pure magnesium and its alloys show great 

potential in biomedical application owing to their easy corrosion in body 

environment [6].  It can be taken as characteristics of biodegradation since most of 

the Mg–based metals only release biosafety absorbed or excreted degradation 
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product [5-8].  Mg-based metals have been used as one of the most suitable bone 

substitute materials since it have similar mechanical properties with natural bones 

with excellent biocompatibility and biodegradability [8].  Mg is a lightweight metal 

with density of 1.74 g/cm
3
. Its density is very similar to those human bones which 

are 1.8 g/cm
3
 [8, 9].  Besides, human body usually contains magnesium 

approximately 35 g per 70kg body weight and the demand for magnesium is about 

375mg [9].  An excess of      is not harmful since it will excretes through urine [8].  

Mg has been considered as bio-safe material that is suitable for body implant due to 

its high daily requirement.   

 

 

 Despite various benefits of Mg and its alloy, there are some limitations that 

restrict the development of it as orthopedic materials.  Firstly, the mechanical 

properties of Mg–based alloys are much lower than those commonly used Ti alloy 

and stainless steel for load bearing bone [6].  The elastic modulus of Mg–based alloy 

is 41-45 GPa which is lower than Ti alloy (110-117 GPa) and stainless steel (189-

205 GPa) [8]. However, the mechanical properties like elastic modulus of Mg–based 

alloys (40GPa) are similar to human bones. Therefore, Mg–based alloys have more 

potential to fabricate as low load bearing implant.  Secondly, the applications of Mg–

based alloys are also restricted due to their relatively low corrosion resistance as well 

as the release of hydrogen gas when exposed to human body fluid [1, 2, 6-10].  These 

phenomena may cause the hemolysis, osteolysis and fast decreases of mechanical 

strength when implant inside human body [6].  According to Gu et al. [12], it takes 

three to four months from fracture callus formation to new bone formation and 

eventually solid bone healing restoring most bone original strength.  However, due to 

the high degradation rate of Mg-based alloy inside human body plasma, most Mg–

based alloy cannot provide sufficient mechanical strength more than three months. It 

might result in the second fracture occurrence on the patients [11, 12].  Thus, various 

researches have been conducted to enhance the corrosion resistance of Mg–based 

alloys and the main focus was alloying [1, 2, 10]. 

 

 

 Nowadays, most of the researches on the biodegradable Mg–based alloy for 

biomedical application are focus on the alloying element such as aluminum (Al), 

zirconium (Zr), manganese (Mn) or rare earth like cerium (Ce) and neodymium (Nd).  
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However the release of these metallic elements inside human body might induce 

toxic effect.  Firstly, Al ions are found to be harmful to the nerve of human body [10] 

and might induce dementia since these can bind to inorganic phosphate causing a 

lack of phosphate in the body [2, 7].  Excess Mn also has been testified to cause 

neurotoxicity that can cause Parkinsonism [2, 13].  Furthermore, the presence of Zr 

has been reported by Song [7] to cause liver cancer, breast cancer, lung cancer, and 

nasopharyngeal cancer.  Some RE elements exhibit anti-cancerogenic properties [13] 

which possess certain potential toxicity to human body [10].  The biosafety and 

biodegradability of Mg–based alloys became the main focus of current research.   

 

 

 Calcium (Ca) is one of the alkaline metal elements that can be tolerated in 

human body [7].  It is a main component of human bone.  Besides, the release of 

Ca
2+

 will also improve the bone healing process [6, 9, 10, 14].  Besides, as Mg, Ca 

also has a low density 1.55 g/cm
3
 which similar to the density of the bones (1.8 – 2.1 

g/cm
3
) [6].  Previous research from Kirkland et al. [14] has shown the effect of Ca 

inside the Mg alloy which greatly improved the corrosion resistance of Mg–based 

alloys.  Researches on binary Mg–based alloys indicate that binary Mg–Ca alloys 

with 0.6-1.5 wt.% Ca provide good mechanical properties and corrosion resistance 

[10, 14, 15].  Another essential element in the human body, Zinc (Zn) also can be 

used to strengthen the Mg–based alloy [6, 14].  The addition of Zn to Mg alloy result 

in enhanced the mechanical strength significantly due to the refinement of grain [14].  

The results have been promising, since some Mg–Ca–Zn reported to show better 

corrosion resistance and mechanical properties [10, 14, 15].  Integrating two of the 

most biocompatible elements diminishes any possibility of toxicity-related problems 

when placed in human body [14]. 

 

 

 The development of Mg–Ca and Mg–Ca–Zn alloy has currently reached a 

saturated form.  However, further improvement is still necessary especially in 

improving the corrosion resistance of the alloy.  Adding another alloying element 

was one of the best options where heavy metal element, bismuth (Bi) might be a 

good choice of it.  According to Yang et al. [6], Bi compound are almost non-toxic, 

and it is significantly less toxic than arsenic and antimony which are in the same 

group with Bi in the periodic table.  It is not bio-accumulative [3] and purified Bi 
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metal can be used in the preparation of various pharmaceutical products and it has 

long been used in medicine [16-18].  Moreover, Bi is neither essential nor 

stimulatory in human and its biological half-life for whole body retention is five days 

[19].  However, if patients were treated extensively with bismuth compound, it might 

damage their kidney and liver [3, 18, 19].  The toxicity of bismuth is depended on the 

rate at which soluble bismuth is available intravenously, whereas slow admiration is 

well tolerated [3].  Addition of Bi to magnesium alloy has also been reported to 

improve the tensile strength and creep resistance significantly [16, 17].   

 

 

Researches on the properties of Mg–Ca and Mg–Ca–Zn alloys as well as the 

corrosion and degradation mechanism of the alloys had been conducted by other 

researcher previously [6-8]. However, the study on the relationship between these 

properties and the microstructure of the alloys had received little attentions.  It is 

obvious that comprehensive studies on this area are essential to increase the usage of 

these alloys for biomedical applications.  Therefore, the main approach of this 

research is to investigate the effect of alloying element such as Bi on microstructure 

and corrosion behavior of binary Mg–Ca and ternary Mg–Ca–Zn alloys and whether 

these Mg-based alloys are potential to be used as biomedical implant. 
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1.2 Problem Statement 

 

 

Magnesium has many advantages over traditional metallic materials, 

ceramics and biodegradable polymers. However, the poor corrosion resistance of 

pure magnesium inside human body plasma has hindered its biomedical applications. 

Besides, clinical application of magnesium is also limited by the release of hydrogen 

gas when exposed to human body fluid.  These characteristics deteriorate the 

mechanical properties of pure magnesium before the new tissues healed properly.  

Therefore, it is necessary to improve the biodegradable and corrosion behavior of 

Mg–based alloys by addition of alloying element. Many researches on the binary 

Mg–Ca and ternary Mg–Ca–Zn alloys have shown its excellent properties and 

biocompatibility. Ca is a major component of human bone and can accelerate the 

bone growth. Additional of Zn element can enhance the tensile strength and 

corrosion resistance of Mg-based alloy. However, most of the Mg-based alloys still 

have not reach the sufficient corrosion behavior for orthopedic application. Thus, the 

additional of another alloying element to binary Mg–Ca and ternary Mg–Ca–Zn 

alloys is expected to further improve the corrosion behavior of it.  It has been 

reported that bismuth. Bi has been use in many pharmaceuticals like anticancer and 

anti-inflammation products for many years and Bi can help to enhance the corrosion 

effect as alloying element. Consequently, Bi was a potential candidate to further 

improve the corrosion behavior of Mg-based alloy. 
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1.3 Objectives of the Study 

 

 

The aim of the research is to investigate the effect of bismuth in various magnesium 

alloys for biomedical implant. Specific objectives are: 

 

i. To fabricate the ternary Mg-Ca–xBi and quaternary Mg–Ca–Zn–xBi alloys. 

ii. To identify the surface morphology, microstructures and phases of ternary 

Mg–Ca–xBi and quaternary Mg–Ca–Zn–xBi alloys before and after corrosion 

test. 

iii. To investigate the corrosion behavior of ternary Mg–Ca–xBi and quaternary 

Mg–Ca–Zn–xBi alloys.  

 

 

 

 

1.4 Scopes of the Research 

 

 

The scopes of the research cover the followings: 

 

i. Mg–based alloys namely Mg–Ca and Mg–Ca–Zn were used as the main 

materials. They were produced by casting. 

ii. Bismuth was used as the main alloying element to improve the properties of 

the magnesium alloys.  The additions to the alloy were limited to between 0.5 

to 12 wt.%. 

iii. The responses on the effect of bismuth addition are limited to the 

microstructure analysis, corrosion rate and corrosion properties of Mg–Ca–

xBi and Mg–Ca–Zn–xBi. 

iv. The specimens were subjected to microstructural characterization using 

optical microscopy, X-ray diffractometry, Fourier-transformed infrared 

spectroscopy, scanning electron microscopy and energy dispersive X–ray 

spectroscopy. 

v. The corrosion resistance was examined in-vitro by electrochemical test and 

immersion test in Kokubo stimulated body fluid (SBF) solutions at room 

temperature.  
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