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ABSTRACT

Wavelength tuning of laser with conventional thermal based technique is a very

slow process. The tuning speed is limited by the rate of heat transfer via thermal

conduction of the temperature controller to the wavelength tuning element. Recent

studies show that non-thermal plasma (NTP) can achieve fast gas heating due to the

existence of additional heating channels. Utilizing the advantage of these heating

channels, the temperature of the gas within the plasma reactor can be varied rapidly.

This study presents the development of a thermal based wavelength tuning technique

for fiber laser with NTP as the solution to improve the tuning speed. The NTP

is generated by means of dielectric barrier discharge (DBD). Fiber Bragg grating

(FBG) has been applied as temperature sensor owing to its immunity to the influence

of electromagnetic interference in the plasma environment. The wavelength tuning

process has been carried out by using the DBD plasma reactor as a temperature

regulator that provides temperature conditioning for the laser resonator. The emission

spectrum of the fiber laser has been monitored from time to time with an optical

spectrum analyzer (OSA). The results show that the emission wavelength of laser

shifts when there is a temperature change in the laser resonator. Besides, the tuning

range and the temperature tuning resolution achieved depend on the given discharge

condition to generate the plasma. Using Helium plasma generated at 5 kV, a tuning

range of 3.027 nm and tuning resolution of 11.57 pm °C−1 can be achieved. During

the tuning process, temperature varied from 25 °C to around 300 °C. It takes only about

10 minutes to complete the process. The laser emission is also thermally stable as it

shows a very low shifting when the temperature is kept constant. In conclusion, the

emission wavelength of fiber laser is successfully tuned by the NTP based temperature

regulator.
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ABSTRAK

Penalaan panjang gelombang laser gentian berdasarkan teknik terma yang

biasa merupakan satu proses yang sangat perlahan. Kelajuan penalaan adalah

dihadkan oleh kadar permindahan haba secara konduksi terma daripada pengatur

suhu kepada elemen panala panjang gelombang. Kajian terkini menunjukkan bahawa

kebolehan plasma bukan terma (NTP) memanaskan gas dengan cepat disebabkan oleh

kewujudan saluran pemanasan tambahan. Dengan menggunakan kelebihan saluran

pemanasan ini, suhu gas di dalam reaktor plasma dapat diubah dengan cepat. Kajian

ini berkaitan dengan pembangunan teknik penalaan panjang gelombang bagi laser

gentian yang berdasarkan terma dengan menggunakan NTP sebagai solusi untuk

mempercepatkan kelajuan penalaan. NTP telah dijana secara pelepasan halangan

dielektrik (DBD). Parutan Bragg gentian (FBG) digunakan sebagai penderia suhu

oleh kerana kekebalannya daripada pengaruh ganguan elektromagnet di persekitaran

plasma. Proses penalaan panjang gelombang dilakukan dengan menggunakan reaktor

plasma DBD sebagai pengatur suhu yang membekalkan suhu yang ditetapkan kepada

resonator laser. Spektrum pancaran laser gentian telah dipantau dari masa ke masa

dengan menggunakan penganalisis spektrum optik (OSA). Hasil kajian menunjukkan

peralihan panjang gelombang pancaran apabila suhu resonator laser berubah. Selain

daripada itu, julat penalaan dan resolusi suhu penalaan yang dapat dicapai bergantung

kepada keadaan pelepasan untuk menghasilkan plasma. Dengan menggunakan plasma

Helium yang dihasilkan pada 5 kV, julat penalaan sebanyak 3.027 nm dan juga resolusi

penalaan sebanyak 11.57 pm °C−1 boleh dicapai. Semasa proses penalaan, perubahan

suhu adalah daripada 25 °C kepada sekitar 300 °C. Ia mengambil masa lebih kurang

10 minit untuk melengkapkan proses tersebut. Pancaran laser adalah stabil secara

terma oleh kerana peralihan panjang gelombang adalah sangat sedikit apabila suhu

dikekalkan. Kesimpulannya, panjang gelombang pancaran laser gentian telah berjaya

ditalakan dengan menggunakan pengatur suhu yang berasaskan NTP.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

The rise of fiber laser has been a trend in laser technology. This class of

laser has been dominating the market share of laser industry for many years. The

rapid growth is often associated to its reliability, efficiency and flexibility. Fiber laser

technology plays an important role in our daily life. Many applications of fiber laser

have been developed for supporting new manufacturing processes, sensing purposes,

health care management as well as telecommunications [1]. The attention given to fiber

laser has not been cease ever since its first demonstration by Snitzer in 1961 [2]. Over

the years, this class of laser has received extensive on-going research and development

in order to improve its performance. Advancing in fiber laser technology continues

to deliver cutting edge products to mankind. High power fiber laser has been applied

for material processing, especially in cutting, drilling, brazing, welding, annealing and

engraving purposes. It even changes the material cutting market which is previously

dominated by CO2 lasers. Recently, a fiber laser that can attain power as high as 10

kW has been reported [3].

While most laser emission occurs a particular wavelength, in some

applications, it is desirable to have adjustable output spanning a certain range of

wavelength. This refers to the case of applying fiber laser in optical fiber sensing,

wavelength division multiplexing, compact photonic device design and optical signal

processing [4–6]. The tunability of laser is further divided into a few types based

on the wavelength accessibility. It can be customized to fulfill the requirement of a

certain functions. Currently available tuning mechanisms allow lasers to be single

line or multi-line tuned as well as having narrow or broad tuning range. Tunable

lasers can provide a broad selection of accessible wavelengths which is essential for

telecommunication purposes. Besides that, tunable laser is also a cost effective product
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that realize different laser emission with the same configuration of laser, instead of

having multiple laser systems.

The laser tunability can be achieved via modification of the gain medium or

the resonator. For the distributed feed back laser and distributed Bragg reflection

laser, their wavelength emission can be tuned using thermal approach. This is because

the wavelength selectivity of this type of laser depends on the spacing and refractive

index of the grating. It allows the emission wavelength of a laser to be o be thermally

controlled [7] thorough the thermal expansion and thermal-optic effect. Both factors

are sensitive to temperature change of the surrounding. The tunable performance

provided by thermal tuning mechanism is less sensitive to the mechanism disturbance

that potentially damage the laser structure. The cost of ownership is therefore reduce

since it does not require frequent maintenance.

Based on the study conducted by Liu et. al. [8], the neutral gas temperature of

plasma can be manipulated by generating the plasma using electrical power at different

frequency. The rise and fall of the neutral gas temperature are exponential with the

power supplied. This suggests rapid temperature manipulation can be realized with the

application of plasma. The plasma generator itself can be considered as a temperature

regulator. For laboratory scale, the plasma can be generated using dielectric barrier

discharge arrangement. It is a common method to obtain non-thermal plasma [9].

Utilizing the heating effect of plasma, it is possible to increase the performance of

thermal based laser tuning mechanism by reducing the time consumption for the

heating and cooling process. Jidenko et. al. [10] has successfully demonstrated thermal

conditioning using filamentary dielectric barrier discharge.

Temperature measurement in high voltage and high electromagnetic

interference condition has always been a challenge for conventional electronic based

thermometers. In such harsh environment, the electronic sensors are susceptible to

high level of noise which will jeopardize the credibility of the data acquired due to

malfunction [11]. This makes the electrical sensors not suitable for the thermometry in

plasma. As an answer to the challenge, optical based sensing technique is developed.

The optical components are connected together by optical fiber to achieve sensing

performance. Since their working principle is based on optical signal, they are immune

to electrical noises. There has been some studies implementing FBG based optical

sensors for thermometry in plasma system [8, 12–14].
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1.2 Problem Statement

Thermal tuning is one of the commonly used technique in adjusting the

emission wavelength of laser. It can provide large tuning coefficient [15] and tuning

range of a few nanometer wide [16]. However, most thermal tuning mechanisms bare

the weakness of having very slow tuning speed [17]. This is because the traditional

thermal tuning method for fiber laser mainly rely on the heat transfer via thermal

conduction. Since it is a very slow process, the wavelength tuning is time consuming.

In order to improve the efficiency of thermal tuning in term of time consumption,

one of the approaches is to perform the temperature conditioning rapidly. This would

require a device that can modify the surrounding temperature swiftly. There has

been literature reporting the application of non-thermal plasma in rapid heating of

gases. The non-thermal heating mechanisms in the plasma can provide fast heating

channels to manipulate the gas temperature rapidly [18, 19]. This makes the dielectric

barrier discharge plasma reactor a potential candidate to be applied as temperature

regulator in thermal tuning process since it is a frequent method to generate non-

thermal plasma. In order to examine the wavelength tuning performance of the plasma

reactor, comprehensive studies need to be conducted.

1.3 Objective of Study

(a) To design a temperature regulator based on dielectric barrier discharge

arrangement.

(b) To develop a wavelength tuning mechanism for fiber laser using the

dielectric barrier discharge temperature regulator.

(c) To determine the wavelength tuning performance of the dielectric

barrier discharge temperature regulator.

1.4 Scope of Study

A plasma reactor was fabricated using dielectric barrier discharge

configuration. The plasma was discharged with AC voltage ranged between 3 kV

and 8 kV. Helium and Nitrogen was applied as the plasma carrier gas. The pressure

of the carriers gases was maintained at a constant flow rate of 50 sccm using a mass

flow controller. The plasma gas temperature was measured using fiber Bragg grating
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