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ABSTRACT 

Sulphur hexafluoride gas insulated switchgear (GIS) is widely used in electrical 

power supply system and therefore needs regular preventive maintenance. Usual diagnosis 

methods used are based on acoustic, optical, electrical and ultra high frequency techniques. 

A new method with great potential is using gas by-products analysis. Previous gas by-

products research is confined to a plane-plane electrode instead of typical coaxial GIS 

configuration, a limited number of defect types and the by-products analysis using gas 

chromatography. In this thesis, partial discharge experiments using a purposely designed 

coaxial GIS chamber were carried out to expand the diagnosis database for a new set of 

simulated defects represented by three categories, namely sole defect, hybrid defect, and 

material dependent defect. A total of eight defects namely, free conducting particle, 

electrode to dielectric void, electrode protrusion, fixed particle aluminium on spacer, fixed 

copper particle on spacer, electrode protrusion-fixed copper particle hybrid, electrode 

protrusion-free copper particle hybrid, and electrode to dielectric void-free copper particle 

hybrid were simulated. In each experiment lasting up to 50 hours, continually applied 

voltage at 0.2 MPa pressure, samples of gas by-products were taken at 10 hour intervals 

for an off-line Fourier transform infrared spectrometer gas analyses. A total of 12 gas by-

products due to partial discharge activity in all defects were detected. Arranged according 

to significance, these are hexafluoroethane, sulphur dioxide, sulfuryl fluoride, 

octafluoropropane, silicon tetrafluoride, thionyl fluoride, carbon monoxide, disulfur 

decafluoride, hydrogen fluoride, tetrafluoromethane, carbonyl sulphide and tetrafluoride. 

Arranged according to significance, the most harmful gases are produced by the defects 

such as electrode protrusion-fixed copper particle hybrid, fixed copper particle, electrode 

protrusion-free copper particle hybrid and electrode protrusion. The type, number, 

concentration and chemical stability of by-product gases are found to be closely correlated 

to the type of defect. Further analyses using pattern recognition with eight algorithms 

based on the presence and concentration of the gas by-products were carried out. The 

random forest algorithm successfully recognises a given defect with an accuracy of 87.5%. 

The performance of the random forest algorithm is 1.5 times better than the next best 

algorithm. This research illustrates the feasibility and applicability of an effective GIS 

diagnostic using gas by-products analyses, in particular, using the random forest pattern 

recognition. 
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ABSTRAK 

Gas penebat perkakas suis (GIS) sulfur hexafluorida digunakan secara meluas 

dalam sistem bekalan kuasa elektrik dan oleh yang demikian ia memerlukan 

penyelenggaraan pencegahan yang kerap. Kaedah diagnosis yang biasa digunakan adalah 

berasaskan teknik-teknik akustik, optik, elektrik dan frekuensi ultra tinggi. Kaedah baru 

yang berpotensi besar adalah dengan menggunakan analisis gas produk sampingan. 

Penyelidikan gas produk sampingan sebelum ini terhad kepada elektrod satah-satah dan 

bukannya konfigurasi kabel sepaksi untuk GIS, bilangan jenis kecacatan yang terhad, dan 

analisis produk sampingan menggunakan kromatografi gas. Dalam tesis ini, ujikaji discas 

separa menggunakan GIS sepaksi koaksial direka untuk memperluaskan lagi pangkalan 

data diagnosis untuk satu set kecacatan baru yang diwakili oleh tiga kategori, iaitu 

kecacatan tunggal, kecacatan hibrid dan kecacatan yang bergantung kepada jenis bahan. 

Lapan kecacatan yang digunakan adalah zarah bebas, rongga dielektrik ke elektrod, 

penonjolan elektrod, zarah tetap aluminium pada penjarak, zarah tembaga tetap pada 

penjarak, hibrid zarah tembaga tetap-penonjolan elektrod, hibrid zarah tembaga bebas-

penonjolan elektrod dan hibrid zarah tembaga bebas-rongga dielektrik ke elektrod. Dalam 

setiap eksperimen yang berlanjutan sehingga 50 jam, voltan berterusan dikenakan pada 

tekanan 0.2 MPa, sampel gas diambil selang 10 jam bagi analisis gas spektrometer jelmaan 

Fourier inframerah secara luar-talian. Sejumlah dua belas gas produk sampingan 

disebabkan oleh aktiviti discas separa untuk semua kecacatan telah dikesan. Diatur 

mengikut kepentingannya, produk sampingan terhasil adalah heksafluoretana, sulfur 

dioksida, sulfuril fluorida, oktafloropropana, silikon tetrafluorida, tionil fluorida, karbon 

monoksida, disulfur dekafluorida, hidrogen fluorida, tetrafluorometan, karbonil sulfida 

dan tetrafluorida. Dirumuskan mengikut kepentingannya, gas yang paling berbahaya 

dihasilkan oleh kecacatan seperti hibrid penonjolan elektrod-zarah tembaga tetap, zarah 

tembaga tetap, hibrid penonjolan elektrod-zarah tembaga bebas dan penonjolan elektrod. 

Jenis, bilangan, ketumpatan dan kestabilan kimia gas produk sampingan didapati berkait 

dengan jenis kecacatan. Analisis lanjut menggunakan pengenalan corak dengan tujuh 

algoritma berdasarkan kehadiran dan ketumpatan gas produk sampingan dijalankan. 

Algoritma hutan rawak berjaya mengenal pasti kecacatan yang dianalisis dengan 

ketepatan 87.5%. Prestasi algoritma hutan rawak adalah 1.5 kali lebih baik daripada 

algoritma terbaik seterusnya. Kajian ini menggambarkan kebolehlaksanaan dan 

kebolehgunaan diagnostik GIS yang berkesan menggunakan analisis gas produk 

sampingan, khususnya menggunakan pengenalan corak hutan rawak. 
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1 INTRODUCTION 

1.1 Research Background 

In any modern society, the social welfare and economic development depend 

exclusively on the availability of reliable and cheap supply of functional electrical 

energy. Extensive electrical power system installation network at high voltage in 

industrialized countries have been built and in developing countries, they are being 

constructed at an ever-increasing rate for the purpose of transporting electrical energy 

or power to consumers (industries, research laboratories, homes, and etcetera) for the 

sustenance of modern civilization [1]. A large amount of electrical power is generated, 

transmitted and distributed by the power system network over a long distance is best 

accomplished using high voltage for achieving efficiency, reliability, and economy, 

thus high voltage equipment (including gas insulated switchgear) are required. In 

short, high voltage equipment serve as the backbone of a modern power system [2, 3]. 

Gas insulated switchgear (GIS) is an electromechanical device that comprises 

the combination of electrical switches, fuses, circuit breakers, current and capacitive 

voltage transformers, and etcetera, that is used to control, protect and isolate various 

other high voltage equipment. A switchgear is also used to de-energize high voltage 

equipment in a power system network to enable fault of all types to be rectified [4, 5]. 
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Gas insulated switchgear is one of the main devices of the electricity 

transmission and distribution infrastructure that is used to transfer power from power 

stations to consumers because of its high reliability and performance, compact in 

dimension, non-explosive, long lifespan (about 40-50 years), low maintenance 

requirements during its whole lifetime, outstanding compatibility with the 

environment, and ability to interrupt fault current in a power system network. 

Furthermore, its operation is noiseless and well insulated against external 

interferences, such as changes in weather or electromagnetic environment [6-10]. The 

increase in demand for electricity and the growing energy density in the metropolitan 

areas have made it necessary to extend the high voltage network right up to the 

consumer unit in an economical manner while ensuring a high degree of quality and 

reliability of supply. Gas insulated switchgear in gas insulated substation provides the 

best solution to this challenge [11]. 

A gas insulated switchgear uses sulphur hexafluoride (SF6) gas as an insulant 

and coolant in view of the fact that it has superior dielectric properties with excellent 

arc quenching properties compared to air and vacuum [12-16]. SF6 gas is inert in 

nature, odourless, colourless, tasteless, chemically stable, non-toxic, non-inflammable 

and has high vapour pressure (about 21 bar at ambient temperature) [7, 17-20]. It can 

be used down to -35 C without liquefaction occurring at pressures typical to its 

application (about 5 bar) [21]. In addition to its high dielectric strength, it also has 

good thermal transfer characteristics. SF6 gas has high (three times that of air) and 

reasonably constant dielectric strength over a wide range of frequencies.  At about 6 

bar pressure, its dielectric strength is approximately equal to that of the transformer oil 

[21]. 

 Although SF6 has high and constant dielectric strength, it is a brittle gas. This 

means ionization will build up very rapidly if the critical field strength of SF6, which 

is at 89 kV/cm bar, is exceeded during a GIS operation [21]. In practice, this can 

happen in the vicinity of any small defect, such as due to a contamination in the form 

of a free conducting particle or a fixed conducting particle on the surface of the GIS 

spacer, a protrusion or a sharp point on the high voltage or ground electrodes, and a 



3 

 

gap or void at the electrode or dielectric interface [11, 21]. These defects will cause 

partial discharge to occur and its characteristics is dependent on the nature of a 

particular defect. The partial discharge which occurs due to the local field 

enhancement may eventually result in the lowering of the insulation maximum 

operating stress to about 20-80 % of the designed value, and hence, premature failure 

of GIS [22]. Such failures are sometimes sudden, catastrophic and almost include 

irreversible internal damage of the system resulting in power outages in the system 

network that in turn paralyze economic and other activities, incur personal and 

environmental hazards, and incur high cost of equipment replacement. Therefore, 

being one of the critical assets, the GIS equipment should be monitored closely and 

continuously using a reliable and effective technique to assess its operating condition 

and to diagnose fault early so as to ensure its maximum uptime [23]. 

1.2 Research Motivation 

About 85% of GIS disruptive failure is caused by partial discharge [1, 15, 24]. 

The failure of live assets is often sudden and catastrophic, with the release of large 

amounts of energy, leading to explosion and fire resulting in an unrepairable damage 

to substation equipment, injury or death of personnel working in the substation, and a 

power outage that will paralyze economic, social, educational, military, security and 

medical activities. When a dielectric failure occurs in the GIS, the arc will not be 

extinguished by the insulant gas; this will lead to an internal build up pressure that will 

drill a hole in the metal wall of the GIS due to the concentration of the arcing thereby 

causing SF6 gas that is a highly potent greenhouse gas to leak into the atmosphere, 

then causing global warming. 

Sulphur hexafluoride (SF6) is a highly potent greenhouse gas with a global 

warming potential of about 24,000 times greater than carbon dioxide (CO2) [17, 25]. 

SF6 gas also has an atmospheric lifespan of about 3,200 years, so it will contribute to 

global warming for a very long time. One pound of SF6 gas has the global warming 

equivalent of 11 tonnes of CO2 [13, 17, 25-27]. 
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Under high-temperature conditions, SF6 gas decomposes into by-products that 

are toxic and corrosive. The decomposition by-products can exist when SF6 gas is 

exposed to spark discharge, partial discharge, and switching arc. These by-products 

are in the form of gases or powders. It can affect human health and cause the following 

ill health in humans: irritation to the eyes, nose, and throat, pulmonary oedema and 

other lungs damage, skin and eye burns, nasal congestion, bronchitis and body rashes 

[13, 28-33]. 

In order to avert the occurrence of the above-stated problems, researchers in 

the world employed techniques to monitor and diagnose partial discharge in GIS. 

These techniques are photo diagnostic technique, acoustic diagnostic technique, 

electrical diagnostic technique, ultra-high frequency (UHF) diagnostic technique, and 

chemical by-product diagnostic technique [1, 15]. 

 Photo, acoustic, electrical and UHF diagnostic techniques are based on the 

measurement of energy released by the PD activities. Among the released energy are 

in the form of electromagnetic and acoustic emissions. The magnitude of the energy 

released can be correlated with the level of SF6 deterioration. Even though these 

methods perform effectively to some extent, the bottleneck of these methods is the 

ingress of external interferences, such as noise and electromagnetic interference. The 

interferences directly affect the sensitivity and reliability of the acquired PD data [34, 

35]. Furthermore, these methods can be likened to as symptoms diagnostic techniques 

since the measurements are based on only the released PD energy. Hence, there is a 

need for an effective and more reliable technique for condition monitoring and 

diagnosis of GIS.   

1.3 Problem Statement 

The causes of defect occurrence inside a GIS could be due to many factors, 

such as poor machining during GIS manufacturing, vibration during transportation or 

assembly of GIS, undetected scratches on electrodes, poor electrical contacts, and 
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mechanical abrasion movement of the conductor during load cycling  [1, 5, 6, 54, 55]. 

The presence of defects results in the nuisance occurrence of partial discharges during 

GIS operation. There are several existing techniques used to detect the partial 

discharge occurrence in a GIS. A technique based on the detection of chemical by-

products in a GIS as a result of partial discharge occurrence is still being studied by 

many researchers. In the studies, a chosen defect is purposely introduced inside the 

GIS so as to determine the resultant by-product gases. All of the introduced defects 

can be categorised as sole defect, that is, only one type of defect occurs at a given time. 

Examples of sole defects are a void in a solid dielectric, free conducting particles in 

the chamber, an electrode protrusion, and fixed conducting particles on a spacer. The 

effects of two defects occurring simultaneously are yet to be studied.   

Apart from the limitation of using only a sole defect, previous studies are also 

limited in terms of experimental configuration, whereby only a plane-plane electrode 

configuration was used instead of a coaxial configuration which is more typical of a 

real GIS chamber. In terms of results, previous studies reported only a limited number 

of by-product gases, namely, thionyl fluoride (SOF2), sulfuryl fluoride (SO2F2), 

tetrafluoromethane (CF4), and carbon dioxide (CO2). This could be due to the 

inferiority of the gas chromatography technique used for by-product gas detection [34-

36].  

A reliable partial discharge detection technique in a GIS using the by-product 

gas detection requires more practical results and analyses based on actual GIS 

configuration and all possible occurrences of defects. In view of the above-stated 

limitations, there is a need for a new study using an improved and more effective 

methodology to give the desired results. 
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1.4 Objectives 

The main objective of this research is to develop an improved, effective, and 

more reliable method of gas analysis technique for condition monitoring and diagnosis 

of gas insulated switchgear. The specific objectives of this research are; 

i. To formulate an experimental setup for partial discharge studies consisting 

of a prototype coaxial gas chamber typical to real life GIS, PD artificial 

defects, PD detector systems, and Fourier transform infrared spectrometer. 

ii. To perform PD gas by-product experiments on three categories of defects, 

namely, sole, hybrid, and material dependent.  

iii. To determine the correlation between PD by-product gases produced and 

the type of defect causing the PD.  

iv. To propose and implement an accurate PD causing defect classification 

using a suitable pattern recognition algorithm. 

1.5 Scope of Work 

The scope of this research covers the staging of an experimental setup for 

partial discharge studies using a coaxial gas-insulated switchgear apparatus prototype 

and designed artificial defects. The defects used are limited to three categories, as 

mentioned above, to give a total of eight types of PD artificial defects. The gas 

detection only utilises the FTIR spectrometer technique. Defect classification is carried 

out using one technique, namely, the pattern recognition (random forest algorithm). 

However, eight different algorithms are investigated to determine the best among 

them.  

1.6 Research Contributions 

The main contributions of this thesis work are outlined as follows: 
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i. GIS Chamber Prototype for PD Studies 

This study has successfully formulated an experimental setup using a GIS 

coaxial chamber prototype typical to real life GIS with three categories of 

purposely introduced defects, namely, sole, hybrid, and material dependent 

defects. The chamber is capable of being energised up to 70 kV and 

pressurised up to 10 bars. A total of eight simulated defects are free 

conducting particle, electrode to dielectric void, electrode protrusion, fixed 

particle aluminium on the spacer, fixed copper on spacer, electrode 

protrusion-fixed copper particle hybrid, electrode protrusion-free copper 

particle hybrid, and electrode to dielectric void-free copper particle hybrid. 

ii. Newly detected PD by-product gases 

The use of FTIR for gas analysis has enabled more by-product gases to be 

detected. A total of twelve gas by-products due to partial discharge activity 

in all defects were detected. Arranged according to significance, these are 

hexafluoroethane (C2F6), sulphur dioxide (SO2), sulfuryl fluoride (SO2F2), 

octafluoropropane (C3F8), silicon tetrafluoride (SiF4), thionyl fluoride 

(SOF2), carbon monoxide (CO), disulfur decafluoride (S2F10), hydrogen 

fluoride (HF), tetrafluoromethane (CF4), carbonyl sulphide (COS) and 

tetrafluoride (SOF4). 

iii. Detected harmful PD by-product gases 

The presence of CO, COS, SiF4 and HF gases can be harmful to the GIS 

system due to their flammable and corrosive nature. Arranged according to 

significance, the most harmful gases are produced by the following defects: 

electrode protrusion-fixed copper particle hybrid, fixed copper particle, 

electrode protrusion-free copper particle hybrid and electrode protrusion.  

iv. Defect classification using by-product gases pattern recognition 

The type, number, concentration, and chemical stability of by-product 

gases are found to be closely correlated to the type of defect. Generally the 

number and concentration of the by-product gases increases with electrical 

stress duration and the presence of the by-product gas and its concentration 

can be said to be an indication of a fault in GIS and the fault is harmful to 

the GIS. Further analyses using pattern recognition with eight algorithms 
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based on the presence and concentration of the gas by-products were 

carried out. The random forest algorithm successfully recognises a given 

defect with an accuracy of 87.5%.  

 

From the analyses using Waikato Environment for Knowledge Analysis 

(WEKA) workbench machine learning and data mining, in particular, the 

random forest algorithm of pattern recognition, the defect classification of 

sole, hybrid, and material dependent were successfully obtained with 

classification accuracies of 93.8%, 80%, and 96.4%, respectively.  

Therefore, the random forest algorithm can be applied as a very good tool 

for pattern recognition and prediction of multi-fault in a gas insulated 

system.   

v. Random forest algorithm performance 

Seven other algorithms of pattern recognition were investigated. The 

performance of the random forest algorithm is 1.5 times better than the next 

best algorithm. This research illustrates the feasibility and applicability of 

an effective GIS diagnostic using gas by-products analyses, in particular, 

using the random forest pattern recognition. 

1.7 Thesis Outline 

The outline of the thesis is described below. 

 Chapter 2 covers the literature review on diagnostic techniques of gas 

insulated switchgear, SF6 basic properties, ionization phenomena and decomposition 

mechanism of SF6 in gas insulated switchgear, genesis and diagnostic techniques for 

partial discharge detection, and an overview of pattern recognition classification using 

the model tree based algorithm, or random forest algorithm, in WEKA workbench. 
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