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Graphical abstract 

Abstract 

The knowledge of the structural and electronic properties of a material is important in various 
applications such as optoelectronics and thermoelectric devices. In this study, we are using full 
potential linearized augmented plane wave method framed within density functional theory 
provided by WIEN2k to optimize the structure of PdSe2 in orthorhombic (Pbca) phase and calculate 
its electronic properties. With the implementation of local density approximation (LDA), Perdew-
Burke-Ernzerhof parameterization of generalized gradient approximation (PBE-GGA), Wu-Cohen 
parameterization of GGA (WC-GGA), and PBE correction for solid GGA (PBEsol-GGA), the 
computed results of lattice constants are found to be within 5% error with the experiment data. 
Also, our calculated indirect band gap energy was found to be ~0.24 eV by LDA along with modified 
Becke-Johnson potential functional (mBJ) with experimental lattice constants and ~0.52 eV by 
using PBE-GGA with optimized lattice constants. However, the effect of spin-orbit coupling is not 
found too much on the band gap energy. By analyzing the partial density of states, we identify that 
d-orbital of Pd is demonstrating a slightly more significant contribution to both the valence and 
conduction band near to Fermi level which is also in agreement with the previous first principles 
study. 
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INTRODUCTION 

Recently, transition metal dichalcogenides have received a great 

attention as tempting candidates for thermometric and optoelectronic 

applications, due to their unique electronic and optical properties [1]. 

Their special crystal structures which make them possible to craft into 

two-dimensional (2D) materials, either semiconducting or metallic. 

The crystal structure of palladium diselenide (PdSe2) has a long history 

and is being studied since the 1950s [2-3]. It retains its solid phase up 

to ~1000 K [4] and keeps on in crystallographic space group 61 Pbca 

under 6 GPa [5] (Fig. 1(a)). The structural and electronics parameters 

of a material are fundamental features from which the mechanical, 

magnetic, optical, and thermal properties are evaluated. Theoretically, 

these calculations are done using density functional theory (DFT) 

approaches as well. However, the quality of the results of the DFT 

approaches is sensitive to the suitable choice of the exchange-

correlation energy/potential functional. For example, at the level of 

standard DFT, mostly material's band gap is severely underestimated 

[6-7]. Therefore, we examine here the performance of four non-

empirical exchange-correlation (xc) functionals (local density 

approximation (LDA) [8], Perdew, Burke and Ernzerhof (PBE) [9] 

parameterization of generalized gradient approximation (GGA), Wu 

and Cohen (WC) parameterization of GGA [10], and PBE correction 

for solid (PBEsol) GGA [11]), for the calculations of the structural and 

electronics properties of PdSe2. This study is performed by DFT framed 

full potential linearized augmented plane wave (FP-LAPW) 

methodology as implemented in WIEN2k computational software. 

COMPUTATIONAL METHODOLOGY  

In FP-LAPW method, the contribution of potential is counted from 

all electrons (core electrons and valence electrons) and no shape 

approximation is imposed on the potential. However, in the core region, 

spherically symmetric form of the potential is assumed, where in the 

valence region, potential (where electrons are weakly bounded to 

nuclei) is expanded into spherically harmonics. Similarly, the valence 

electrons are treated using plane wave basis while the core electrons are 

treated using spherical harmonics times of the radial solution of 

Schrödinger equation in the core region [13].  

The original structure file of PdSe2 is generated using experiment 

data at 298 K, ambient pressure [5] where the lattice constants are a = 

5.7457 Å , b = 5.8679 Å , and c = 7.6946 Å . The shifted k-mesh in the 

irreducible Brillouin zone was set to 11×10×8 for LDA and PBEsol- 

GGA, 9×9×6 for PBE-GGA and WC-GGA after the convergence test 

with increment of the total number of irreducible k-point and energy 

difference of 0.0001 Ry as the criteria. The RKmax which refer to the 

cut-off size of the basis sets was set to 7.7, 8.0, 7.8 and 7.7 for LDA, 

PBE-GGA, WC-GGA and PBEsol GGA respectively with convergent 

criteria of 0.01 Ry. While, Gmax which specified the plane waves used 

as basis set and is set to 11.3 for LDA (± 0.00001 Ry), 12.0 for PBE-
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GGA (± 0.00001 Ry), 8.47 for WC-GGA (± 0.0001 Ry) and 9.9 

(minimum energy after first cycle of the energy increment) for PBEsol 

GGA. All the self-consistent field cycles stop with energy convergence 

limit 0.0001 Ry, force convergence limit 1.0 mRy/Bohr, and charge 

convergence limit 0.0001 e except in the structure optimization where 

the force convergence limit was noted to be 5.0 mRy/Bohr for the 

optimizing lattice constants and 0.5 mRy/Bohr for optimizing atomic 

positions. 

We first optimized the lattice constants of PdSe2 using one by one 

the XC functional listed before. After that, we optimized the atomic 

position using both optimized lattice constants and experimental lattice 

constants for comparison. Lastly, we calculated the band structure 

using k-path as shown in Fig. 1(b) and electronic density of states 

(DOS) using denser threefold k-mesh. The calculation of band structure 

and DOS were carried out including four different considerations; 

calculation without additional consideration (labelled as normal 

calculation), with consideration of spin-orbit coupling effect (SOC), 

with modified Becke-Johnson potential functional (mBJ) [14], and with 

both SOC and mBJ. 

Fig. 1  (a) Unit cell of PdSe2, Pd in grey colour and Se in green colour. 
(b) First Brillouin zone of PdSe2, the red arrow is the k-path. 

RESULTS AND DISCUSSION 

Structural properties of PdSe2 
The optimized lattice constants are shown in Table 1. We found that 

estimated c is the largest source of errors for every XC functional 

because the bonding in the z direction is only due to the van der Waals 

forces. The lack of consideration of spontaneous charge density 

fluctuations and only the local properties are included to account XC 

energy [15]. a and b are shown overestimated as expected but the errors 

are less than 2.5 %. From the data in Table 2, all the atomic position 

calculated are accurate enough with the error less than 3.2 %. Despite 

the somewhat poor performance in optimizing lattice constants, PBE-

GGA shows the best performance in minimizing the force in PdSe2 unit 

cell. 

Electronic properties of PdSe2 
The most obvious property in electronic properties is band gap 

energy Eg. From Table 3, we clearly have seen that without mBJ, non 

of the XC functional performs well. The literature [2-3] shows PdSe2 is 

a semiconductor with Eg = 0.4 eV which contradicts with the metallic 

nature results shown in Table 3. But with adding mBJ, PdSe2 showed 

the semiconducting nature. Although underestimation is around 40 – 58 

%, our results appear to be more accurate as compared to previous 

attempts [6-7]. This may due to larger basis sets we are used compared 

to previous works [6-7]. 

In order to demonstrate the ability of DFT to be more ab initio, we 

also use the optimized lattice constants to calculate Eg. Although PBE-

GGA gives the largest error in the band gap calculations using 

experimental lattice constants, interestingly, here, PBE-GGA shows the 

semiconducting character of PdSe2 with Eg = 0.5189 eV (without SOC), 

0.5172 eV (with SOC). Moreover, results are too close to the 

experimental value of the Eg than the results of band gap reproduced 

from the experimental lattice constants. On the other hand, mBJ results 

become worse in this case (0.7956 eV (without SOC), 0.7922 eV (with 

SOC)). We suspect that the overestimation of the value of the lattice 

constant, c might be the reason to show correct semiconducting nature 

of the PdSe2 within PBE-GGA. We test this by using optimized a, b, 

and experimental c, the result shows metallic. This also suggests we can 

modify Eg of PdSe2 by modifying the strain on the z-axis. 

As can be seen from the Fig. 2, the nature of the band gap is of 

indirect, as the valance band maximum is located at Γ and conduction 

band minimum is located between Y and S. Moreover, the SOC impact 

is also not considerable toward Eg. 

The calculated density of states (DOS) is shown in Fig. 3. Pd atoms 

and Se atoms are contributing almost equivalent to the states near to the 

Fermi level. The most valance orbitals, which are 4d orbitals of Pd and 

4p orbitals of Se occupied more states near to Fermi level as expected. 

Table 1 Lattice constants of PdSe2, percent of error is compared to [5]. 

XC Functional a (Å) b (Å) c (Å) 

LDA 
5.8304 

(1.47 %) 

5.8874 

(0.33 %) 

6.8498 

(10.98 %) 

PBE GGA 
5.7867 

(0.71 %) 

5.9635 

(1.63 %) 

8.6076 

(11.87 %) 

WC GGA 
5.8878 

(2.47 %) 

5.9512 

(1.42 %) 

6.9522 

(9.65 %) 

PBEsol GGA 
5.8720 

(2.20 %) 

5.9386 

(1.20 %) 

6.9436 

(9.76 %) 

Table 2 Atomic-position of the PdSe2 in the unit cell along with percent error of calculations in comparison to [5]. 
The atomic-position is represented in fractional coordinate system. 

XC Functional x y z 

LDA 
0.11212 

(0.78 %) 

0.11504 

(2.50 %) 

0.39286 

(3.17 %) 

PBE GGA 
0.11107 

(0.16 %) 

0.12041 

(2.05 %) 

0.41399 

(2.04 %) 

WC GGA 
0.11233 

(0.97 %) 

0.11593 

(1.74 %) 

0.39465 

(2.74 %) 

PBEsol GGA 
0.11193 

(0.61 %) 

0.11557 

(2.05 %) 

0.39465 

(2.73 %) 

(a) (b) 
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Table 3 Eg calculated using experimental lattice constants from different 
xc functional with different considerations, unit used is eV. 
 

 LDA PBE-GGA WC-GGA 
PBEsol 

GGA 

Normal                 Metallic 

SOC                 Metallic 

mBJ 0.2407 0.1689 0.2141 0.2177 

SOC + mBJ 0.2404 0.1686 0.2134 0.2170 

 

 
 
Fig. 2  Band structure of PdSe2, purple line represents the band structure 
calculated using LDA with an experimental lattice constant and mBJ, the 
green line represents the band structure calculated using PBE-GGA with 
an optimized lattice constant and SOC. The Fermi level is set to zero. 

 

 

 
 
Fig. 3  (a) Density of states of PdSe2 using LDA with an experimental 
lattice constant and mBJ. (b) The density of states of PdSe2 using PBE-
GGA with an optimized lattice constant and SOC. The Fermi level is set 
to zero. 

CONCLUSION 

 

In summary, we have investigated the structural and electronic 

properties of PdSe2 by using WIEN2k framed within DFT. All the XC 

functional studies can accurately calculate the lattice constants and 

atomic position except lattice constant c because of the inability to take 

into account van der Waals force. For the case of electronic properties, 

SOC is not found important for PdSe2 calculations. The mBJ revealed 

its ability to significantly improve results of Eg for the case of using 

experimental lattice constants. It is also possible to reduce the 

dependencies on experimental data to calculate the electronic properties 

which is demonstrated in the calculation of Eg using optimized lattice 

constant with PBE-GGA. 
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