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 Hydrogen has attracted global attention as alternative energy carrier in the future. 

Typically, hydrogen is produced through methane steam reforming (MSR) followed by 

water gas shift (WGS) reaction. Although considered as clean energy, it is essential to 
assess the environmental impact of hydrogen production process which could help to 

compare and improve existing technology. Thus, the objective of this study is to 

conduct a life cycle assessment (LCA) of hydrogen production from natural gas (NG) 
as feedstock. In order to gain detail and extensive process inventory, a rigorous 

flowsheet simulation of hydrogen production was developed in Aspen Plus 8.6. The 

goal of LCA is to evaluate the environmental impact of all processes involved in 
hydrogen production from natural gas. The environmental assessment was carried out 

using GaBi based on ReCiPe method. The system boundaries considered for this 

assessment were natural gas feedstock, hydrogen production, process steam, process 
water plant and solvent absorption. The LCA system function is the production of 

hydrogen from methane while the functional unit chosen is 1 kg of hydrogen. Overall, 

ten life cycle impact assessment categories were carried out. Our findings show that the 
most contributing impact categories were climate change and resource depletion which 

include fossil and water.  

 

INTRODUCTION 

 

Energy resources is important to satisfy human needs. However, excessive exploitation of energy resources 

could lead to crucial environmental consequences. Worldwide uncertainty in energy supply, the increasing oil 

price and the level of greenhouse gas emission have motivated the researcher to find new energy source to 

reduce dependence on non-renewable sources such as fossil fuels (Lee et al., 2010). In many countries, 

proactive actions have been taken to reduce the greenhouse gas (GHG) emissions in the energy sector (Tonini & 

Astrup, 2012).  Hydrogen has been proposed as one of the future energy carriers because its high yields, clean 

combustion and feasible storage (Javier Dufour et al., 2011). Hydrogen mostly produced from natural gas via 

methane steam reforming (MSR) followed by water gas shift (WGS). It is the most widely method used in 

industries for the last 20 years (Tugnoli et al., 2008). While energy demand increases with increasing world 

population, hydrogen although considered as clean combustion gas could cause significant environmental 

impact due to increase greenhouse gas released during its production stage. In order, to assess the environmental 

impact, life cycle assessment (LCA) is a suitable tool to assess and compare the environmental impact of 
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hydrogen production as it able fully evaluate the environmental impact from initial raw material until the final 

product.  

LCA represents a systematic set of procedures for compiling and inspecting the inputs and outputs of 

materials and energy and the related environmental impacts and directly attributable to a product or service 

throughout its life cycle (Kalinci et al., 2012). LCA have been widely used in various industries such as paper 

production, car manufacturing and many more. For hydrogen production, several researchers adopted LCA at 

different stage of its product life cycle such as production, storage, transport and usage (J. Dufour et al., 2012). 

Dufour et al. (2012) for example perform LCA of various hydrogen production technology to determine which 

has the lower amount of greenhouse gas and total impact on the environment. In another work, Hajjaji et 

al.,(2013) performed LCA on various alternatives of hydrogen production from numerous feedstock. In the 

same study, the reactor models used to simulate the hydrogen production in the Aspen Plus was the equilibrium 

reactor. In this work, a rigorous model was used to simulate the hydrogen production in Aspen Plus 8.6 which 

include reaction kinetics, separation equilibrium models, production capacity and utility consumptions. Based 

on the simulated model, LCA analysis were the performed which will ensure a detail and extensive life cycle 

inventory for an accurate LCA results. The latest LCA method have been adopted in this work known as Recipe, 

which is an improvement from CML2000 and Eco-Indicator-99 (Consultants, 2016). The boundary of analysis 

considered in this work was gate to cradle which involve natural gas feedstock, hydrogen production, process 

steam, process water plant and solvent absorption. LCA analysis was done by using GaBi software for data 

collection, analyse and monitor the environmental performance of the process. 

 

Methodology: 

Hydrogen Production from Methane: 

 

 
 

Fig. 1: The simplified flow sheet of hydrogen production by MSR. 

 

Figure 1 shows a simplified flow sheet of hydrogen production by MSR reaction in the reformer followed 

byWGS reaction. The feed streams contain steam and methane from natural gas. Before entering the reformer, 

both streams were preheated to 730 C using heat exchanger. The MSR reaction products from the reformer was 

a mixture of CO, H2, CH4 and H2O according to the following reaction:- 

 

𝐶𝐻4 + 𝐻2𝑂 → 𝐶𝑂 + 3𝐻2     (1) 

 

Then, the reaction products enters two adiabatic WGS reactors connected in series to increase the hydrogen 

yield. The first WGS reactor operated at high temperature around 400 C while the latter operated at low 

temperature around 210 C. The reaction occurred based on the following equation:- 
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𝐶𝑂 + 𝐻2𝑂 → 𝐶𝑂2 + 𝐻2         (2) 

 

In order to obtain high purity of hydrogen, CO2 need to be removed from the system. Absorption column is 

commonly used using MEA as the absorpbent with efficiency up to 99%. Then, hydrogen were separated from 

water using a separator at temperature 25 C to achieve up to 93% purity. The pure hydrogen were then stored in 

a pressurized tank. 

 

LCA Goal and Scope: 

In LCA goal and scope step it is important to define the objective of the analysis, functional unit (FU) and 

system boundary. The goal of this study is to evaluate the environmental impact of all processes involved in 

hydrogen production from natural gas. The functional unit (FU) provide a basis for calculating the inputs and 

outputs. In this work,  a common FU of 1 kg of hydrogen produced was selected  (Galera & Gutiérrez Ortiz, 

2015; Verma & Kumar, 2015). The system boundaries on the other hand, determined the process units to be 

included within the evaluated system. The system boundaries for this system is shown in Figure 2. It is a cradle-

to-grave approach which starts from methane feedstock until hydrogen storage. In detail, the system boundaries 

consist of five subsystems namely methane feedstock (SB1), hydrogen production (SB2), process steam (SB3), 

solvent absorption (SB4) and process water plant (SB5). Note that, the construction and commissioning phases 

as well as energy consumptions were excluded from the analysis and will be our future work. 

 

 
 

Fig. 1: The simplified flow sheet of hydrogen production by MSR. 

 

For SB, the methane is a product of natural gas processing plant, its associated environmental impact was 

included in the analysis. However, the transportation of natural gas was assumed using pipeline and thus 

excludes from the analysis. SB2 consist of reactions and purification section. The reactions system includes a 

MSR and WGS reactor. In this section, methane reacts with steam to produce hydrogen in a MSR reactor while 

the gas produced then enters a WGS reactor to convert CO to CO2 and increase hydrogen yield. The separation 

section on the other hand, consists of carbon dioxide removal and a separator. The aim of this section is to 

purify the hydrogen especially from carbon dioxide. The system boundary also considers process steam 

generation section (SB3). This section considers the combustion of hydrocarbon fuel in the boiler to generate 

steam which it used during plant operation. Meanwhile, SB4 is the MEA supply subsystem which supply 

absorbents for CO2 removal in the separation process. Finally, the water supply for the reforming process and 

cooling water were came from the process water plant (SB5). 
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Fig. 2: System boundaries 

 

Life cycle inventory (LCI): 

LCI involves the collection and compilation of the data required to quantify all of the relevant inputs and 

outputs associated with the production of the functional unit (FU). In this study, Aspen Plus software were used 

to solve the mass and energy balances in hydrogen production from natural gas. The compounds used in this 

simulation includes hydrogen, carbon dioxide, carbon monoxide, methane, water and monoethanolamine 

(MEA). Figure 3 shows the flowsheet developed in Aspen Plus 8.6. The global thermodynamic method used in 

this simulation is electrolyte non-random two-liquid model Redlich Kwong (ENTRL-RK). Whereas, for MSR 

and WGS reactions the Redlich-Kwong-Soave Modified-Huron-Vidal mixing rule (RKSMHV2) were selected. 

This method is suitable for the mixture of non-polar and polar compound in combination with light gases. The 

process flowsheet is shown in Figure 3. For modelling the MSR and WGS reactions, RPLUG reactor block 

based on LHHW kinetics were selected. Whereas for the separation unit RADFRAC block model were selected 

for both absorption and stripper unit. Table 1 shows the specification of the models used in the simulation. The 

stream result summary is shown in the Table 2. 

 
Fig. 3: Hydrogen production from methane flow-sheet in Aspen Plus. 
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Table 1: Summary of models and utilities used in the simulation.  

Code Equipment Specification 

HX-01 
Heat exchanger 
(Heating) 

Cold stream outlet temperature: 730 C 
Utility: Flue Gas 

HX-02 
Heat exchanger 

(Cooling) 

Hot stream outlet temperature: 400 C 

Utility: Cooling water 

HX-03 
Heat exchanger 
(Cooling) 

Hot stream outlet temperature: 210 C 
Utility: Cooling water 

HX-04 
Heat exchanger 

(Cooling) 

Hot stream outlet temperature: 40 C 

Utility: Cooling water 

HX-05 
Heat exchanger 
(Heating) 

Cold stream outlet temperature: 105 C 
Utility: Steam 

HX-06 
Heat exchanger 

(Cooling) 

Hot stream outlet temperature: 28 C 

Utility: cooling water 

MSR reforming reactor 
Operating temperature: 730 C 
Isothermal reactor 

HWGS 
water gas shift 

reactor 

Operating temperature: 400 C 

RPLUG model block 
Adiabatic reactor 

LWGS 
water gas shift 
reactor 

Operating temperature: 210 C 

RPLUG model block 

Adiabatic reactor 

ABSORP Absorption column 

Number of stages:20  

RADFRAC model block 

Packing size: 4X 
Packing material: Metal 

STRIPPER Stripper column 

Number of stages: 20  

RADFRAC model block 
Reboiler duty :5500 kW 

SEP Separator Operating temperature: 25 C 

Cooling water Utility 
Tin: 20 C / Tout: 40 C 

Pin: 1 atm / Pout: 1 atm 

HP Steam Utility 
Tin: 250 C / Tout: 200 C 
Pin: 39 bar / Pin: 29 bar 

Flue gas Utility 
Tin:1000 C / Tout: 792C 

Pin: 2 bar / Pout: 2 bar 

 

Life cycle impact assessment (LCIA): 

The life cycle impact assessment aims at understanding and evaluating the magnitude and significance of 

the potential environmental impacts of a product system throughout the life cycle of the product (ISO, 2006).  

The environmental characterization of the process was carried out based on the following categories; climate 

change, terrestrial acidification, fossil depletion, freshwater ecotoxicity, marine ecotoxicity, metal depletion, 

particulate matter, photochemical oxidant formation, water depletion and terrestrial ecotoxicity. The impact 

potentials were evaluated using ReCipe whereas the calculation implementation of the inventories was 

performed in GaBi.  

 

Life Cycle Results Interpretation: 

The data obtained from Aspen Plus were used as the main inventory data in GaBi. Table 3 summarize the 

main inventory data per functional unit of 1 kg hydrogen. Data for background processes such as natural gas or 

methane, steam and cooling water were taken from the GaBi database. The considered set of environmental 

impacts potential according to the latest LCIA method, ReCipe were climate change, terrestrial acidification, 

fossil depletion, freshwater ecotoxicity, marine ecotoxicity, metal depletion, particulate matter, photochemical 

oxidant formation, water depletion and terrestrial ecotoxicity. The results offers insights of the subsystems 

contributions to the environment impacts. 

 
Table 2: Summary of stream results from Aspen Plus. 

Mass Flow   

(kg/hr )         

NG STEAM H2 CO2OUT LEANIN HWGS-OUT WATER 

  MEA                      0 0 9.13E-05 0.9523 18437.47 0 0.157741 

  H2O                      0 8000 385.21 13281.12 1.10E+05 3423.63 2189.56 

  CO2                      0 0 503.12 5348.10 0.0441563 4191.89 0.05541 

  OH-                      0 0 0 0 0.4086 0 4.75E-05 

  HCO3-                    0 0 0 0 222.19 0 4.1626 

  CO3-2                    0 0 0 0 265.96 0 0.0345 

  MEAH+                    0 0 0 0 12156.12 0 4.4052 

  MEACOO-                  0 0 0 0 19073.73 0 0.1639 

  CO                       0 0 329.32 0.1330 0 1779.48 1.07E-03 

  H2                       3.23 0 1259.31 0.5196 0 1155.48 3.34E-03 

  CH4                      2546.77 0 0 0 0 0 0 
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Total Flow    2550.00 8000.00 2476.96 18630.82 160404.00 10550.47 2198.55 

 

Table 3: Main inventory data for the MSR system per functional unit 

INPUT Value Unit 

Flue gas 2.4 kg 

Hydrogen 0 kg 

Iron 0.504 kg 

Monoethanolamine 14.75 kg 

Natural gas 2.04 kg 

Nickel 0.128 kg 

Steam (MJ) 24.50 MJ 

Steam superheated (hp) 6.4 kg 

Water 88.20 kg 

Water (cooling water) 386 kg 

OUTPUT Value Unit 

Carbon dioxide 5.18 kg 

Carbon monoxide 0.2632 kg 

Catalysts material 0.632 kg 

Flue gas 2.4 kg 

Hydrogen 1.00 kg 

Monoethanolamine 14.75 kg 

Waste water 90.07 kg 

 

RESULTS AND DISCUSSIONS 

 

The result for all environmental impacts potential for each subsystem is shown in the Table 4. Table 4 also 

shows the specific contribution of each subsystem for all impact categories impacts. Based on Table 4, the 

climate change category impact is the most significant impact to the environment followed by fossil depletion 

and water depletion. The other categories have minor environmental impact. The climate change also known as 

global warming potential (GWP) and resources depletion be worthy of discussions. The climate change 

quantifies the contribution of gaseous emission from the system to the environmental which include 

combination of CO2, CH4 and N2O emissions. Figure 4 shows the variation of CO2 emission in different system 

boundary. Hydrogen production subsystem contributed the most to climate change with 5.18 kg CO2-eq per FU. 

This is because CO2 was produced in the rectors as a side product. The CO2 was removed by absorption column 

and emitted to the atmospheric. This is an agreement with the work by (Galera & Gutiérrez Ortiz, 2015; Hajjaji 

et al., 2013). Storing the CO2 into liquid form is an option to reduce the greenhouse emission however it 

requires extensive energy for CO2 liquification. Next after hydrogen production system is the process steam 

subsystem with 3.3 kg CO2-eq per FU. This comes from burning of fossil fuels to generate high temperature 

steam. The effect of methane feedstock on climate change impact is low because the methane feedstock comes 

from natural gas, it contains high purity of methane and no carbon dioxide. 

 
Table 4: Impact categories for each subsystems the hydrogen production from methane 

Category Unit NG feedstock Hydrogen 
production 

Process 
steam 

solvent 
absorption 

Process water 
plant 

Climate change kg CO2-eq 1.29 5.18 3.3 0 1.48 

Terestrial Acidification kg SO2 -eq 1.77E-03 0 3.66E-03 0 3.16E-03 

Fossil depletion kg oil eq 2.694 0 1.403 0 0.505 

freshwater ecotoxity kg 1,4-DB eq 0 0 0 0.075 0.005 

marine ecotoxiicity kg N eq 9.30E-04 0 2.07E-03 0 4.66E-04 

metal depletion kg Fe eq 0.04 0.504 0.002 0 0.007 

Particulate matter kg PM10 0.000671 0 0.001416 0 1.07E03 

Photochemical oxidant 

formation 

kg NMVOC 0.003 0.012 0.006 0 0.003 

Water depletation m3 0.03 0.09 0.28 0 3.81 

Terestrial ecotoxicity kg 1,4-DB eq 0 0 0 0.212 0 

 

Water depletion is defined as the net reduction in the availability of freshwater in a watershed for a given 

time period. Water depletion also reduces the water availability for current users and generating competition for 

the water resources. The water depletion can reduce resources availability for future generation and the intensity 

of the competition for freshwater will potentially increase. Based on water depletion impact in Figure 4, the 

process water plant subsystem contributes the most to water depletion impact categories compared to the other 

subsystem. This is obvious since water were used as a raw material to generate steam and also used as cooling 

water.  

For consumption of fossil resources from Figure 4, it shows the natural gas feedstock contributes the most 

for fossil depletion impact category followed by steam production. This is expected since natural gas is a type of 

fossil fuel. The natural gas was used as feedstock in hydrogen production to react with steam and produce the 
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hydrogen. In process steam, the natural gas was used as raw material to generate the steam to transfer the heat 

energy for heating in the system. So, the used fossil fuel as a raw material is giving the impact to fossil resources 

and it possible to happened the reduction of availability of fossil resource in the future. The future generation 

will be competing to get the fossil resource caused by the fossil depletion. 

 

 
 

Fig. 4: Environmental impact results for the most significant impact category  

 

Conclusion: 

This work presents a life cycle assessment of a simulated hydrogen production from natural gas. Simulated 

model provide a detail and extensive data for conducting life cycle impact assessment. From the results 

obtained, the hydrogen production subsystem contributes the most to climate change impact category. 

Meanwhile, process water plant subsystem and natural gas feedstock subsystem contributes the most to water 

depletion and natural fossil depletion impact category respectively. The other impact categories just the minor 

significant in the environment impact. The life cycle approach is an excellent tool which can help identifying 

subsystems that contribute to the potential impacts attributes. Moreover, LCA could help to make decisions and 

improve process in reducing its impact to the environment. 
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