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ABSTRACT 

 

 

 

 

Heat transfer plays an important role in many aspects of human life, especially 

the forced convection type. Hence, it has become very important to invest resources and 

efforts in this vital field to make some difference. Recently, the trend of using compact 

heat transport devices is of great interest to obtain an efficient, low cost and small size 

product which requires less production time with fewer efforts. Employing of artificial 

roughness, such as corrugation, for heat transfer enhancement in heat exchanger and 

other industrial thermal devices have shown promising results, with good performance 

reliability at lower cost. Therefore, the current study aimed to investigate experimentally 

and numerically  the heat transfer enhancement and pressure drop increase in tubes with 

a superior type of corrugation i.e. the spiral corrugation. The flow of ionised water as 

working fluid in tubes at low Reynolds number was constructed to investigate the 

laminar flow regime of 100≤ Re≤1300. Five spirally corrugated tubes and one smooth 

tube under constant wall heat flux boundary condition with various thermo-physical 

properties was investigated through experimental test and computational fluid dynamics 

simulation. Different corrugation parameters, such as corrugation height to diameter and 

corrugation pitch to diameter ratios were studied in different corrugated tube sizes. The 

results showed that the severity index, which combines the effect of both corrugation 

height and pitch, has great effects on heat transfer rate, friction factor, and thermal 

performance of the flow inside spirally corrugated tubes. The heat transfer enhancement 

was in the range of 1.3-2 compared to a smooth tube, accompanied with an increase in 

friction factor in the range 1.1-1.9. The thermal performance range was found to be 

improved by 1.2-2.08 times. The heat transfer and friction factor correlation are 

proposed. 
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ABSTRAK 

 

 

 

 

Pemindahan haba memainkan peranan penting dalam banyak aspek kehidupan 

manusia, terutamanya jenis pemindahan haba olakan paksa. Oleh itu, menjadi sangat penting 

untuk melabur dalam sumber dan tenaga usaha dalam bidang yang amat perlu ini untuk 

menghasilkan sesuatu perubahan yang ketara. Kebelakangan ini, penggunaan alat 

pengangkutan haba yang padat telah menjadi satu polar yang sangat menarik untuk 

meningkatkan kecekapan, menurunkan kos dan saiz produk sehingga boleh mengurangkan 

masa pengeluaran dan daya usaha. Penggunaan kekasaran tiruan, seperti permukaan kerut-

beralun, untuk peningkatan pemindahan haba dalam penukar haba dan lain-lain peranti terma 

skala industri telah menampakkan kejayaan, dengan prestasi kebolehpercayaan yang baik dan 

kos yang lebih efektif. Oleh itu, kajian ini bertujuan untuk menyiasat melalui kaedah ujikaji 

dan berangka, peningkatan pemindahan haba dan pertambahan penurunan tekanan dalam tiub 

yang mempunyai kerut-beralun yang lebih unggul iaitu kerut-beralun pilin. Aliran air terion 

sebagai bendalir bekerja dalam tiub pada nombor Reynolds yang rendah telah dibina untuk 

menyiasat rejim aliran lamina yang mempunyai 100≤ Re≤1300. Lima tiub kerut-beralun pilin 

dan satu tiub licin di bawah keadaan sempadan fluks haba dinding pemalar dengan pelbagai 

sifat terma fizik disiasat melalui ujian ujikaji dan simulasi perkomputeran dinamik bendalir. 

Berbagai parameter kerut-beralun, seperti nisbah ketinggian kerut-beralun kepada garis pusat 

dan nisbah jarak alun kepada garis pusat dikaji dalam berbagai saiz tiub kerut-beralun. Hasil 

kajian menunjukkan bahawa indeks keamatan, yang menggabungkan kesan kedua-dua 

ketinggian kerut-beralun dan jarak alun, mempunyai kesan yang besar pada kadar 

pemindahan haba, faktor geseran, dan prestasi terma untuk aliran di dalam tiub kerut-beralun 

pilin. Peningkatan pemindahan haba adalah dalam julat 1.3-2 berbanding dengan tiub licin, 

dengan penambahan dalam faktor geseran dalam julat 1.1-1.9. Julat prestasi terma telah dapat 

diperbaiki sebanyak 1.2-1.9 kali ganda. Sekaitan pemindahan haba dan sekaitan faktor 

geseran telah dicadangkan.                           
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1. Problem Background 

 

 

Heat transfer is the exchange of thermal energy between physical systems, 

depending on the temperature, by dissipating heat. The fundamental modes of heat 

transfer are conduction, convection and radiation. 

 

 

Heat transfer always occurs from a region of high temperature to another 

region of lower temperature. Heat transfer changes the internal energy of both 

systems involved according to the First Law of Thermodynamics.  

 

 

The flow of fluid may be forced by external processes, or sometimes (in 

gravitational fields) by buoyancy forces caused when thermal energy expands the 

fluid (for example in a fire plume), thus influencing its own transfer. The latter 

process is often called "natural convection". All convective processes also move heat 

partly by diffusion, as well. Another form of convection is forced convection. In this 

case the fluid is forced to flow by use of a pump, fan or other mechanical means. 
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Convective heat transfer, or convection, is the transfer of heat from one place 

to another by the movement of fluids, a process that is essentially the transfer of heat 

via mass transfer. Bulk motion of fluid enhances heat transfer in many physical 

situations, such as (for example) between a solid surface and the fluid. Convection is 

usually the dominant form of heat transfer in liquids and gases. Although sometimes 

discussed as a third method of heat transfer, convection is usually used to describe 

the combined effects of heat conduction within the fluid (diffusion) and heat 

transference by bulk fluid flow streaming.  

 

 

The heat transfer is a very interesting field for economical, functional and 

environmental reasons; it is almost related to each aspect of human lives. Therefore, 

the enhancement of such field is quite essential, especially the forced convective heat 

transfer field. The conversion and utilization of energy in industrial, commercial, and 

domestic applications involve heat exchange processes. Some common examples are 

steam generation and condensation in power and cogeneration plants; sensible 

heating and cooling of viscous media in thermal processing of chemical, 

pharmaceutical, and agricultural products, refrigerant evaporation and condensation 

in air conditioning and refrigeration system, gas flow heating in manufacturing and 

waste-heat recovery; air and liquid cooling of engine and turbo-machinery systems, 

and cooling of electrical machines and electronic devices. Improved heat exchange, 

over and above that in the usual or standard practice, can significantly improve the 

thermal efficiency in such applications as well as the economics of their design and 

operation 

 

 

The engineering cognizance of the need to increase the thermal performance 

of heat exchangers, thereby effecting energy, material and cost savings as well as 

mitigation of environmental degradation had led to the development and use of many 

heat transfer enhancement techniques. These methods have in the past been referred 

to variously as augmentation and intensification. One of the popular ways to enhance 

heat transfer which is recently of interests is using artificial surface roughness, ribs, 

grooves and corrugations. Spirally corrugated surface hold the promise of enhancing 
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the heat transfer in tubes and, they are one of the most cost-effective enhancement 

methods. 

 

 

Basically, there are two different methods to increase the rate of heat 

transferred and both of them are based on an enhanced heat transfer surface 

geometry to provide a higher thermal performance. One is the active method and the 

other is the passive method. The active technique requires external forces and the 

passive technique requires special surface geometries or fluid additives. The 

motivation behind this activity includes the desire to produce more effective heat 

exchangers and heat transfer enhancement in many other industrial applications. The 

ultimate objectives being to provide energy, material, and economic savings for the 

users of enhanced heat transfer technology. 

 

 

Setting up a periodic disturbance along the streamwise is a favorable way to 

enhance the heat transfer in forced convection due to its simplicity and effectiveness 

as Adachi and Uehara reported [1]. This kind of periodical retardation plays a vital 

rule in the enhancement process by breaking the thermal boundary layer and distorts 

the temperature field of the fluid flowing inside the tube; hence it will minimize the 

resistance or the reluctance to the heat transfer. This mechanism is widely mentioned 

and cited by researches as it clearly described and reviewed in Chapter 2.  

 

 

Corrugation helps on increases heat transfer enhancement due to the presence 

of secondary movements of the fluid adjacent to the wall. Unfortunately, in spite of 

the importance of the corrugation in various industrial applications, there is not 

enough publications concerning the corrugation employment in heat transfer 

enhancement. Only recently, the employing of corrugation for the enhancement of 

heat transfer has become interesting because it has the combined merits of extended 

surfaces, turbulators and roughness as shown in Figure 1.1.  
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Figure 1.1 Publications regarding the corrugation in heat transfer enhancement [1] 

 

 

Therefore, the emphasis was given in this investigation research to the use of 

the spiral corrugation in heat transfer enhancement.  

 

 

In the last few years, the attention was given to the importance of using 

corrugation in the heat transfer enhancement due to the mentioned merits. In 

addition, the main functions of corrugation are to promote the secondary 

recirculation flow by inducing radial velocity components, mixing the flow layers 

and finally, increasing the wet perimeter with holding the throat cross-section area 

constant. 

 

 

There is enough number of investigators whom tried to study the heat transfer 

enhancement in both ways, experimentally and numerically. A different corrugation 

profiles and arrangement were employed. Many fluids were tested inside various 

tube arrangements. But yet, the studies concerning the employing of both 

experimental and numerical techniques for the determination of thermal performance 
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of spirally corrugated tubes for the flow of water at low Reynolds number are limited 

in spite of the thrust for a smaller size, cost effective thermal transport devices [2]. In 

addition, the traditional corrugation profile was also used over and over, and the 

creativity regarding the corrugation profile and its effect was completely neglected. 

 

 

 

 

1.2. Problem Statement 

 

 

As it is commonly known, energy resources is exhausting at a tremendous 

rate; hence, it has become important to improve the heat transfer characteristics of 

tubes in view of the energy situation and to avoid the issues of imminent energy lack 

with suitable and well functional precautions. The passive heat transfer enhancement 

basically based on the adopting of many tools that induces a swirl and vorticities at 

the secondary flow region, which mixed the fluid layers and increasing the surface 

area. However, the passive technique involving so many ways like twisted tapes, 

fins, ribs, rough surface, additives, extended surfaces, wire coil insert and 

corrugations. Corrugated tubes are a type of enhanced heat transfer tool which has 

become very interesting in the past few years. 

 

 

Adopting a disturbance source in the flow direction is a preferred method for 

the heat transfer enhancement. Setting up a disturbance promoter, which periodically 

gags the flow along the streamwise to improve the heat exchange performance is a 

common technique for the interrupting of the thermal boundary layer and mixing the 

flow. 

 

 

The main functions of corrugation are to promote the secondary recirculation 

flow by inducing radial velocity components, mixing the flow layers and finally, 

increasing the wet perimeter with holding the throat cross– section area constant, 
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which leads to increases the convective surface area. Therefore, it was extensively 

used in modern heat exchangers and other heat transport devices. Especially in the 

food industry, where the flow is should be at low Reynolds number. Hence, this kind 

of tube would be helpful in the heat treatment process of juices flowing in tubes. It 

will give good results with minimum requirements. Spiral corrugation increases heat 

transfer enhancement due to the presence of secondary movements of the fluid 

adjacent to the wall. Therefore, the emphasis was given to the use of corrugation in 

heat transfer enhancement.  

 

 

 

 

1.3. Research Hypothesis 

 

 

The primary flow of fluid in tube with spiral corrugated surface extension 

induced a secondary flow inside the corrugation. This secondary flow is most 

probably of the vortex swirl flow type. The interaction of primary pipe flow and the 

swirl secondary flow will produce a unique flow pattern. This unique flow pattern 

which can be studied using high fidelity computational fluid dynamics (CFD) 

techniques could be deduced in term of the heat transfer performance. 

 

 

 

 

1.4. Research Questions 

 

a) How corrugation height to diameter (e/d) affect heat transfer 

enhancement? 

b) What are the effects of corrugation pitch to diameter (p/d) on heat 

transfer enhancement? 

c) Does the number of corrugation (N) affect the heat transfer 

enhancement? 
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d) What is the mechanism that are heat transfers enhancement in spirally 

corrugated tubes? 

e) Can this mechanism be studied effectively using CFD simulation? 

 

 

 

 

1.5. Objectives 

 

 

The main objective of this study to determine the optimum corrugation of 

spirally corrugated tube with highest heat transfer enhancement and with a minimum 

pressure drop penalty. In order to achieve this aim, the following sub objectives are 

intended to be achieved: 

 

 

a) To enhance the heat transfer by utilizing some modified spirally 

corrugated tubes. This objective would be achieved by testing different 

corrugation height to diameter e/d and corrugation pitch to diameter p/d 

to produce swirl secondary flow and boundary layer, which means more 

heat transfer 

b) To simulate a  double, triple and multiple corrugations starts of circular 

profile by using commercial CFD software for the tube to increase heat 

transfer and decrease pressure drop, while a single smooth tube of 

certain specifications will be employed in experiments for validation 

purposes. 

c) To determine the thermal performance factor (η) for each tube. In 

addition, to determine the number of start N effects on both heat transfer 

and pressure drop. 
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1.6. Scope of Research 

 

 

This study shall focus on the followings: 

 

 

a) Laminar forced convective heat transfer of a Newtonian fluid flow in 

spirally corrugated tubes will be considered. 

b) Water will be taken as a working fluid and the flow will be assumed as 

steady and incompressible. The fluid properties such as viscosity μ, heat 

capacity cp and thermal conductivity k will be taken as a function of 

temperature. 

c) The investigation will be carried out numerically and experimentally 

under a constant wall heat flux condition for 100<Re<1300 and for 

various geometrical parameters in order to get wide range of database. 

 

 

 

 

1.7. Significance and Contributions of this Study 

 

 

The current study focused on laminar flow of water in corrugated tubes to 

enhance the heat transfer rate because there is a lack in the experimental studies 

concerning this subject in the literature as depicted in the next chapter in Section 2.4. 

 

 

In addition, there are only three authors whom proposed correlations of 

Nusselt number and friction factor for the laminar flow of water in annuli or fluted 

tubes without taking the effect of severity index in to the account, and there is no 

correlations regarding the corrugated tube. 
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1.8. Organization of the Thesis  

 

 

This thesis consist of six chapters, each one deals with specific aspect. 

Chapters (1-2) provide a general introduction and thesis headlines, in addition to the 

deep and comprehensive review of the problem. While Chapters (3-5) provide the 

detailed methodology and tools to investigate and solve the problem. Chapter 6 

presents the outcomes and its interpretations. 

 

 

Chapter 1 presents the general information about the problem and it is nature, 

as well problem background. In addition, the motivation behind the need of the 

current investigation and close scope on the problem with its limitations. 

 

 

Chapter 2 involved the literature review and the research that conducted in 

the past which are related to the current investigation research. It shows a 

comprehensive and criticized review of about 95% of studies concerned with heat 

transferred by corrugation. In addition it contains the summary of all the related 

studies. 

 

 

Chapter 3 depicts and describes the experimental methodology of the 

research. Hence, it consists of the experimental rig description, experimental 

procedure, experimental measurements and instrument calibration. 

 

 

Chapter 4 explains the mathematical modelling and simulation steps. It’s also 

explained in details the modeling of the problem besides the validation and 

verification of the simulation process. The number and characteristics of the 

numerically tested tubes were also depicted in this chapter. In addition to the mesh 

process and convergence criteria. 
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Chapter 5 shows the results and their discussions. It also shows the effect of 

different parameters that have significant effects on the results with reasonable 

explanations. This chapter also presents the extracted correlations for the heat 

transfer and friction factor. 
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