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 The present research is focused on development and optimization of inkjet 

printing technique to print Copper Indium Gallium Selenide (CIGS) solar cell absorber 

thin film on rigid substrate. An office inkjet printer is modified to print specific CIG 

ink on soda lime glass substrate. Metal nitrates are used as precursors and dissolved in 

a solvent mixture of methanol and ethylene glycol. The ink viscosity, printing process, 

printing layer and substrate temperature are optimized to print uniform and compact 

CIGS thin film. The CIG ink viscosity of 3.7 cP and one-time drying approach are 

chosen to avoid coffee ring, achieve good adhesion, compact and uniform thin film 

formation. After optimizing of CIG ink viscosity and printing process, the effects of 

printing layer, and substrate temperatures in the range of 50 ℃ to 80 ℃ are 

investigated. Thin films are printed with similar crystallinity, compound structures, 

and elemental composition. The electron scanning micrographs have shown that the 

surface coverages for 3-layer printed thin films are not as good as 4-layer printed thin 

films due to deficiency of raw material. The CIGS grains grow freely in 3 dimensions 

and result in relatively large grain size. Among all 3-layer printed films, the substrate 

temperature of 70 ℃ has shown thickness of 0.9 μm, better light absorption, relatively 

large grain size of 797 nm with good surface coverage up to 92%, and surface 

roughness of 112.4 nm. On increasing the number of printing layer to 4, thin film 

printed at 70 ℃ shows thickness of 0.8 μm, grain size of 679 nm, good light absorption, 

98% surface coverage, and surface roughness of 77.5 nm. Printed CIGS thin films are 

compared with film deposited by spray coating. The CIGS film deposited by spray 

coating has shown thickness of 1.5 μm, grain size of 802 nm, poor surface coverage of 

78%, worse light absorption, and rough surface condition of 138.1 nm. The 

comparison between spray and inkjet printing reveals the probability of inkjet printing 

technique has great potential for deposition of solar thin films. 
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Projek penyelidikan ini memberi fokus terhadap pembangunan dan 

pengoptimuman teknik percetakan sembur dakwat untuk mencetak penyerap saput 

tipis bagi Tembaga Indium Galium Selenida (CIGS) pada substrat tegar. Pencetak 

sembur dakwat pejabat diubahsuai untuk mencetak dakwat CIG yang tertentu pada 

substrat kaca. Logam nitrat digunakan sebagai pelopor dan dilarutkan dalam campuran 

pelarut metanol dan etilena glikol. Kelikatan dakwat CIG, proses percetakan, lapisan 

percetakan dan suhu substrat dioptimumkan untuk mencetak saput tipis yang seragam 

dan padat. Kelikatan dakwat CIG 3.7 cP dan pendekatan pengeringan satu kali dipilih 

untuk mengelakkan daripada kesan gelang kopi, mencapai lekatan yang baik dan 

pembentukan saput yang padat dan seragam. Selepas mengoptimumkan kelikatan 

dakwat CIG dan proses percetakan, kesan lapisan percetakan, dan suhu substrat dalam 

julat 50 ℃ hingga 80 ℃ dikaji. Saput yang dicetak mempunyai kehabluran struktur 

sebatian dan komposisi unsur yang serupa. Mikrograf imbasan elektron menunjukkan 

saputan 3-lapisan mempunyai kekurangan bahan mentah, liputan permukaan tidak 

sebaik saputan 4-lapisan. Tetapi butiran boleh tumbuh dengan bebas dalam 3 dimensi 

dan menghasilkan saiz butiran secara relatif yang besar. Antara semua saputan 

bercetak 3-lapisan, suhu substrat pada 70 ℃ telah menunjukkan ketebalan 0.9 μm, 

penyerapan cahaya yang lebih baik, saiz butiran secara relatif sebesar 797 nm, liputan 

permukaan yang baik sehingga 92%, dan kekasaran permukaan sebesar 112.4 nm. 

Sebaik sahaja bilangan lapisan percetakan meningkat kepada 4, saput yang dicetak 

pada 70 ℃ menunjukkan ketebalan 0.8 μm, saiz butiran 679 nm, penyerapan cahaya 

yang baik, liputan permukaan yang lebih baik sebanyak 98%, dan kekasaran 

permukaan 77.5 nm. Saput nipis CIGS yang dicetak dibandingkan dengan saput yang 

termendap menggunakan penyalutan semburan. Saput CIGS yang dimendapkan oleh 

penyalutan semburan menunjukkan ketebalan 1.5 μm, saiz butiran 802 nm, liputan 

permukaan lemah 78%, penyerapan cahaya yang lebih lemah, dan keadaan permukaan 

kasar sebesar 138.1 nm. Hasil perbandingan antara percetakan semburan dan semburan 

dakwat menunjukkan kebarangkalian teknik percetakan sembur dakwat berpotensi 

besar untuk pemendapan saput tipis solar.  
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INTRODUCTION 

1.1 Background of Study 

Due to the fast development, the demand of the energy is rising dramatically. 

Nowadays, 20×103 TWh electric energy is required worldwide every year. Electrical 

energy is mainly produced from fossil fuel (approximate 2/3 of total) [1]. It is predicted 

that if the current global energy consumption pattern continues, the world energy 

consumption will be  increased by 50% at the end of 2030 [2]. Currently, the main 

source of energy is fossil fuel which is depleting at an alarming rate. These fossil fuel 

resources will not only be completely depleted in the near future, but also posing a 

serious threat to environment due to emission of pollutants [3]. The growing demand 

for energy and the increase in environmental pollution requires not only the optimal 

use of conventional sources, but also replacement with renewable energy resources 

gradually. The renewable energy has the capability of meeting energy demands as well 

as mitigating issues related to the global warming. Among renewable energy 

resources, solar energy is one of the most abundant, inexhaustible and clean sources 

of energy. Unlike nuclear power, there is no radiation threat, and as in case of 

hydropower or wind energy, a huge budget is not necessary to build solar panels and 

to choose the certain geographical area. The solar cell technology is capable to bring 

cleaner energy generation right to the source of demand. For solar power, in one day, 

the irradiation from the sun on the earth gives about 10,000 times more energy than 
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the daily use of us [4]. However, how to collect solar energy at reasonable cost is the 

biggest challenge.  

Photovoltaics (PV) solar cells are capable to convert solar energy directly into 

electricity without any pollutant emission during operation [5]. Silicon is the most 

commonly used material for PV solar panels [4]. Monocrystalline silicon solar panel 

is the oldest, more efficient but expensive than the polycrystalline silicon and thin film 

PV panel techniques. The silicon module record efficiency of 24.1% is kept by 

SunPower (USA) company. Monocrystalline PV is made from single cell silicon 

crystal, and the Czochralski process of making single cell crystal is one of the most 

complex, time consuming and costly part to fabricate whole PV devices. The high cost 

and fragility of monocrystalline and polycrystalline silicon limit the deployment of PV 

technology on large-scale and far from affordable range for common people. 

Thin film solar cell is second generation solar cell consists of very thin absorber 

layer, from a few nanometers to tens of micrometers, much thinner than silicon solar 

cell which is about 200 µm. This allows solar cell to be flexible, lower in weight and 

results in a low level of material and energy consumption during production [6]. 

Among all thin film solar cells, Cu (In, Ga)Se2 (CIGS) thin film solar cell technology 

has a great potential for low-cost fabrication and high-performance, recently achieved 

about 22.6% at cell level on a rigid glass substrate, while 20.4% has obtained on 

flexible polyimide substrate [7,8]. CIGS compound is a direct bandgap material with 

a light absorption coefficient higher than 105 cm−1 which can be controlled by varying 

the In/Ga and S/Se ratios [9]. These inherent material characteristics such as tunable 

band-gap, lower energy payback time as compared to silicon solar cell, thermal and 

chemical stability compared to organic solar cells or organic/inorganic hybrid solar 

cells, CIGS is considered as promising candidate in thin film solar cells technologies. 

Until now, all the record efficiencies of CIGS are all produced by vacuum 

deposition techniques [7,8,10,11]. Vacuum technique has high degree of accuracy and 

can deposit good quality of thin film. But the equipment is expensive and process is 



3 

complex. In contrast, the non-vacuum technique is low cost and capable for large-

scale, roll-to-roll manufacturing [12–14]. 

1.2 Problem Statement 

Despite of significant advancement in the field of solar cell industry, PV solar 

modules are still not widely deployed due to two major factors: 1. current cost of the 

solar system as compared to power generation systems derived from fossil fuel and 2. 

conversion efficiency of solar cell [6]. These challenges can be addressed by 

enhancing the conversion efficiency and reducing the fabrication cost of the solar cell. 

Among different types of solar cells, thin film solar cells have high efficiency with 

thickness of only few micrometers. Among different types thin film solar cells such as 

CIGS, CdTe and amorphous silicon solar cell, CIGS shows potential for higher 

efficiency and less impact to the environment. 

Usually, the record performance of the CIGS solar cell is demonstrated on 

small-area (less than 1 cm2) fabricated by vacuum-based growth techniques such as 

sputtering and evaporation [11,15]. To produce high efficiency solar cell on large-area 

at low cost is crucial for the future development of the CIGS technology [16]. Number 

of non-vacuum alternative deposition techniques such as spray coating, dip coating, 

spin coating, electrodeposition etc. have been developed to deposit CIGS solar thin 

film, which require non-expensive vacuum equipment, less energy intensive 

deposition and much better material utilization [14,17–19]. However, each of the 

existing non-vacuum technologies suffers from one or more major deficiencies, from 

utilization of  toxic materials, insufficient cell efficiency, lack of stability or durability 

and effective optimized deposition [20,21].  

Therefore, this research focuses on the modification and optimization of the 

inkjet printing technique to deposit CIGS solar cell absorber layer. Inkjet printing 
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process is maskless, more than 99% materials utilization, non-contact deposition 

technique and capable for printing on a pre-existing pattern on a substrate. To the best 

of our knowledge, there is no report describing printing CIGS thin film by an office 

inkjet printer. In this study, an office inkjet printer is modified to optimize the thin film 

deposition in context of thin film structure, morphology, light absorption and thin film 

roughness.  

1.3 Objectives 

The main objective of this research work is to modify and optimize inkjet 

printing technique to grow CIGS solar thin films and compare with spray coating 

method. The specific objectives of the study are: 

1. To modify and optimize an inkjet printing system for the deposition of CIGS 

solar thin films on glass substrate. 

2. To optimize inkjet printing processes in context of ink viscosity, printing 

process, thin film thickness and substrate temperature to deposit thin film with 

good crystallinity, surface coverage and light absorption performance. 

3. To compare thin films deposited by inkjet printing and spray coating. 

1.4 Scope of Study 

This research project is focusing on modification of inkjet printing technique 

to deposit CIGS absorber layer. To optimize inkjet printing technique, different CIG 

ink viscosities (3.2, 3.7, 4.7 and 6.5 cP), substrate temperatures (40, 50, 60, 70 and 80 

℃), printing process (separate drying and one-time drying process) and printing layers 

(2, 3, 4, 5 and 6 layers) towards high performance are investigated and optimized. The 

film thickness is characterized by surface profiler. FESEM with EDS analysis is 
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conducted to study the thickness, composition and morphology of the thin film surface. 

AFM is used to study the surface roughness. XRD and FTIR are used to investigate 

the crystallinity and compound composition, respectively. UV-Vis-NIR is used to 

characterize the optical absorption of thin films. 

1.5 Significances and Original Contributions of This Study 

This research work contributes to knowledge particularly at designing and 

development of cost-effective inkjet printing technology which could lead towards the 

development of affordable CIGS cells and even modules. The increase in solar 

technology installation reduces fuel poverty and inherently improve the security of 

energy supply which is pollution free and eco-friendly technology. Nowadays, due to 

shifting of media from papers to electronic means, the existed printing industry can be 

utilized to print solar cell which can lower the production cost of PV solar modules 

significantly and lead to large scale development of solar technology using existing 

machineries. 

1.6 Thesis Structure and Organization 

The research background, problem statement, objectives, scope, significant of 

this research are presented in Chapter 1. The overviews of solar cell, deposition 

techniques, introduction of inkjet printing and spray coating are discussed in Chapter 

2. The processes of performing experiment and details of experiment are written in 

Chapter 3. The obtained results and discussion are presented in Chapter 4. And the 

conclusion and future recommendation are given in Chapter 5. 
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