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ABSTRACT 

In high-rise building construction, concrete filled steel tubular (CFST) column 

has been widely used. It comprises of a hollow steel tube infilled with or without 

additional reinforcement or steel section. The concrete core prevents or delay the local 

buckling of the outer steel tube while the steel tube confining the concrete core 

provides enhancement in strength and ductility under high compressive load. During 

experimental work in studying CFST, if huge amount of sampling is required, 

researchers might face issue such as insufficient materials if budget is not allowed, 

capacity limitation of the testing machine that is readily accessible for the researchers 

to conduct compression test and also huge amount of waste created. The purpose of 

this study is to investigate the applicability of using similitude relationship to 

determine the axial capacity of circular concrete filled steel tube for prototype and 

model scaled specimen, using dimensional analysis to determine the scaling factors 

for each variable considered relevant to the nature of the problem. BC4: 2015 and 

nonlinear analysis using ANSYS software have been used to determine the axial 

capacity for the same prototype and model specimen to serve as reference for counter 

check purpose to verify if the axial capacity determined using similitude relationship 

is reasonable. For the nonlinear analysis using ANSYS, nonlinear material properties 

have been included whereby the Drucker-Prager model is used for concrete and 

bilinear kinematic hardening is used for steel tube. From the results obtained, it is 

observed that the axial capacity determined from similitude relationship shows result 

with maximum deviation of 0.41 % whereas ANSYS analysis results shows a 

percentage of maximum deviation of 2.47 % when comparing to BC4: 2015. The 

scaling factor of axial load capacity for model and prototype using similitude shows a 

percentage deviation of 0.42 % and ANSYS analysis shows a percentage deviation of 

4.1 % comparing to scaling factors obtained using BC4: 2015. This shows that the 

current physical quantities or variables selected for dimensional analysis is reasonable 

where the similitude relationship developed does not distort the model by much from 

its prototype. 
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ABSTRAK 

Dalam pembangunan bangunan pencakar langit, tiub keluli bulat diisi konkrit 

telah banyak digunakan sebagai kolum. Ia mengandungi tiub keluli diisi dengan 

konkrit samaada dengan atau tanpa telulang keluli. Teras konkrit menghalang atau 

melewatkan lengkokan tiub keluli manakala tiub keluli yang mngurungkan teras 

konkrit memberi peningkatan dari segi kekuatan dan kemuluran di bawah beban 

mampatan yang tinggi. Jikalau jumlah persampelan yang besar diperlukan ketika kerja 

eksperimen, penyelidik mungkin menghadapi masalah bahan mentah yang tidak 

mencukupi disebabkan had bajet, had kapasiti mesin ujian untuk menjalankan kajian 

mampatan atau masalah jumlah sisa yang besar diciptakan. Kajian ini dilakukan 

bertujuan mengkaji penggunaan hubungan similitude bagi pcnentuan kapasiti paksi 

untuk tiub keluli bulat diisi konkrit untuk prototaip dan spesimen model, dengan 

penggunaan analisis dimensi untuk menentukan faktor penskalaan bagi pembolehubah 

yang dianggap berkaitan dengan jenis masalah yang dipertimbangkan. Kapasiti paksi 

untuk tiub keluli bulat diisi konkrit juga ditentu dengan mengguna BC4: 2015 dan 

analisis tak linear menggunakan software ANSYS bagi tujuan pengesahan kapasiti 

paksi yang ditentu melalui hubungan similitude. Untuk analisis tak linear yang 

menggunakan software ANSYS, Drucker-Prager model telah digunakan untuk sifat 

bahan tak linear untuk konkrit dan bilinear kinematic hardening untuk tiub keluli. 

Daripada keputusan yang didapati, kapasiti paksi yang didapati melalui hubungan 

similitude menunjuk sisihan maksimum 0.41 % manakala software ANSYS menunjuk 

sisihan maksimum 2.47 % apabila dibanding dengan keputusan yang didapati 

menggunakan BC4: 2015. Faktor penskalaan yang didapati melalui pembandingan 

kapasiti paksi antara prototaip dan model menggunakan hubungan similitude 

menunjuk sisihan maksimum 0.42 % dan software ANSYS menunjuk sisihan 

maksimum 4.1 % apabila dibanding dengan factor penskalaan yang didapati melalui 

BC4: 2015. Ini menunjuk pembolehubah yang dianggap dan digunakan dalam analisis 

dimensi ini adalah munasabah dan hubungan similitude yang dicipta tidak 

memutarbelitkan sifat model jauh dari sifat prototaip. 
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CHAPTER 1

INTRODUCTION 

1.1 Introduction 

The two most commonly used constructional materials in building, bridge and 

civil engineering construction are steel and concrete. Steel exhibits the characteristic 

of high tensile strength, greater elastic modulus and excellent ductility. This often 

results in small cross-section and slender member in design where buckling behaviour 

often need to be taken into consideration. Concrete exhibits high compressive but low 

tensile strength. Compared to steel, per unit weight of concrete has lower material cost 

and lower thermal conductivity. The characteristic of concrete often results in bulky 

members. The long-term structural performance of concrete affected by brittle tensile 

cracking, creep and shrinkage properties (Richard Liew et. al., 2015). 

Both advantages of steel and concrete materials in achieving overall 

enhancement in strength and stiffness is combined in steel-concrete composite 

structures. In high-rise building construction, concrete filled steel tubular (CFST) 

column has been widely used. It comprises of a hollow steel tube infilled with or 

without additional reinforcement or steel section. The concrete core prevents or delay 

the local buckling of the outer steel tube while the steel tube confining the concrete 

core provides enhancement in strength and ductility under high compressive load. In 

concrete casting, the steel tubular member leads to fast track construction as it 

eliminates the need of additional work by serving as permanent formwork (Richard 

Liew et. al., 2015).
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1.2 Problem Background 

In the research field, researchers often need to carry out extensive amount of 

experimental works in order to obtain satisfactory results to justify their hypothesis of 

their research subject and also to produce meaningful contribution to the industry. 

There are few issues that researchers commonly faced when conducting experiment. 

The first would be preparation of specimen. If huge amount of sampling is required, 

researchers might face issue of insufficient materials if budget is not allowed. Next is 

the capacity limitation of the testing machine that is readily accessible for the 

researchers. Take the example of this study, say the specimen of concrete filled steel 

tubes requires a compression load of 1200 kN in order to compress up to failure. The 

availability of the testing machine that can fulfill this requirement might not be 

available to the researchers in the current laboratory where his research works are 

being carried out. This would limit the scope and extent of the research work intended 

to be carried out due to constraint of testing equipment capacity. Not to mention with 

increasing amount of sampling of specimen, more waste is created. If the specimen 

sizes are bulky and in large volume, the researchers would face difficulty in handling 

the waste. 

1.3 Problem Statement 

Providing result as part of prototype and final build of any application result is 

one of the primary goal of any experiment. This can be achieved with the 

measurements made for one system in the laboratory environment used to represent 

the behavior of other similar system in real world and outside the laboratory by using 

the concept of similitude. Model is a system built in laboratory while prototype is the 

first build of the similar systems based on behavior of its model, often beyond 

laboratory frame. Reducing the size of specimen by applying scaling factor in 

accordance to similitude requirements is one of the method to overcome part of the 

issues mentioned in Section 1.2. In this study, the similitude relationship between 

prototype and model will be studied whereby focusing in determining the capacity of 

concrete filled steel tube. 
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Another method that researchers often used is to conduct simulation and 

analysis using finite element software whereby researchers can model the testing of 

specimen and analyze to get results which are near to the experimental results provided 

sufficient comparison and cross-checking with experiment work has been conducted. 

In this study, ANSYS software will be used to simulate the model specimen and 

compare the results obtained through nonlinear analysis with the results obtained after 

applying scaling factor to the prototype. 

As existing standards or references are available in determining the capacity of 

concrete filled steel tube, it can be utilized to serve as crosscheck purpose in this study 

to verify if the results obtained through similitude and software analysis is compatible. 

BC4: 2015 which is an extension of Eurocode 4 published by the Building and 

construction Authority (BCA) will be used in this study. 

1.4 Research Goal 

The purpose of this study is to investigate the applicability of using similitude 

relationship to determine the axial capacity of circular concrete filled steel tube for 

prototype and model scaled specimen, using dimensional analysis to determine the 

scaling factors for each variable considered relevant to the nature of the problem. BC4: 

2015 and nonlinear analysis using ANSYS software are used to determine the axial 

capacity for the same prototype and model specimen to serve as reference for counter 

check purpose to verify if the axial capacity determined using similitude relationship 

is reasonable. 
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1.4.1 Research Objectives 

The objectives of the research are: 

(a) To determine the similitude relationship between prototype and model for 

circular concrete filled steel tube. 

(b) To determine the axial capacity of circular concrete filled steel tube based on 

BC4: 2015. 

(c) To obtained the capacity of circular concrete filled steel tube through nonlinear 

analysis using ANSYS software. 

(d) To check the compatibility of the results between similitude, BC4: 2015 and 

also software analysis. 

1.5 Research Scope 

In this research, only circular CFST will be used. The length of the specimen 

is controlled so that it behaves as stud column instead of slender column. For the 

material properties, the concrete cube strength used is 35 N/mm2 as it is commonly 

used in the market and yield strength of steel is 350 N/mm2. 

There are few factors not taking into consideration during the determination of 

similitude relationship in this study. The loading velocity and acceleration during 

compression test, friction between the interface of concrete and steel tube are not taken 

into consideration in the dimensional analysis step. 

As for software analysis, the material properties of both linear and nonlinear 

for concrete and steel tube is specified in Table 3.10 and Table 3.11. The capacity of 

CFST is determined by applying axial loads up to the yielding of steel tube. Fixed 

support is applied at the bottom face where as the top surface only allow displacement 

in vertical direction. 
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1.6 Organization of the Thesis 

The following chapters include Chapter 2 literature review which discuss on 

similitude requirement, BC4: 2015, nonlinear analysis and also material modeling, 

Chapter 3 methodology for determining the similitude requirement, capacity of CFST 

determination based on BC4: 2015 and also nonlinear analysis using ANSYS software, 

Chapter 4 on analytical and modelling using ANSYS, Chapter 5 on results and 

discussion and lastly Chapter 6 which is conclusion and recommendations for future 

works. 
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