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ABSTRACT

Thermal stress induced in an object or structural member by restraint against

movement is required to accommodate temperature changes. In this paper, the

thermal stress and deformation of the exhaust heat exchanger on board a ship is

analysed. The flow and temperature distributions of exhaust heat exchanger are

conducted in ANSYS Static Structural by the coupled analysis of fluid and solid

zones. According to the numerical analysis it is found that the thermal stress is

increasing non-linearly with the increase of inlet sea water temperature. By

increasing inlet sea water temperature will increase thermal stress. The result

indicates that the maximum stress is equal to 479 MPa which is exceed the yield

stress. Therefore, current heat exchanger being used is insufficient in design. By

varying the different sea water inlet temperature and sea water inlet pressure at

allowable limit still shows that maximum Von Misses Stress for current design is

exceeding yield stress. The new design is proposed by increasing of thickness plate

from 2mm  to 3mm and proven to produce maximum Von Misses Stress below the

yield stress which is equal to 245MPa. Percentage area for total thermal stress is also

much lower compare to current design.
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ABSTRAK

Tegasan haba ke atas sesuatu objek atau bahagian struktur yang disebabkan

oleh sekatan terhadap pergerakan diperlukan untuk menampung perubahan suhu.

Dalam kajian ini, tekanan haba dan perubahan bentuk ke atas penukar haba ekzos

kapal telah dianalisa. Pengagihan suhu dan aliran penyejuk pada penukar haba ekzos

dianalisis menggunakan ANSYS Static Structural dengan menggabungkan kedua-

dua analisis ke atas zon cecair dan zon struktur. Menurut analisis berangka didapati

bahawa tekanan haba semakin meningkat secara tidak linear dengan peningkatan

suhu kemasukan air laut. Dengan meningkatkan suhu kemasukan air laut akan

meningkatkan tegasan haba. Keputusan telah menunjukkan bahawa tegasan haba

maksimum adalah sama dengan 479 MPa yang melebihi tegasan alah material yang

digunakan. Justeru, penukar haba yang digunakan ketika ini didapati tidak memenuhi

keperluan pengoperasian dalam aspek reka bentuk. Dengan mengubah pelbagai

parameter suhu masuk air laut dan tekanan masuk air laut pada julat yang dibenarkan

didapati maksimum Von Misses Stress masih melebihi melebihi tegasan alah

material tersebut. Oleh itu, reka bentuk baru telah dicadangkan dengan meningkatkan

ketebalan plat dari 2mm kepada 3mm dan terbukti menghasilkan maksimum Von

Misses Stress 245 MPa iaitu dibawah tegasan alah material. Peratusan kawasan bagi

keseluruhan tegasan haba juga jauh lebih rendah berbanding dengan reka bentuk

sekarang.
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CHAPTER 1

INTRODUCTION

Sea water cooling system are widely used for exhaust gas before being

discharged to the exterior by Royal Malaysian Navy. An example ship that use kind

of system are corvette, mine counter measure vessel, new generation petrol vessel

and frigate. Currently corvette ship use butterfly valve provided with sea water

cooling jacket to refrigerate the engine gas.

Particulate emission from diesel engines is receiving a great deal of attention

due to its probable carcinogenic property. In the exhaust pipe of a diesel engine, the

change of the exhaust gas temperature can result in nucleation and condensation of

volatile materials and coagulation of particulates.

During startup phase the propulsion engine exhaust is carried away through

the above sea level outlet by positioning the on line butterfly valve open (300 in dia),

while the butterfly valve (600 in dia), mounted on the underwater projecting duct, is

in close position. This valve position also occurs when the ship moves on reverse

gear or, anyhow, during manouvering or moving forward slowly.

When the engines develop full power and during the normal navigation the

butterfly valve (600 in dia) on the below sea level outlet remains open and the

butterfly valve on the above sea level outlet is held closed.
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Characteristic Data:

Max exhaust pressure - 2.5 bar

Max operational exhaust temperature- 700oC

Operating sea water pressure - 1.5 bar

Plate Thickness - 2mm

Material - Stainless Steel

Figure 1.1: Location of Above Water Exhaust Heat Exchanger and Below Water

Exhaust Heat Exchanger.

The engine gas (flue gas) is refrigerated before being discharged to the

exterior, the two flue outlets provided, one above and one below the sea level

respectively, are provided with sea water cooling jacket as Figure 1.1.

Above water exhaust heat
exchanger

Underwater exhaust heat
exchanger

Above water exhaust heat
exchanger

Underwater exhaust heat
exchanger
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Figure 1.2: Layout Arrangement of Exhaust Cooling Valve

The effect of this refrigeration causes remarkable decrease in the exhaust gas

volume that makes its mixing sea water much easier; such a mixing also facilitated

by the shape of the flue outlet which directs the flue gas as much parallel as possible

to the flow line along the ship’s immersed hull as shown in Figure 1.2. The

longitudinal axis of the exhaust duct end is not normal to the ship side; it is instead

bent astern.

This feature, while facilitating the engine exhaust when the ship is moving

ahead will affect negatively the discharge of these combustion products when the

ship moves on reverse. In this circumstance it is mandatory that the exhaust gas be

routed through the pipe with outlet above sea level.

The material used to fabricate the butterfly exhaust valve is stainless steel,

X8CrNil310-UNI 6900/71 (AISI 321). Parts are fabricated from sheets and

assembled by longitudinal welding process. In the areas that are not refrigerated by

sea water, the exhaust ducts and relative assembly flanges are fabricated.



4

Figure 1.3: Functionality of Exhaust Cooling Valve

1.1 Research Background

Based on my research, it has been found that CFD has been employed for the

following areas of study in various types of heat exchangers: fluid flow

maldistribution, fouling, pressure drop and thermal analysis in the design and

optimization phase. As presented by Muhammad Aslam Bhutta [1].

The quality of the solutions obtained from these simulations are largely

within the acceptable range proving that CFD is an effective tool for predicting the

behavior and performance of a wide variety of heat exchangers.

Analysis of flow is a major consideration of my topic. This is proven based

on research by Jiang when they found Non-uniformity in fluid flow is one of the

primary reasons resulting in a poor heat exchanger performance. This may be

attributed to improper design of inlet/outlet port and header configuration, distributor

construction and plate corrugations [2].

Sea Water Inlet

Exhaust InletExhaust Outlet

Sea Water Outlet
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Heat distribution is affected to thermal stress. As found by Irfan and

Chapman [3] where hot spots in the axial temperature gradient were a major source

of thermal stress. All that research become my preference to solve my problem.

1.2 Research Objectives

Research objectives of this study are as follow:

a. To verify current design of exhaust heat exchanger in term of

reliability and sufficiency.

b. To propose improvement of current design in order to reduce thermal

stress and deformation.

1.3 Problem Statement

Always happen above water cooling exhaust become overheated during main

engine is operated below 900rpm or engine rpm is not consistent. Engine room

become very hot and temperature above 60oC. As shown in Figure 1.4 temperature

of exhaust cooling valve outer tube can reached about 153oC during slow speed.

Thus affected to personnel comfortability during working condition. Furthermore

temperature rising had contributed to overall ship infrared signature.
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Figure 1.4: Exhaust Heat Exchanger Temperature

The worst case scenario happen if ship constantly sailing 2 time a month

sailing, the exhaust heat exchanger always crack at welded joint as shown in Figure

1.5. Frequent time average once in 3 month. The water discharge outboard also not

consistent and intermittent especially if main engine rpm is increased and decreased

frequently. Therefore, it is crucial to identify fluid flow maldistribution, fouling,

pressure and thermal analysis in the design and optimization phase.

Figure 1.5: Area of Crack at Exhaust Heat Exchanger

Heat exchanger temp indicate
153 degC
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1.4 Scope of research

Scopes of research are as follows:

a. Temperature distribution and pressure distribution of cooling water

for various input temperature and pressure.

b. Thermal stress and deformation various input temperature and

pressure.

c. Numerical method on simplify model and compare with current

condition.

1.5 Theoretical Framework

The theoretical framework of this research is presented in Figure 1.6. The

critical steps are during methodology process. Initial and boundary condition must be

defined correctly.

Figure 1.6: Theoretical Framework
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1.6 Organization of Thesis

Chapter 1: Introduction

This chapter describes the research background of this. The objective of this

project also been started in this chapter.

Chapter 2: Literature Review

In this chapter, the item that will be discussed is the related works and

literature review that will supported this study.

Chapter 3: Methodology

The most significant chapter that is chapter 3 detailing on the research

methodology variables and equations involved in the modelling and simulation part.

Data collection method and the accuracy of the result are been listed in this chapter .

It will also define the research variable and the data to be enquired.

Chapter 4: Result and Discussion

For this chapter, results and findings obtained from the FSI modelling are

listed out and discussion is carried out for the result obtained. the reliability of the

data obtained will also be discussed

Chapter 5: Conclusion and Recommendation

In this last chapter it is dedicated for conclusion of the study and

recommendations on future improvements for different operating parameters needed

in this study. This paper will have the reference list post.
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