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ABSTRACT 
 
In optimal design of pressurised thick-walled cylinders, an increase in the 
allowable internal pressure can be achieved by an autofrettage process. An 
analysis is carried out on plain cylinders by using the von Mises and Tresca 
yield criteria to develop a procedure in which the autofrettage pressure is 
determined analytically, resulting in a reduced stress distribution. A validation 
by a numerical simulation shows that the analytical and numerical simulations 
correlate well in terms of trend and magnitude of stresses. 
 
Keywords: Autofrettage, pressure vessels, residual stress, plastic collapse, 

finite element analysis 
 
1.0 INTRODUCTION 
 
Autofrettage is a common process of producing residual stresses in the wall of a 
usually thick-walled cylinder prior to use. An appropriate pressure, large 
enough to cause yielding within the wall, is applied to the inner wall of the 
cylinder and then removed. Large scale yielding occurs in the autofrettaged 
thick-walled cylinder wall, [1]. Upon the release of this pressure, a compressive 
residual circumferential stress is developed to a certain radial depth at the bore. 
These residual stresses serve to reduce the tensile stresses developed as a result 
of subsequent application of an operating pressure, thus increasing the load 
bearing capacity, [2], [3].  

Due to the ever-increasing industrial demand for axisymmetric pressure 
vessels which have wide applications in chemical, nuclear, fluid transmitting 
plants, power plants and military equipment, the attention of designers has been 
concentrated on this particular branch of engineering. The increasing scarcity 
and high cost of materials have led researchers not to confine themselves to the 
customary elastic regime but attracted their attention to the elastic-plastic 
approach which offers more efficient use of materials, [4]. 
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2.0 CYLINDER SUBJECTED TO INTERNAL PRESSURE  
 
For a cylinder subjected to an internal pressure, Pi, the radial stress, σr, and 
circumferential stress, σθ, distributions are given by Lame’s formulation:  
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For a cylinder with end caps and free to change in length, the axial stress is 
given by [5]: 
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3.0  YIELD CRITERIA 
 
According to the Tresca yield theory, yielding occurs when the Tresca 
equivalent stress is [5]: 

 
YrθTr σ)σ(σσ =−=   (4) 

 
Based on the von Mises yield theory, yielding occurs when the von Mises 
equivalent stress is [6]: 

 

( ) ( ) ( ){ }1
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2 2 2
vM θ r r z z θ Yσ σ σ σ σ σ σ σ= − + − + − =   (5) 

 
Two important pressure limits, PY,i and PY,o , are considered to be of importance 
in the study of pressurised cylinders. PY,i corresponds to the internal pressure 
required at the onset of yielding at the inner surface of the cylinder, and PY,o is 
the internal pressure required to cause the wall thickness of cylinder to yield 
completely. The magnitudes of PY,i and PY, o, according to Tresca yield criterion 
are, [2], [6], [7]: 
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and based on the von Mises yield criterion, the magnitudes of PY, i and PY, o are, 
[2]: 

1
3

2

vM ,Y,i Y2

(k - )P σ
k

=  (8) 

 
1

3

2

vM ,Y,o Y
(k - )P σ=   (9) 

 
Equations (4) and (5) give the relation between the von Mises and Tresca 
equivalent stresses for the state of stress in a pressurised thick-walled cylinder: 

 

( )3 3
2 2vM θ r Trσ σ σ σ= − =  (10) 

 
and shows that the Tresca criterion is more conservative than the von Mises 
criterion by 15.5 %.  
 
4.0  RESIDUAL STRESSES 
 
If the internal pressure is removed after part of the cylinder thickness has 
become plastic, a residual stress is set up in the wall. Assuming that during 
unloading the material follows Hooke’s Law, the residual stresses can be 
obtained from the equations below. For the plastic region, ri ≤ r ≤ ra, the 
respective residual stresses in the radial, hoop and axial directions are [8]: 
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For the elastic region, ra ≤ r ≤ ro , the respective residual stresses in the radial, 
hoop and axial directions are: 
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where a

i

rm
r

=  and ra is the autofrettage radius. By substituting r = ra in 

Equations (12a-c), the residual stresses at the junction radius ra are obtained: 
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The residual stress distributions are shown in Figures 1 and 2.  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 1: Hoop stresses (σθ) due to operating pressure, residual 
 autofrettage pressure (σθ,R) and total (σθ,T)  
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Figure 2: Residual stress distributions in cylinder wall 
 
On application of the operating pressure the total stress of the partially 
autofrettaged cylinder is the summation of the residual stress and the stress due 
to the operating pressure, i.e.: 

 
opr r,Rr,Tr, σσσ +=  (14a) 

 
opr θ,Rθ,Tθ, σσσ +=  (14b) 

                   
opr z,Rz,Tz, σσσ +=  (14c) 

 
The above total stresses are shown in Figure 3.  
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Figure 3: Total hoop, radial and axial stress distributions in cylinder       
wall when subjected to operating pressure, after autofrettage 
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Hence at r = ra , when the cylinder is subjected to an internal operating pressure, 
after being treated by autofrettage, the Tresca equivalent stress at the elastic-
plastic junction is: 
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Differentiating σTr with respect to m and equating the differential to zero: 
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Figure 4 shows how the optimum autofrettage radius is influenced by the 
operating pressure. It shows that for a certain operating pressure, the optimum 
autofrettage radius obtained using Tresca yield criteria is more than that using 
von Mises criterion. 
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Figure 4: Effect of yield criteria on optimum autofrettage radius  
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5.0  MAXIMUM INTERNAL PRESSURE OF AUTOFRETTAGED 
CYLINDER  

 
Equations (6) and (7) are used to obtain the (Tresca) autofrettage pressure to 
cause different stages of yielding in a virgin cylinder. For a cylinder treated 
with partial autofrettage, the internal pressure to cause the inner surface to yield 
again can be obtained. Substituting Equations (1), (2) and (12) into Equation 
(14), and using Tresca yield criterion, when r = ri , the internal pressure to cause 
yielding at the inner surface is, 

 

( )2ln 1
2

2
Y

Y,  i 2

σ mP  m
k

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
  (19) 

 

and when r = ro , by substituting Equations (1), (2) and (11) into Equation (14), 
and using Tresca yield criterion, the internal pressure to cause the whole wall 
thickness to yield is,  

 

( )2ln
2

2 2Y
Y,  o

σP  m k m⎡ ⎤= + −⎣ ⎦   (20) 
 

Figures 5 and 6 respectively show the maximum internal pressure to cause 
yielding at the inner surface and to cause the whole cylinder to yield. These 
pressures are influenced by different optimum autofrettage pressure levels 
which were obtained when an operating pressure was initially known. The 
internal pressure to cause yielding at the inner surface of a cylinder which is 
treated with optimum autofrettage pressure, is greater than that for a non-treated 
cylinder (Figure 5). On the other hand, the internal pressure to cause full 
yielding in a cylinder which has been treated with optimum autofrettage, is 
lower than that which is non-autofrettaged (Figure 6).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 5: Maximum internal pressure to cause inner surface to yield, with 

different optimum autofrettage levels- Tresca
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6.0 FULLY AUTOFRETTAGED CYLINDER 
 
A special case is when the cylinder is fully autofrettaged, i.e. ra = ro. Therefore 
m = k and the Tresca equivalent stress at any radius can be obtained from 
Equation (15): 
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 (21) 

 
Therefore the internal pressure to cause the internal surface and whole wall to 
yield is obtained by substituting r = ri, r = ro and m = k in Equations (19) and 
(20). The comparison of allowable internal pressures of a cylinder treated with 
full and non-autofrettage, are shown in Table 1 and in Figures 7 and 8. Figure 7 
shows that full autofrettage is beneficial if yielding of the inner surface is 
required, in which case the cylinder can sustain the highest internal pressure. To 
cause the whole wall to yield, the cylinder should not be autofrettaged, in which 
case the cylinder can sustain the highest internal pressure, as shown in Figure 8.  
 
 
 
 

Figure 6: Maximum internal pressure to cause the whole wall to 
yield, with different optimum autofrettage levels-Tresca 

0

1

2

3

4

5

6

1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6

Radius ratio [k]

M
ax

im
um

 o
pe

ra
tin

g 
pr

es
su

re
 /

 Y
ie

ld
 s

tr
es

s 

Optimum Autofrettage

Non-Autofrettage

1.0 
0.9 
0.8 
0.7 
0.6 
0.5 
0.45 
0.4 
0.35 
0.3 
 
0.25 O

pe
ra

tin
g 

pr
es

su
re

 /
 Y

ie
ld

 
st

re
ss

 [
n]

 



 
 

Jurnal Mekanikal, December 2007 

9 

Table 1: Comparison between allowable internal pressures on  
 non-autofrettaged, optimumly autofrettaged and fully 
 autofrettaged thick-walled cylinder 

Autofrettage 
Level 

Internal pressure  
to cause the inner 
surface to yield 

Pi/σY 
Internal pressure to cause  

the whole cylinder  
wall to yield 

Pi/σY 

Non 
autofrettage 

1
2

2

Y2

(k ) σ
k
−  0.375 1

2

2

Y
(k ) σ−  1.5 

Optimum 
autofrettage ( )2ln 1

2

2
Y

2

σ m m
k

⎡ ⎤
+ −⎢ ⎥

⎣ ⎦
 0.622 ( )2ln

2
2 2Yσ m k m⎡ ⎤+ −⎣ ⎦  1.287 

Full 
autofrettage 

ln  Yσ k  0.693 ln  Yσ k  0.693 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: Maximum internal pressure to cause whole thickness to yield 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4

Fully- Autofrettaged

Non-Autofrettaged

Radius Ratio [k]

In
te

rn
al

 P
re

ss
ur

e/
Yi

el
d 

st
re

ss
 [

n
] 

2.625

0.916

Figure 7: Maximum internal pressure to cause internal surface to yield 

Radius Ratio [k]0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1 4.5 4.9

Fully- Autofrettaged

Non-Autofrettaged

In
te

rn
al

 P
re

ss
ur

e/
Yi

el
d 

st
re

ss
 [

n
] 

0.916

0.420

Radius Ratio [k] 



 
 
Jurnal Mekanikal, December 2007 

10 

7.0   THEORETICAL OPTIMUM AUTOFRETTAGE PRESSURE 
 
The autofrettage pressure Pa is a sufficiently high internal pressure applied 
before a cylinder is put into use by applying an operating pressure. The radius 
of the elastic-plastic junction line is called the autofrettage radius ra. The 
objective is to design for a total minimum equivalent stress at the junction line. 
The value of autofrettage pressure which satisfies this condition is called the 
Optimum Autofrettage Pressure, Pa, opt and the radius of elastic-plastic junction 
line is called the Optimum Autofrettage Radius, ra, opt.  
 The internal pressure to cause (Tresca) yielding to a depth of r is: 
 

1 2ln
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2
Y

2
o i

σ rrP   
r r

⎡ ⎤⎛ ⎞
= − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
  (22) 

 

From Equations (17) and (18) the optimum autofrettage radius is deduced as,   

en
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 e
3 n

2
a, opt ir r=      - von Mises 

 

Therefore the optimum autofrettage pressure is: 
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 - Tresca (23) 
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σP n
k
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The above optimum autofrettage pressures result in the minimum equivalent 
stress and occurs on the elastic-plastic junction line as shown in Figure 9. 
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Figure 9: Optimum autofrettage pressure and radius 
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8.0 OPTIMUM AUTOFRETTAGE AND MAXIMUM OPERATING 
PRESSURES 

 
The relation between the optimum autofrettage pressure and operating pressure 
of thick-walled pressurised cylinders can be obtained: 
 

e1
2

2 2 n
a ,o p t,T r

2
o p r ,T r

P k
P n k

⎡ ⎤−
= +⎢ ⎥
⎣ ⎦

 - Tresca (25)   

 
Figure 10 shows the optimum autofrettage pressure/operating pressure ratio 
varying with the radius ratio, using Tresca yield criterion. For thick walled 
cylinders, increasing the operating pressure leads to an increase in the optimum 
autofrettage pressure, which in turn leads to an increase in autofrettage radius. 

 
3 e

2

2 3n
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2
opr,vM

P k
P nk

⎡ ⎤−
= +⎢ ⎥
⎢ ⎥⎣ ⎦

            - von Mises  (26) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure10: Optimum autofrettage for different values of 
operating pressure and radius ration  
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9.0 FINITE ELEMENT ANALYSIS 
 

The autofrettage process may be simulated by Finite Element Method, making 
use of elastic-plastic analysis. It is possible to model the autofrettage process by 
applying pressure to the inner surface of the model, removing it and then 
calculating the residual stress field, followed by reloading with an operating 
pressure. 
 Using a 2D axisymmetric element available in ABAQUS v6.5 [9] a finite 
element mesh of a cylinder with an inside radius 100 mm and outside radius of 
200 mm was generated. An autofrettage pressure of 202 MPa was applied, and 
then removed. The residual stress distributions were evaluated in the thick-
walled cylinder. The operating pressure of 130 MPa was then applied. The von 
Mises equivalent stress was used in the subsequent analysis. The material used 
was steel and this material has the following properties: 

 
E  =  203 GPa 
σY  =  325 MPa 
ν  =  0.33 
 

The material is assumed to be isotropic, linearly elastic and has bilinear 
kinematic hardening using von Mises plasticity response.  
 
9.1 FEM Results  
Using the above FE cylinder model and comparing between Tresca and von 
Mises criteria, the autofrettaged thick-walled cylinder give the following results 
on the difference in the optimum autofrettage radius and pressure. 
 

 Tresca criterion von Mises criterion 
m 1.492 1.414 
ra,opt 149.20 mm 141.42 mm 
Pa,opt 202 MN/m2 194 MN/m2 

 
Table 1 shows the influence of autofrettage level on the allowable internal 
pressure, using Tresca yield criterion, the different levels being cylinders not 
treated with autofrettage, treatment with optimum autofrettage and autofrettaged 
until the whole cylinder has yielded.  
 
10.0 CONCLUSIONS 
 
The following conclusions are thus drawn: 
 
1) The autofrettage process increases the maximum allowable internal 

pressure. 
2) The autofrettage process cannot increase the maximum internal pressure to 

cause the whole thickness of the cylinder to yield. 
3) If the operating pressure, Popr, is large, the optimum boundary radius (ra, opt) 

is also large. 
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4) If the yield stress, σY, is large, the optimum boundary radius (ra,opt) is small. 
5) The optimum autofrettage pressure causes the lowest equivalent stress 

during application of operating pressure, and this occurs at the elastic-
plastic junction line. 

6) The optimum autofrettage radius, ra,opt depends on the operating pressure 
Popr, and the inner radius of the thick-wall cylinder ri, apart from the 
material property σY.  

 
NOMENCLATURE 

 
P  pressure 
r  radius 
t  thickness 
k  outer:inner radius ratio 
m  autofrettage:inner radius ratio 
n  operating pressure:yield stress ratio 
σ  normal stress 
τ  shear stress 
 
Subscripts 
 
i  inner 
o  outer 
a  autofrettage 
r  radial 
θ  hoop 
z  axial 
Y  yield 
p  plastic 
e  elastic 
opt  optimum 
opr  operating 
max  maximum 
min  minimum 
Tr  Tresca 
vM  von Mises 
R  residual 
T  total 
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