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ABSTRACT

Cobalt is one of the transition metals that has been widely used in various 
fields of modern research, especially as a catalyst and photocatalyst for various types 
of reactions. In this work, two types of cobalt-based catalyst, i.e. cobalt oxide and 
cobalt Schiff base complex, each supported on silica and silica-coated magnetite, 
have been investigated. Silica-coated magnetite (SiO2@Fe3O4) has been widely used 
as a catalyst support because it can be easily separated from the reaction mixture by 
applying only an external magnetic field. Herein, magnetite was synthesized by using 
the co-precipitation method before being coated with the silica via the sol-gel method 
in order to stabilize and reduce toxicity. Cobalt complex/SiO2@Fe3O4 was 
synthesized by the condensation between cobalt(II) salicylaldehyde and 3- 
aminopropyltrimethoxysilane (APTMS) on the surface of SiO2@Fe3O4. Cobalt oxide 
(Co3O4/SiO2@Fe3O4) was later produced after calcination of its complex at the 
temperature 550 °C. The same method was used to synthesize cobalt complex/SiO2 
and cobalt oxide/SiO2. These cobalt-based catalysts were characterized using X-ray 
diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission 
scanning electron microscopy (FESEM), transmission electron microscopy (TEM), 
thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), 
adsorption-desorption nitrogen analysis, photoluminescence (PL) and diffuse 
reflectance ultraviolet visible (DRUV-Vis) spectroscopy. The performance of the 
cobalt-based catalysts was tested in the oxidation of styrene at room temperature (27 
°C) and 50 °C for 24 h. The results revealed that the cobalt complex catalyst has the
highest turnover number (TON) compared to the cobalt oxide catalyst. This is

2 +
because the amount of Co ions in the complex system which act as the active sites 
in the reaction is higher than in the oxides. Moreover, all of the active sites in the 
complexes are more accessible by the substrate, unlike those of the the oxide system, 
in which the active sites are confined inside the particles. The photocatalytic activity 
of the synthesized Co3O4/SiO2@Fe3O4 and Co3O4/SiO2 were also tested and showed 
positive results. The Co3O4/SiO2@Fe3O4 catalyst showed the highest percentage of 
methylene blue (MB) photodegradation under UV and visible light irradiations. This 
can be explained by the relationship between the PL spectra and photocatalytic 
activity. Hence, the photocatalytic activity is expected to be higher when PL with
stronger intensity is used. This difference is due to the larger amount of oxygen

2 +
vacancies and defects in the sample. It can be concluded that the amount of Co ion 
plays an important role in the oxidation of styrene, while the oxygen vacancies and 
defects are crucial for the photodegradation of MB.
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ABSTRAK

Kobalt merupakan salah satu logam peralihan yang digunakan secara meluas 
dalam pelbagai bidang penyelidikan moden, khususnya sebagai mangkin dan 
fotomangkin untuk pelbagai jenis tindak balas. Dalam penyelidikan ini, dua jenis 
mangkin berasaskan kobalt, iaitu kobalt oksida dan kompleks bes Schiff kobalt yang 
setiap satunya tersokong pada silika dan magnetit bersalut silika, telah dikaji. 
Magnetit bersalut silika (SiO2@Fe3O4) telah digunakan secara meluas sebagai 
penyokong mangkin kerana ia mudah dipisahkan daripada campuran tindak balas 
dengan hanya menggunakan medan magnet luar. Di sini, magnetit telah disintesis 
menggunakan kaedah ko-pemendakan sebelum disalutkan dengan silika melalui 
kaedah sol-gel untuk menstabilkan dan mengurangkan ketoksikan. Kompleks 
kobalt/SiO2@Fe3O4 telah disintesis secara kondensasi antara kobalt(II) salisilaldehid 
dan 3-aminopropiltrimetoksisilana (APTMS) pada permukaan SiO2@Fe3O4. Kobalt 
oksida (Co3O4/SiO2@Fe3O4) seterusnya dihasilkan selepas pengkalsinan kompleks 
pada suhu 550 °C. Kaedah yang sama telah digunakan untuk mensintesis kompleks 
kobalt/SiO2 dan kobalt oksida/SiO2. Mangkin berasaskan kobalt ini dicirikan 
menggunakan pembelauan sinar-X (XRD), spektroskopi inframerah transformasi 
Fourier (FTIR), mikroskopi pengimbasan elektron pelepasan medan (FESEM), 
mikroskopi elektron penghantaran (TEM), analisis termogravimetri (TGA), 
spektroskopi fotoelektron sinar-X (XPS), analisis penjerapan-nyahjerapan nitrogen, 
fotopendarcahaya (PL) dan spektroskopi pantulan serakan ultralembayung-cahaya 
nampak (DRUV-Vis). Prestasi mangkin berasaskan kobalt telah diuji dalam 
pengoksidaan stirena pada suhu bilik (27 °C) dan 50 °C selama 24 jam. Hasil kajian 
mendedahkan bahawa mangkin kompleks kobalt mempunyai nombor perolehan
(TON) tertinggi berbanding dengan mangkin kobalt oksida. Ini adalah kerana jumlah

2 +
ion Co dalam sistem kompleks yang bertindak sebagai tapak aktif dalam tindak 
balas, adalah lebih tinggi daripada yang terdapat dalam oksida. Selain itu, kesemua 
tapak aktif di dalam kompleks lebih mudah didatangi oleh substrat, tidak seperti 
sistem oksida, di mana tapak aktif adalah terbatas di dalam zarah. Aktiviti 
fotopemangkinan Co3O4/SiO2@Fe3O4 dan Co3O4/SiO2 yang telah disintesis juga 
diuji dan menunjukkan hasil yang positif. Mangkin Co3O4/SiO2@Fe3O4 
menunjukkan peratusan fotodegradasi metilena biru (MB) tertinggi di bawah 
penyinaran UV dan cahaya nampak. Ini dapat dijelaskan dengan hubungan antara 
spektrum PL dan aktiviti fotopemangkinan. Dengan demikian, aktiviti 
fotopemangkinan dijangkakan menjadi semakin tinggi apabila PL dengan keamatan 
yang lebih kuat digunakan. Perbezaan ini adalah disebabkan oleh jumlah kekosongan 
oksigen dan kecacatan yang lebih banyak dalam sampel. Dapat disimpulkan bahawa 
jumlah ion Co2+ memainkan peranan penting dalam pengoksidaan stirena, manakala 
kekurangan oksigen dan kecacatan pula adalah sangat penting bagi fotodegradasi 
MB.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Research

Schiff base transition metal complexes have been widely used as either 

homogeneous or heterogeneous catalysts in various organic transformations 

(Malumbazo and Mapolie, 2009). Between these two types of catalyst, homogeneous 

catalyst is preferred due to its high catalytic activity and selectivity in many organic 

reactions. However, this system has several weaknesses, such as the difficulty in 

separating the homogeneous catalyst from the reaction mixture and its recoverability 

after use in the reaction (Malumbazo and Mapolie, 2009). The heterogenization of 

homogeneous catalysts on a solid support is one of the methods taken to overcome 

these weaknesses. The heterogenization process is favourable as it leads to easy 

recovery and recycling of the catalyst (Malumbazo and Mapolie, 2009).

Currently, the development of the nanosized catalysts offers enhancement in 

activity and selectivity of heterogeneous catalysts due to large surface area and 

surface to volume ratio provided (Masteri and Tayebbi, 2011). Several insoluble 

solid materials, such as silica, have been applied as the supporting material for Schiff 

base complexes (Malumbazo and Mapolie, 2009). One of the examples is the 

immobilization of Schiff base complex on MCM-41-type hybrid mesoporous silica. 

This catalyst shows high catalytic activity in the oxidation of styrene with hydrogen 

peroxide as the oxidant (Luo and Lin, 2005). However, handling nanosized material
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poses some difficulties, such as the separation after reaction due to their small size. 

This problem might be solved by impregnating a magnetite material on the solid 

catalyst. The introductions of magnetic material on the catalyst support open the 

possibility to the catalyst being easily separated from the reaction mixture by 

applying an external magnetic field. Magnetite nanoparticles have super 

paramagnetic property, in which the particles are attracted to a magnetic field but 

retain no residual magnetism after removing the applied magnetic field (Masteri and 

Kashef, 2012; Masteri and Tayebbi, 2011). Thus, suspended super paramagnetic 

nanoparticles may be easily removed from the reaction mixture simply by using an 

external magnetic field without modifying the physical and chemical properties of 

the particle (Masteri and Kashef, 2012; Masteri and Tayebbi, 2011). In this research, 

the magnetic supporting material used to make the materials can be easily separated 

from the reaction mixture by applying external magnetic field.

Apart from cobalt Schiff base complex, cobalt oxide also shows good 

catalytic activity in oxidation reactions. It was reported that cobalt oxide supported 

on hydroxyapatite-encapsulated y-hematite (Fe2O3) nanocrystallites are highly 

efficient for olefin oxidation with hydrogen peroxide (H2O2) as the oxidant (Zhang et 

al., 2008). However, synthesis of cobalt oxide involves tedious techniques. One 

previous study prepared cobalt oxide from corresponding alkoxide using the 

sonochemical technique (Srivastava et al., 2003). Another technique utilized is the 

precipitation-oxidation method, where hydrogen peroxide acted as the oxidant (Lin 

et al., 2003). Syntheses of cobalt oxide can also be carried out through thermal 

decomposition (Ahmed et al., 2008; Shao et al., 2006). Microemulsion-based 

process is also one of the methods that has been used to synthesize cobalt oxide 

(Ahmed et al., 2008). In this research, a simple synthesis method has been employed 

in order to obtain cobalt oxide, which is by calcination of the complex.

This research proposed the immobilization of cobalt Schiff base complex on 

silica and silica-coated magnetite (SiO2@Fe3O4) nanoparticles. These materials may 

function as good catalysts for the oxidation of alkene, as previously reported for their 

homogeneous counterpart (Kooti and Afshari, 2012). Figure 1.1 shows the 

immobilization steps of cobalt Schiff base complex on silica-coated magnetite. In
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this process, hydrophilic magnetite material was covered by silica via sol-gel 

process. The next step involves the attachment of alkyl amine on the surface of silica 

using alkoxysilylamine as the precursor. Condensation of amine with salicylaldehyde 

will produce cobalt Schiff base complex functionalized silica-coated magnetite 

nanoparticles. Meanwhile, the same preparation method was employed for the 

synthesis of cobalt Schiff base complex on silica but without the preparation of 

magnetite, silica-coated magnetite and functionalization of alkyl amine.

Cobalt (II) Salicylaldehyde 
Ethanol

Figure 1.1 The strategy to synthesis cobalt Schiff base complex /SiO2@Fe3O4

Further treatment of cobalt Schiff base complex functionalized on silica- 

coated was then carried out. Calcination of cobalt Schiff base complex /SiO2@Fe3O4 

resulted in the attachment of cobalt oxide on the silica’s surface that has been coated 

by the nanosized magnetite, as illustrated in Fig 1.2. Meanwhile, the calcination of 

cobalt Schiff base complex/SiO2 resulted in the attachment of cobalt oxide on the 

silica’s surface. The calcination process removed the organic part of the complex and



4

oxidizes the cobalt into cobalt oxide. By using the calcination technique, cobalt oxide 

can be uniformly distributed on the surface of the silica.

cobalt oxide

Figure 1.2 The strategy to synthesis Co3O4/SiO2@Fe3O4

1.2 Problem Statement

Schiff base complex has been widely used as a homogeneous catalyst due to 

its ability to exhibit high catalytic activity. However, this material has several 

drawbacks and one of them is the separation difficulties after the reaction (Kooti and 

Afshari, 2012). Therefore, some modification had been made in order to 

heterogenize the catalyst by supporting it on inorganic materials such as silica. Many 

studies have been carried out on Schiff base complex supported on silica. However, 

using silica (non-magnetic supporting material) also has some drawbacks. Among of 

them is the difficulty in separating them from the reaction mixture. This can be 

overcome by using solid catalyst supported on the magnetic supporting material such 

as magnetite since it can be easily separated by simply applying an external magnetic 

field. The presence of magnetite in the catalyst can lead to easy separation of the 

silica based catalysts. Apart of that, cobalt oxide also shows good properties that can 

be utilized as catalysts in many reactions. However, a simple method can also be 

applied to synthesis cobalt oxide, which is by calcination of the cobalt complex 

(thermal decomposition).
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Hence, in this research, two types of supporting material were used in the 

preparation of cobalt-based catalysts. The first one is a magnetic material (silica- 

coated magnetite) while the other is a non-magnetic material (silica alone). The 

comparison between the catalytic activity and ease of separation after the reaction 

was then made. As mentioned previously, cobalt oxide catalysts can be easily 

obtained by thermal decomposition of the cobalt complex catalyst. Numerous 

catalysts have been developed for oxidation and photodegradation reactions but not 

many on the usage of cobalt-based catalyst. Hence, in the present approach, the 

design of cobalt-based catalysts, with the aim of improvising selectivity and catalytic 

activity, has been carried out. The research question is as follows: Will the 

synthesized material be a good catalyst in the oxidation of styrene, and 

photodegradation of methylene blue?

1.3 Objectives

The research described in this thesis proposed a fundamental study of heterogeneous 

catalysis and photocatalysis for oxidation of styrene and photodegradation of methylene 

blue. This research embarks on the following objectives:

• To prepare and design cobalt-based catalysts functionalized on non-magnetic 

(silica) and magnetic (silica coated magnetite) supporting materials

• To investigate the physicochemical properties of cobalt-based catalysts

• To testing catalytic activity on the oxidation of styrene and the 

photodegradation of methylene blue.

• To study the structure-catalytic activity relationship of the cobalt-based 

catalysts on the oxidation of 1-octene and styrene and photodegradation of 

methylene blue
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In addition, the thesis outlines of the each chapter are described as the 

following:

Chapter 1 describes the introduction of the research consist of research 

background followed by the research problem statement, objectives, scope and the 

significance of the present study. Chapter 2 is comprised of literature reviews that are 

related to this study. In Chapter 3, the preparation of the magnetite, silica coated 

magnetite and cobalt-based catalyst were described. It also includes instrumentation 

methods and catalytic activity testing. Chapter 4 discusses the result obtained from 

the characterization and catalytic activity. This chapter also discussed the structure- 

catalytic activity relationship of the cobalt-based catalysts. Lastly, Chapter 5 

represents concluding remarks based on the research findings.

1.4 Significance of the Research

The cobalt-based catalyst that has been prepared in this research could be a 

promising catalyst in the production of fine chemicals, especially for organic 

synthesis and treatment of dyes (oxidation and photodegradation reaction purpose). 

This is due to the high catalytic activity and selectivity as reported by many 

researchers. Furthermore, the method of synthesis proposed is simple and 

environmentally friendly. Besides that, the magnetic separation technology offers 

many advantages over conventional filtration and other purification methods. The 

cobalt-based catalysts could be easily and efficiently recovered from the reaction 

media, simply by applying an external magnetic field.
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1.5 Scope of Research

This study was devoted to selective oxidation of styrene and photodegradation of 

methylene blue by cobalt-based material as a catalyst and photocatalyst. The scopes of 

this study can be divided into two parts, which were preparation of cobalt-based 

catalysts and its catalytic and photocatalytic reactions.

Cobalt Schiff base complexes (cobalt complex) supported on silica was 

prepared by condensation between 3-aminopropyltrimethoxy silane (APTMS) and 

cobalt(II) salicylaldehyde. Meanwhile for cobalt complex supported on silica-coated 

magnetite, APTMS was functionalized on silica-coated magnetite then reacted with 

cobalt(II) salicylaldehyde.. Then, both of these complexes were further treated by 

calcination process to form cobalt oxide supported on silica-coated magnetite and 

silica alone. For characterization of these cobalt-based catalysts, numerous methods 

were conducted such as thermal stability, surface analysis (oxidation state analysis), 

optical and functional group analysis, morphology, crystallinity, surface area and 

porosity and water adsorptivity properties.

In order to determine the catalytic efficiency and selectivity, the prepared 

cobalt-based catalysts were tested in the oxidation of styrene and photodegradation 

of methylene blue. The reactant and products were analyzed by ultra violet visible 

spectrometry (UV-vis) for methylene blue and gas chromatography flame ionization 

detector (GC-FID) for the styrene.
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