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ABSTRACT 

The current practice for reinforced concrete building design in Malaysia using 

BS 8110 does not include seismic design provision since Malaysia is not located in 

active fault zones. The urgency of seismic design in Malaysia started when several 

tremors from neighbouring countries were felt and slightly damaged some structures 

especially after a recent earthquake in Sabah which hit Ranau in 2015 with 5.9-

magnitude. In 2017, Malaysia has recently published its own National Annex (NA) for 

seismic design according to Eurocode 8 (EC 8) to include seismic provision into 

account. This study focuses on the estimation of the required reinforcement for 

conventional design (BS 8110) and seismic design (Malaysia NA to EC 8); and the 

seismic performance of the buildings when such codes are used for design. In this 

study, buildings have been designed based on different parameters such as number of 

storey (3 and 6 storey), ductility class (low and medium ductility) and soil type (stiff 

and soft soil). One Peak Ground Acceleration (PGA) has been selected which is 0.1g 

based on condition in Peninsular Malaysia. The results show low ductility class with 

soft soil buildings have 95% to 173% higher reinforcement percentage difference 

when compared to the with conventional design This indicates higher additional 

reinforcement is needed for low ductility class with soft soil buildings to withstand the 

seismic load in such condition. Furthermore, the seismic capacity curves of the 

buildings are established by using non-linear static pushover analysis. The maximum 

displacements are obtained for all load cases of 3-storey and 6-storey buildings and 

have been compared to the conventional design. The results indicate the maximum 

displacement for conventional design is less than buildings that are designed with 

seismic provision. This shows under the earthquake event, building with conventional 

design will form plastic hinges and proceed to failure stage earlier than seismic 

designed buildings. In addition, the seismic performance points are obtained for all 

types of buildings. The results showed for all load cases conventional designed 3-

storey building and 6 storey building considered safe under 0.1g ground motion if they 

were designed under stiff soil ground condition (type A) as plastic hinges formed only 

reached to IO state. However, if they were designed under soft soil (type D), the 

buildings were not safe as the hinges formed beyond CP state at the target 

displacement. For seismic designed of 3-storey buildings, only buildings with soft soil 

regardless of ductility class were not safe even though the seismic provisions were 

included in the design. Meanwhile, for seismic designed of 6-storey buildings, all types 

of buildings were safe under 0.1g ground motion as plastic hinges formed only reached 

to IO to LS states. The results obtained for 6-storey seismic designed buildings were 

different with 3-storey seismic designed buildings due to additional structure element 

that were added in the 6-storey buildings which was shear walls that been designed 

from bottom to the top of building. The shear wall made the structure become stiffer 

thus can cater the earthquake load applied to the building.  

  



vi 

ABSTRAK 

Praktis semasa untuk rekaan bangunan konkrit bertetulang di Malaysia 

menggunakan BS8110 tidak termasuk rekaan keadaan seismik kerana Malaysia tidak 

berada di aktif zone seismik. Kepentingan rekaan seismic di Malaysia bermula apabila 

beberapa gegaran daripada negara jiran telah dirasai dan merosakkan beberapa 

bangunan terutama selepas gepa bumi terbaru di Sabah telah terjadi kepada Ranau 

pada 2015 dengan 5.9 magnitude. Pada 2017, Malaysia telah mengeluarkan National 

Annex (NA) tersendiri untuk rekaan seismik mengikut Eurocode 8 (EC8) untuk 

memasukan rekaan keadaan seismik. Kajian ini bertumpu kepada anggaran kuantiti 

besi diperlukan unutk rekaan tradisi (BS8110) dan rekaan seismik (Malaysia NA 

kepada EC8); dan prestasi seismik untuk bangunan apabila koda digunakan untuk 

rekaan. Dalam kajian ini, bangunan telah direka bergantung kepada kelainan situasi 

seperti bilangan tingkat (3 dan 6 tingkat), kelas duktiliti (rendah dan sederhana) dan 

jenis tanah (tanah keras dan tanah lembut). Satu kelajuan tinggi tanah telah dipilih 

adalah 0.1g bergantung kepada keadaan di Semenanjung Malaysia. Keputusan telah 

menunjukan bangunan kelas duktiliti rendah dengan tanah lembut mempunyai 95% 

hingga 173% ketinggian kelainan peratusan besi berbanding kepada reaan tradisi. Ini 

menunjukan jumlah lebih tinggi besi diperlukan untuk bangunan kelas duktiliti rendah 

dengan tanah lembut untuk bertahan dengan berat seismik. Tambahan pula, lengkokan 

kapasiti seismik telah diperolehi dengan menggunakan analisis statik tidak sekata. 

Keputusan telah menunujukan kadar tertinggi perbezaaan kedudukan untuk rekaan 

tradisi adalah kurang daripada bangunan direka seismik. Ini menunjukan apabila 

berlaku gempa bumi, rekaan tradisi akan mengalami kegagalan lebih pantas 

berbanding bangunan direka seismik. Selain itu, titik prestasi seismik telah diperolehi 

untuk semua bangunan. Keputusan menunjukan untuk semua jenis berat, bangunan 

direka dengan rekaan tradisi untuk 3 tingkat and 6 tingkat dikira selamat untuk keadaan 

tanah 0.1g jikalau ia direka dengan tanah keras (jenis A) kerana hinge plastik telah 

terjadi dalam keadaan IO sahaja. Untuk bangunan 3 tingkat direka dengan rekaan 

seismik dengan tanah lembut sahaja tidak dikira kelas duktiliti dikira tidak selamat 

walaupun keadaan seismik telah diambil kira. Manakala keputusan untuk bangunan 6 

tingkat direka dengan rekaan seismik dikira selamat untuk semua jenis bangunan 

kerana hinge plastik telah terjadi pada tahap IO hingga LS sahaja. Keputusan berlainan 

untuk 6 tingkat and 3 tingkat untuk bangunan direka dengan rekaan seismik adalah 

kerana pertambahan elemen struktur diperkenalkan unutk bangunan 6 tingkat yang 

telah direka dari tingkat bawah sehingga tingkat atas bangunan. Elemen struktur ini 

menjadikan bangunan lebih kukuh dan membuatkan bangunan boleh menerima beban 

gempa bumi.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Earthquake is one of the costliest natural phenomena which cause severe 

damages to the structures and infrastructures. Lots of lives, property and economic 

losses were reported due to past earthquake incidents. The world strongest earthquake 

occurred in Valdivia, Chile in 1960 with magnitude of 9.5 killed estimated 1600 people 

with 2,000,000 people were left homeless and $800 million total cost of damage. In 

2017, the strongest earthquake was recorded with 8.2-magnitude hit Chiapas, Mexico. 

This marked the strongest earthquake Mexico has experienced in 100 years. Following 

in the same month, another earthquake of 7.1-magnitude struck Puebla, Mexico with 

650 km distance of epicenter from the previous one. The total number of 286 people 

were reported killed in these two earthquakes and estimated $2 billion for the 

economic loss.  

Earthquakes occur along the plate tectonic edges and along faults. Malaysia is 

located at the inactive Sunda plate in the plate tectonic. The west of Malaysia 

(Peninsular) is located in between two major boundaries of tectonic plates; Australia 

plate and Eurasian plate meanwhile east of Malaysia (Sabah & Sarawak) is placed 

between Philippine Sea plate and Eurasian plate. Figure 1.1 shows the location of 

Malaysia in the plate tectonic boundaries. Even though Malaysia is not located along 

plate tectonic edges and considered in the low seismicity zones, the tremor of 

earthquakes from neighbouring countries such as Indonesia and Philippine sometimes 

can be felt (Abdul Rahman, 2015). In 2004, an earthquake with magnitude of 9.0 struck 

Acheh, Indonesia killed 76 people in Peninsular Malaysia with many properties were 

destroyed when tsunami hit along the northwest coastal areas of Perlis, Kedah, Penang 

and some part of Perak (Adiyanto and Majid, 2014). Furthermore, according to Che 

Abas (2001), east Malaysia also affected by large earthquakes located over Southern 
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Philippines and in the Straits of Macassar, Sulu Sea and Celebs Sea. Based on 

Modified Mercalli (MM) scale, the maximum observed intensity was VII. Figure 1.2 

shows major earthquake events that have been occurred around Malaysia region since 

1972. 

 

Figure 1.1 Location of Malaysia in plate tectonic (MacCaffrey, 2008) 

 

 

Figure 1.2 Major earthquake events since 1972 (Adiyanto and Majid, 2014) 
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In 2015, Malaysia itself has experienced an earthquake of 5.9 magnitude in 

Ranau which had killed 18 people and caused RM94.8 million cost damages to the 

structures including mosques, schools, hospitals, Ranau police headquarters and 

infrastructures (The Malaymail Online, 2015). Even though Ranau earthquake was not 

considered as a high-level earthquake, however, the damages were quite severe on the 

structures. This is mainly due to the structural design implemented in Malaysia does 

not incorporate with seismic criteria. Figure 1.3 shows the effect of Ranau earthquake 

on the structures. 

 

Figure 1.3 Effect of Ranau earthquake in 2015 (Majid et al., 2017) 

 

 

In the past design practices, Malaysia has been using British Standard (BS) 

codes which does not specify any seismic provision. In 2006, Malaysia has taken the 

steps to adopt Eurocodes following United Kingdom (UK). Even though, the 

awareness of implementing Eurocodes has been spread around consultant firms and 

educational institutions, the common design practices that being use nowadays are still 

BS codes (Chiang, 2015). For seismic design purposes, since earthquake in Acheh has 

affected Malaysia as well, Institute of Engineers Malaysia (IEM) started to develop 

the draft of National Annex for EC8 in 2007 and in 2017 the Malaysia National Annex 

(NA) to EC8 has been published. It is important for engineers and researchers to study 

the effectiveness of newly developed annex.  
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Therefore, the aim of this study to analyse the seismic performance of 

reinforced concrete building when it is designed according to Malaysia NA to EC8 in 

terms of cost and safety. The non-linear static pushover analysis will be carried out to 

produce the capacity curve of the structure and demand response spectrum curve to 

obtain the performance point of the structure. This performance point act as an 

indicator to engineers to predict the target displacement the structure likely to have in 

the event of earthquake. (Freeman, 2004). 

1.2 Problem Statement 

The current design of concrete building in Malaysia does not include the 

provision of the seismic because Malaysia’s location is located at inactive seismic fault 

zones. The recent earthquakes in Sabah and several tremors from neighboring 

countries such as Indonesia and Philippines intrigued a major concern towards the 

building design to withstand such load. In 2017, Malaysia has produced its own NA to 

EC8 to suit Malaysia’s condition for the seismic design. However, the question arises 

regarding the economic effect in term of construction cost if seismic design to be 

implemented in the Malaysia construction industry.  

According to Chiang and Arshad (2015), the former Senior Director of the 

Civil and Structural Engineering Branch of the Public Works Department, Dato’ Ir. 

Dr. Abdul Aziz b. Haji Arshad stated the main concern of the seismic design is the 

expected increase in cost to incorporate earthquake resistance elements in building and 

structural designs. The clients mainly ministries and government agencies are well 

aware that Malaysia is located in low seismic region and with additional cost will be 

imposed in the new design makes it hard to convince them that it is significant to 

include earthquake requirements (Chiang and Arshad, 2015). Hence, it is important to 

carry out comparative studies to justify the cost increase in the seismic design due to 

the National Annex and to know to what extent the design based on the newly 

developed annex can enhance the safety of new construction in Malaysia. 
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Few studies have been carried out related to the construction cost when seismic 

provision is incorporated in the design. Elawady (2017) has evaluated the seismic 

performance of the building in Portugal for different ductility classes meanwhile 

Drivas (2014) conducted a research for cost evaluation of seismic design structure 

based on ductility class for building in Sweden. Furthermore, two more researches 

have been conducted for buildings in Malaysia in order to see the cost difference for 

seismic design. Ramli et al (2017) conducted a similar research to estimate 

construction cost for building with non-seismic design and seismic design with 

different ductility classes meanwhile Adiyanto and Majid (2014) focused on the cost 

impact on low ductility class building when they were subjected to different peak 

ground acceleration and behaviour factor. The results obtained were quite different 

even though similar basis of design was used which using EC8. Therefore, these 

studies require further investigation and comprehensive research and for building in 

Malaysia, Malaysia NA to EC8 shall be used as the basis of design 

Hence, this study will focus on the seismic performance of the reinforced 

concrete building in Malaysia when it is designed based on BS8110 and Malaysia NA 

to EC8. The typical structural building layout is selected and several parameters will 

be considered in this study such as the peak ground acceleration, number of building 

storey, ductility class and type of soil. The main outcome of this research is the cost 

comparison between conventional design (BS8110) and seismic design (Malaysia NA 

to EC8). Furthermore, the performance of the building designed based on Malaysia 

National Annex will be determined by non-linear static pushover analysis in order to 

produce the capacity curve of the structure and demand response spectrum curve to 

obtain the performance point of the structure. 

1.3 Objective of the study 

The main purpose of this study is to evaluate the seismic behavior of the 

building when subjected to the gravity load and earthquake load with regards to the 

new national annex developed by Malaysia. This study will focus on the following 

objectives: 
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(a) To design short and mid-rise RC buildings based on the Malaysian National 

Annex and compare their required reinforcement quantities with conventional 

design 

(b) To obtain seismic capacity curves of the designed RC buildings and compare 

them with those obtained from conventional design 

(c) To determine seismic performance points of the designed RC buildings and 

compare them with those obtained from conventional design 

(d) To evaluate the effect of ductility class, soil type and number of stories on the 

construction cost and seismic performance of RC buildings in Malaysia 

 

1.4 Scope of Study 

This study is limited to following criteria: 

i. Type of building : RC Moment Resistance Frame 

ii. Number of storey : 3-storey and 6-storey buildings 

iii. Code  : BS8110 (Conventional) 

EC8 with Malaysia NA (Seismic) 

iv. Peak ground acceleration : 0.1g 

v. Location : Peninsular Malaysia 

vi. Ductility : Low ductility class (DCL) and Medium 

ductility class (DCM) 

vii. Type of soil : Stiff soil (type A) and soft soil (type D) 

viii. Type of analysis : Nonlinear static pushover analysis 

ix. Compressive strength of 

concrete 

: 30MPa 

x. Yield and Ultimate tensile 

strength of reinforcement 

: 400MPa & 650MPa 

xii. Software : ETABs 2016 
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1.5 Significance of Study 

The significance of this study is to determine the cost estimation of reinforced 

concrete building when it is designed using conventional method and using new 

developed Malaysia NA based on EC8. In seismic design, few parameters will be 

evaluated such as ductility class, number of building storey and ground type. The 

outcome of this study will provide a baseline for engineers and clients to estimate and 

justify the cost increment when seismic provision is included in the design. 

Furthermore, this study also will assess the seismic performance of the designed 

reinforced concrete building by using non-linear static analysis where the capacity of 

the building and demand from ground motion will be evaluated.  The result from the 

non-linear analysis will provide indication in terms of safety degree of building when 

it is designed according to Malaysia NA to EC8. 

1.6 Thesis Organization 

This thesis is presented in 5 chapters. Chapter 1 explained the introduction and 

motivation of the study. The limited scope of work for this study is listed and the 

significance of study is explained.  

Chapter 2 of this thesis presents the literature review which provides a 

background information of seismic activities in Malaysia and a brief introduction of 

Eurocode 8 and the changes in parameters provided by Malaysia NA. Besides, in this 

chapter, the fundamental of non-linear static pushover analysis is explained. The 

comprehensive finding regarding the previous researches related to the cost estimation 

studies for seismic design is also discussed.  

Chapter 3 of this thesis shows the case study of three and six storey of 

reinforced concrete building are designed by using BS8110 and Malaysia National 

Annex to Eurocode 8. Few parameters are considered for the seismic design; ductility 

class, number of building storey and ground type. Besides, the procedures of non-
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linear static pushover analysis to obtain capacity curve and performance point of the 

structure are stated. 

In Chapter 4, the required reinforcement quantities for buildings designed with 

BS8110 and Malaysia NA to EC8 will be presented. The comparison cost graphs will 

be established to present the cost difference between conventional designed building 

and seismic designed buildings. Furthermore, the capacity curves and performance 

points for all types of buildings will be obtained. All results will be discussed in this 

chapter in order to achieve all objectives presented in this study. 

Chapter 5 of this thesis will present the main conclusion of this study and 

provide recommendation for future works. 
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