ADOPTION OF BUILDING INFORMATION MODELLING (BIM) TOOLS DURING PRE-CONSTRUCTION STAGE IN MALAYSIAN CONSTRUCTION INDUSTRY

MAK TUCK KIONG

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of engineering (Construction Management)

> School of Civil Engineering Faculty of Engineering Universiti Teknologi Malaysia

> > DECEMBER 2018

DEDICATION

Especially for My beloved parents who gave me endless love, trust, constant encouragement over the years, and for their prayers.

Course mates, Friends, Supervisor,

For their encouragement throughout the course.

You know who you are.

This project report is dedicated to them.

ACKNOWLEDGEMENT

First and foremost, I would like to express heartfelt gratitude and appreciation to my supervisor Dr. Eeydzah Aminudin for her noble guidance and valuable advices as well as her effort in instilling my confidence throughout this Project report.

I also would like to take this opportunity in devoting special thanks and sincere gratitude to those contributing to the success of this study, either directly or indirectly until its completion.

Finally, I would like to dedicate appreciation to my family for their countless moral support, motivation and sacrifices throughout this study.

Abstract

The construction industry believes that Building Information Modelling (BIM) is a platform that has the potential to promote an intensive construction activity especially in reducing the time and productivity towards the evolution of industry 4.0. The goal of this study is to explore the process and the level of BIM tools implemented in the Malaysian. Lack of government involvement worsens the current situation besides having the resistance to change from construction players. To reduce the resistance for adopting BIM, most of the companies came out with own strategy such as developing new BIM unit, developing training and education program, changing management style and developing new roles and responsibilities. These activities could facilitate the organisations in adopting BIM tools. BIM is not only a technology, but it is also involved in changing the current practices and processes including changing managerial function and hierarchy, including roles and responsibilities. This study also identified that the adoption BIM Level in the Malaysian is between Level 0 and 2. However, the number will increase as Construction Industry Development Board (CIDB) has enhanced a lot of seminar, talks and conferences regarding BIM adoption. Thus, the identification of BIM tools adoption factor is essential to assist the companies to continue adopting BIM in real practices. Hence, the objective of this research is to explicate the BIM adoption factors from various literature and distributing questionnaires to gather data, as a basis to develop a research framework for analyse the data obtained, and (1)to study the extent of construction players in adopting BIM during preconstruction stage.(2) to identify the effects of BIM implementation during preconstruction stage.(3) to determine the best solutions of BIM implementation during pre-construction stage.

Abstrak

Industri pembinaan percaya bahawa Pemodelan Maklumat Bangunan (BIM) berpotensi untuk mempromosikan aktiviti kerjasama dalam industri pembinaan. Matlamat kajian ini adalah untuk meneroka proses dan tahap pelaksanaan alat BIM di Malaysia. Khususnya semasa peringkat pra-pembinaan kerana pihak yang berkepentingan tidak tahu di mana, kapan dan bagaimana untuk memulakan kerana tidak ada piawai dan garis panduan BIM nasional untuk mereka ikuti. Kekurangan penglibatan kerajaan dan penentangan terhadap perubahan daripada orang. Untuk mengurangkan rintangan daripada orang, kebanyakan syarikat keluar dengan strategi mereka sendiri seperti membangunkan unit BIM baru, membangunkan program latihan dan pendidikan, mengubah gaya pengurusan dan membangunkan peranan dan tanggungjawab baru. Aktiviti ini dapat memudahkan orang ramai dan organisasi dalam mengadaptasi alat BIM kerana BIM bukan hanya teknologi, tetapi juga terlibat dalam mengubah amalan dan proses semasa termasuk mengubah fungsi pengurusan dan hierarki, peranan dan tanggungjawab. Kajian ini juga telah mengenal pasti bahawa penggunaan BIM Level dalam industri pembinaan Malaysia adalah di antara Tahap 0 dan 2. Walau bagaimana pun, bilangan ini akan bertambah apabila Lembaga Pembangunan Industri Pembinaan (CIDB) telah meningkatkan banyak seminar, ceramah dan persidangan mengenai penggunaan BIM. Objektif penyelidikan ini adalah untuk menerangkan faktorfaktor adopsi BIM dari pelbagai kesusasteraan dan pengumpulan soal selidik untuk mengumpulkan data, sebagai asas untuk membangunkan rangka kerja penyelidikan untuk menganalisis data yang diperoleh, dan (1) untuk mengkaji sejauh mana pemain pembinaan dalam mengamalkan BIM (2) untuk mengenal pasti kesan pelaksanaan BIM semasa peringkat pra-pembinaan (3) untuk menentukan penyelesaian terbaik pelaksanaan BIM semasa peringkat prapembinaan.

TABLE OF CONTENTS

TITLE

PAGE

1

DECLARATION	iii
DEDICATION	v
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENTS	ix
LIST OF TABLES	xvi
LIST OF FIGURES	xix
LIST OF SYMBOLS	XX
LIST OF APPENDICES	xxi

CHAPTER 1 INTRODUCTION

1.0	Research Background	1
1.1	Problem statement	2
1.2	Research Questions	
1.3	Research Aim and objectives	4
1.4	Scope of Research	4
1.5	Significance of Research	
1.6	Research Methodology	6
1.7	Research Organisation	8
1.8	Summary	9

CHAPTER 2 LITERATURE REVIEW

2.0	Introduction			
2.1	Construction Project in Design Stage			
	2.1.1	Programming and Feasibility Study	12	
	2.1.2	Schematic Design	12	
	2.1.3	Design Development	13	
	2.1.4	Construction Document	14	
2.2	Buildi	ng Information Modelling (BIM)	22	
	2.2.1	BIM in Malaysian Construction Industrial	23	
	2.2.2	Definition 0f BIM	24	
2.3	BIM T	Cools in Design Stage	26	
	2.3.1	Visualise Project Model	26	
	2.3.2	Generate Fabrication or Shop Drawing		
		or Various Building System	26	
	2.3.3	Utilise Project Model Parameter by Using		
		Code Reviews	27	
	2.3.4	Preview Design Clashes Detection	28	
	2.3.5	Assist in Planning for Asset Management	28	
	2.3.6	Assist in Preparing Cost Estimating	29	
	2.3.7	Quantity Take-off Tool	29	
	2.3.8	Assist in Preparing Project Scheduling		
		Programmes	31	
	2.3.9	3D BIM to 4D Scheduling Programmes	32	
	2.3.10	The Flow Chart of 4D Scheduling		
		programmes	33	
	2.4	BIM Adoption in Project Design stage	35	
	2.4.1	Application Value of BIM in Construction		

10

Design Stage of Residential **Building Project** 37 Benefits of Implementing BIM in Project 2.5 39 Pre-construction stage 2.5.1 39 2.5.2 Construction Stage 40 Challenges in Implementing BIM 2.6 42 Potential Improvement of BIM 2.7 Implementation in Construction Projects 46

CHAPTER 3	RESEARCH METHODOLOGY	
3.0	Introduction	48
3.1	Research Method	48
3.2	Survey Instrument	49
3.3	Survey Sampling Technique	50
3.4	Questionnaire Survey	51
3.5	Pilot Test	51
3.6	Data Collection	52
3.7	Data Analysis	52
	3.7.1 Cronbach's Alpha Test	53
3.8	Summary	53
3.9	Tentative Research Schedule	53
3.10	The steps of operation for achieving	
	the adoption of BIM	55
CHAPTER 4	RESULTS AND DISCUSSIONS	56
4.0	Introduction	56
4.1	Response Rate of Questionnaire	56
4.2	Background of Respondents	58

4.2.1	Respondents' Gender	58
4.2.2	Respondents' Qualification	58
4.2.3	Age of respondents	59
4.2.4	Major Types of Work	
	Involved by Respondents	59
4.2.5	Profession of Respondents	60
4.2.6	Working Experience of Respondents	61
4,2,7	Experience 0f Application of BIM in	
	which Stage of construction in a project	61
4.2.8	Number of Year Involved in BIM	
	Application	62
4.2.9	Projects' Value Range	
	of Respondents Involved	62
4.2.10	Involvement in BIM of Respondents	63
4.2.11	BIM Tools Used by Respondents	64
Cronbac	h's Alpha Test	65
To Stud	y the Extent of Construction Players in	
Adoptin	g BIM during pre-construction	66
4.4.1	BIM to Enhance the Accuracy of	
	Existing Condition of Documentation	67
4.4.2	BIM for Schedule Sequencing	
	and Phasing Issues	67
4.4.3	BIM to Facilitate Better Communication	
	and Faster Decision Making	68
4.4.4	BIM for Work Activities, Crash	
	Detection and Crash Analysis	68

4.3

4.4

4.4.5	BIM for Design Effectiveness	
	of Projects	69
4.4.6	BIM for Project Management	69
4.4.7	BIM for Generate Material Take-off and Cost Estimation	70
4.4.8	BIM for Reduce Cost of Utilities	
	Demand and Demolition Works	70
4.4.9	BIM for Energy Analysis of	
	Processes of Activity	7
4.4.10	BIM for Code Validation of	
	Project Model	71
4.4.11	BIM for Assets Planning and	
	Facility Management	72
4.4.12	BIM Architectural Design Works	73
4.4.13	BIM for Structural Design Works	73
4.4.14	BIM for Quantity Survey Works	73
4.4.15	BIM for Design of MEP System Works	74
Identify	the Effects of BIM implementation	
during p	pre- construction stage	74
4.5.1	BIM To Detect Construction Activities C	rash
	Earlier at Pre-Construction Stage	77
4.5.2	BIM To Improve Communication	
	and Collaboration Among	
	Construction Players	77
4.5.3	BIM Can Avoid Design Changes	78
4.5.4	BIM Increases Quality of	
	Construction Projects	78

4.5

		4.5.5	BIM for Faster Decision and	
			Produces Project Design Faster	78
	4.6	Determin	ne the Best Solution of BIM Implementation	n 81
		4.6.1	External Approach	81
		4.6.2	Government Provides Standard	
			BIM Guideline	81
		4.6.3	Cooperation Among BIM Practitioners,	
			Academia and Researcher	82
		4.6.4	A Strategic Approach Model	82
		4.6.5	Clients Provide Pilot Projects for BIM	82
		4.6.6	Support and Enforcement for BIM	
			Implementation by Government	83
		4.6.7	Internal Approach	83
		4.6.8	Early Understanding of BIM by	
			Top Management in An Organisation	83
		4.6.9	Organisation Structure That Support BIM	84
		4.6.10	BIM Training Programmes	84
		4.6.11	Encouragement from Organisation Top	
			Management to Implement BIM	85
		4.6.12	Require and Hire BIM Specialists	85
	4.7	Proposed	I Improvement for BIM Implementation	86
	4.8	Summary	y	
CHAPTER	5	CONCL	USION AND RECOMMENDATION	90
	5.0	Introduc	tion	90
	5.1	Conclus	ion	90
	5.2	Limitati	ons of Research	93
	5.3	Recomm	nendation for Future Research	94

	5.4	Summary	95	5
REFEREN	CE		96	5
APPENDIX	K		10	0

LIST OF TABLES

TABLE N	10	TITLE	
Table:	2.1	Software List-Quantity Take-Off	31
Table:	2.2	BIM to 4D Tools	32
Table:	2.3	Deliveries in The Stage of Preliminary Design	38
Table:	2.4	BIM Applications in a Construction Project	41
Table:	2.5	BIM Strategies by Building and Construction	
		Authority of Singapore	45
Table;	3.1	Operation for Achieving Objectives	55
Table:	4.1	Summary of Data Collected from Questionnaire	57
Table:	4.2	Results of Valid Response	58
Table:	4.3	Gender	58
Table:	4.4	Respondents' Qualification	59
Table:	4.5	Respondents' Age	59
Table:	4.6	Major Types of Work Involved by Respondents	60
Table:	4.7	Number of Respondents from Different Profession	n 60
Table:	4.8	Working Experience of Respondents	61
Table:	4.9	Respondents' Experience in BIM Application	
		at Various Construction Stage	61
Table:	4.10	Number of Year Involved in BIM Application	
		for Construction Projects	62
Table:	4.11	Projects' Value Range of Respondents	
		Involved the Most	63
Table:	4.12	Respondents' Involvement in BIM	63
Table:	4.13	BIM Tools That Has Been Utilised by BIM Users	64

Table:	4.14	Result of Reliability Test	65
Table:	4.15	BIM Enhance Accuracy of Existing Conditions of	
		Documentation	67
Table:	4.16	BIM for Perform Schedule Sequencing or	
		phasing Issues in Projects	67
Table:	4.17	BIM to Facilitate Better Communication	
		and fast Design Decision	68
Table:	4.18	BIM to Perform Work Activities, Clash Detection	
		and Clash Analysis	68
Table:	4.19	BIM to Increase Design Effectiveness of	
		Project in Pre-construction Stage	69
Table:	4.20	BIM for Project Management	70
Table:	4.21	BIM for Generate Material	
		Take-Off and Cost Estimation	70
Table:	4.22	BIM for Reduce the Cost of Utilities Demand	
		and Demolition Works	71
Table:	4.23	BIM for Energy Analysis of Processes of Activity	
		and Types of Material Use in Construction Project	71
Table:	4.24	BIM Code Validation of Project Model Against	
		Project Specific Code	72
Table:	4.25	BIM for Assets Planning and Facility Management	72
Table:	4.26	BIM for Architectural Design Works	73
Table:	4.27	BIM for Structural Design Works	73
Table:	4.28	BIM for Quantity Survey Works in Project	74
Table:	4.29	BIM for Design of MEP Works	74
Table:	7.30	Identify the Effects of BIM Implementation	
		During Pre-construction Stage	75

Table:	4.31	Determine the Best Solutions of BIM	
		Implementation During Pre-construction Stage	79
Table:	4.32	Summary of Proposed Improvement for	
		BIM Implementation	87

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
Figure: 1.1	Research Methodology Process	6
Figure: 2.1	Construction Project Process	11
Figure: 2.2	Activities in Project Design Stage	11
Figure: 2.3	Design Team	15
Figure: 2.4	Project Design Issues	20
Figure: 2.5	Flowchart of 4D Scheduling Programme	33
Figure: 3.1	Tentative Research Schedule	54
Figure: 4.1	The Means and Ranks of the Effects of	
	BIM Implementation During	
	Pre-construction Stage	76
Figure: 4.2	The Best Solutions of BIM Implementation	
	During Pre-construction Stage	80

LIST OF SYMBOLS

 α - Cronbach's alpha

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Survey Questionnaire	100
В	SPSS Results	109

CHAPTER 1

INTRODUCTION

1.0 Research Background

Adaptation of technology in the construction industry is moving rapidly towards the era of modernisation and globalisation. ICT has played a significant role in this transformation. The use of ICT permeates in various industries including in the construction industry and it is seen as a major driver for improving performance of the industry (CIDB, 2007).

In the pre-construction stage of project, the adoption of Building Information Modelling (BIM) tools can increase accuracy in preparing cost estimating, project scheduling, site analysis, and project productivity (Fallon and Palmer, 2007; Eastman et al., 2011). The ability of BIM in visualising project design and detect design clashes during design stage can reduce request for information (RFI), design changes and incomplete design specification during construction stage. The possibilities of those problems occur during construction stage can be avoided earlier in pre-construction stage (Kymmell, 2008; NCCER, 2008).

The main importance of BIM implementation in project preconstruction stage lies on the use of three dimensional (3D) parametric authoring tools as object-based modelling software (Mohamad Kamar, 2012). There are several types of modelling software or also known as BIM tools are used to manage project design in construction projects. These tools are such as Revit (architecture, structural, mechanical and electrical (M&E)), Bentley System (architecture, structural and M&E) and Tekla structure. The tools are capable to visualise project model, preview design clashes and generate fabrication drawing for various building systems (Azhar, 2011; Eastman et al., 2011; Ahmad Latiffi et al., 2013; Monteiro and Martins, 2013; PWD, 2013).

Utilising BIM technology allows effective and better plan for construction projects activities, which can overcome the potential errors in design, disputes among construction stakeholders, construction cost overrun and project delay (Eastman et al., 2011). BIM also has ability to improve communication, collaboration between construction stakeholders, reducing cost at every stage in construction projects and minimise safety issues in construction projects (Smith and Tardif, 2009; Cheng and Ma, 2012; Sunindijo and Zou, 2013).

1.1 Problem Statement

Currently, the implementation of BIM during pre-construction stage is seen as one of the effective ways to minimise construction problems. Even though BIM implementation gives positive effects to construction projects, most of the design team is facing difficulty to implement BIM.

Meanwhile, possessing of relevant skill on BIM will also guide construction stakeholders on how to manage project design, cost estimating, project scheduling, site coordination and facilities management by using BIM tools such as Revit families (Azhar, 2011; Newman, 2013). The hindrance of BIM adoption in construction projects is due to cost of implementing BIM tools (revit families), new hardware (computer) and BIM training. The cost for these tools is expensive and it could be a barrier for small and medium construction companies to implement BIM in their work (Furneaux and Kivvits, 2008; Eastman et al., 2011; Forbes and Ahmed, 2011).

The lack of effective strategy of implementing BIM in an organisation also contributed to the slow adoption of BIM among construction stake holders (Arayici et al., 2012); for instance: the absence of a comprehensive BIM standard guideline (Zakaria et al., 2013; CREAM, 2014) and adoption model to implement BIM (Zakaria et al., 2013). Literally, there is no clear consensus on how to implement BIM in construction projects (Azhar, 2013

1.2 Research Questions

The research questions are as follows:

(i)To what extent did construction players use BIM in project Pre-construction stage?

(ii) How BIM implementation in project Pre-construction stage gives effect to construction players?

(iii)What are the benefits of BIM implementation in project Pre-construction stage?

(iv)How to assist construction players to implement BIM in project preconstruction stage?

1.3 Research Aim and Objectives

The aim of this research is to assist construction players to implement BIM in project pre-construction stage.

To be able to attempt the aim, the following research objectives are established:

(i) To study the extent of construction players adopting BIM during preconstruction stage.

(ii) To identify the effects of BIM implementation during pre-construction stage to construction players.

(iii) To determine the best solutions of BIM implementation during preconstruction stage.

1.4 Scope of Research

The scope of this research is focused on construction projects in Malaysia, which have used and currently using BIM. The projects are residential and commercial projects. Therefore, all information regarding implementing BIM in pre-construction stage were obtained from design team, which are client, architect, structural engineer, Mechanical, Electrical and Plumbing (MEP) engineers as well as contractors. The contractors are involved in this research because most of the projects using BIM in Malaysia is using design and build (D&B) as project delivery method. According to Chappell (2007), most contractors that are involved in managing project design are in design and build project scheme.

Moreover, all respondents involved in this research must have been involved and currently involved in projects using BIM. This is important to gain their understanding and experiences in managing projects using BIM. Furthermore, the information also vital to discover current BIM practices in Malaysian construction projects. The information is very useful to identify level of BIM implementation in Malaysian construction projects.

1.5 Significance of Research

This research is expected to contribute to design team and the construction industry with:

(i) giving recommendation to design team on how to implement BIM in project pre-construction stage in a construction project. This could increase BIM implementation in construction projects.

(ii) producing the best solutions that could assist design team to implement BIM and get benefits of using BIM in managing construction projects.

1.6 Research Methodology

Research methodology is one of the approaches in doing research. It is an approach to plan, to review and to control research process (Fellows and Liu, 2008). Figure 1.1 shows research methodology process for this research to be able to achieve research aim and objectives.

Figure 1.1: Research Methodology Process

Based on Figure 1.1, the research methodology process is divided into three (3) stages.

The first stage is the process to identify research issues, topic selection problem statement and research objectives. The researcher had brainstormed for research topic and had identified current issues on BIM implementation in construction projects. Moreover, the researcher has identified which construction projects in Malaysia are using BIM for the purpose of data collection.

The second stage shows types of research strategy and data collection technique used in this research. Survey is adopted in this study as the research strategy. Meanwhile, literature review and questionnaires were used in this study as data collection technique. The literature review is made to gain information on BIM implementation in project pre-construction stage and types of model, which related to BIM and construction field. All information on BIM and project pre-construction stage was gathered from books, journal articles, international conference papers, and materials available on the internet. Moreover, questionnaires are used to collect data in this study to gain information from the design team on current BIM implementation in project design stage.

The final stage, or the third stage is divided into three (3), which are data analysis, results and findings, conclusion and recommendations. All data gained from questionnaires with the design team are analysed using content analysis. Both data from literature review and questionnaires were used for the purpose of model development. The content analysis view data representation through texts, images and expressions (Krippendorff, 2012). Utilising Statistical Package for Social science (SPSS) software to assist researchers in analysing all the data. Conclusion and recommendation are the last chapter in this thesis.

The conclusion summarised all chapters in this thesis. Meanwhile, recommendations are produced based on limitation to fulfil this study and recommendations made by the researcher to improve this research in the future.

Details of research methodology process were discussed in Chapter 3.

1.7 Research Organisation

The research consists of six (6) main chapters. The chapters are as follows:

(i)Chapter 1: Introduction

This chapter consisted of introduction to research, background of research, problem statement, research questions, research objectives, scope of research, significance of research, research methodology, research organisation and summary of the chapter.

(ii) Chapter 2: Literature Review

Chapter 2 contained of literature reviews on construction project design stage and BIM. All information in this chapter consisted of introduction to construction project design stage; construction players in project design stage and issues on project design. This chapter also discussed on BIM in construction projects; definitions of BIM; implementation of BIM in the Malaysia construction industry; application of BIM in project design; tools; benefits; challenges to implementing BIM; future development of BIM in the construction industry and BIM adaptation in project design stage. Apart from that, this chapter also discussed about model development technique, which are related to BIM and construction field. The discussion contained of examples of model related to research model, similarities between the model and selection of maturity level for the research model. This chapter end with explanations on theoretical framework and summary.

(iv) Chapter 3: Research Methodology

Chapter 3 discussed on research approaches, research strategies and data collection method. This is followed by methodology adopted for the research and discussion on each adopted approach, methods used for data collection and data analysis.

(iv) Chapter 4: Results and Findings

This chapter consisted of findings from questionnaires that distributed to the design teams. Furthermore, this chapter focused on current BIM practices in project design stage among design teams. The trends of BIM implementation in project design stage are explored, which include BIM implementation in project design stage, effects of BIM implementation in project design stage, challenges of BIM implementation in project design stage and potential improvements of BIM implementation in project design stage.

(v) Chapter 5: Conclusion and Recommendations

The main conclusion is drawn out in this chapter and the limitations of the research are highlighted. It revealed the finding and suggested recommendations for future research and it ended with a concluding remark.

1.8 Summary

This chapter has presented the main issues of BIM implementation in project pre-construction stage and justification for the need of research on BIM in project re-construction stage. The aim and objectives of the research are stated in this chapter. This chapter also explored about the research planning and methodology used in this study. The structure of this study is presented at the end of the chapter. The next chapter focused on literature review related to project pre-construction stage, BIM tools and model related to BIM and construction field.

REFERENCE

- Ahmad Latiffi, A., Brahim, J., Fathi, M.S.: The development of building information modelling (BIM) definition. Appl. Mech. Mater. 567, 625–630 (2014). www.scientific.net 06 Jun 2014. Trans Tech Publications, Switzerland (2014). doi: 10.4028/www.scientific.net/ AMM.567.625
- Ding, L., Zhou, Y., Akinci, B.: Building Information Modelling (BIM) application framework: The process of expanding from 3D to computable nD. Autom. Constr. 46, 82–93 (2014)
- Zakaria, Z., Mohamed Ali, N., Tarmizi Haron, A., Marshall-Ponting, A.J., Abd Hamid, Z.: Exploring the adoption of Building Information Modelling (BIM) in the Malaysian construction industry: A qualitative approach. Int. J. Res. Eng. Technol. 2(8), 384–395 (2013) 4. Construction Research Institute of Malaysia (CREAM).: Issues and Challenges in Implementing BIM For SME's in the Construction Industry. Malaysia. Construction Research Institute of Malaysia (CREAM) (2014)
- Ahmad Latiffi, A., Mohd, S., Brahim, J.: Application of building information (BIM) in the Malaysian construction industry: A story of the first government project. Appl. Mech. Mater. 773, 943–948 (2014). ISSN: 1660-9336 10. Ahmad Latiffi, A., Brahim, J., Mohd, S., Fathi, M.S.: Building Information Modelling (BIM): exploring level of development (LOD) in construction projects. Appl. Mech. Mater. (2014). ISSN: 1660-9336
- Mohd, S., Ahmad Latiffi, A.: Building Information Modelling (BIM) application in construction planning. In: 7th International Conference on Construction in the 21st Century (CITC-VII), 19–21 December 2013, Bangkok, Thailand (2013)

- Jabatan Kerja Raya (PWD), Unit Building Information Modelling (BIM). Information on https://www.jkr.gov.my/prokom/index.php?option=com_content&vie w=article&id= 84&Itemid=43. Accessed 12 March 2013
- Haron, A.T.: Organisational readiness to implement building information modelling: A framework for design consultants in Malaysia (Doctoral dissertation, University of Salford) (2013)
- Love, P. E. D., Simpson, I., Hill, A. & Standing, C. (2013). From Justification to Evaluation: Building Information Modelling for Asset Owners. Journal in Automation in Construction, In Press.
- Ahmad-Latiffi, A., Mohd, S., Kassim, N. & Fathi, M. S. (2013). Building Information Modelling (BIM) Application in Malaysian Construction Industry. International Journal of Construction Engineering and Management 2(4A), pp.1-6.
- Zahrizan, Z., Mohamed-Ali, N., Haron, A. T., Marshall-Ponting, A. & Abd-Hamid, Z. (2013). Exploring the Adoption of Building Information Modelling (BIM) in the Malaysian Construction Industry: A Qualitative Approach. International Journal of Research in Engineering and Technology, vol. 2, pp 384-395.
- Lu, W., Peng, Yi., Shen, Q., ASCE, M. & Li, H. (2013). Generic Model for Measuring Benefits of BIM as a Learning Tool in Construction Tasks. Journal of Construction Engineering and Management, vol, 139, pp. 195-203.
- Public Work Department (PWD). (2011). Introduction to BIM. Retrieved April 23, 2013, from http://www.jkr.gov.my/prokom/index.php?option=com_content&view = article&id=310&Itemid=476&lang=ms
- Vico Software (2013). 5D BIM Construction Software, Virtual Construction. Retrieved April 23, 2013, from <u>www.vicosoftware.com</u>.

- Cadalyst. (2013). Computer Aided Design and Related Software. Retrieved August 13, 2013, from http://www.cadalyst.com/aec.
- Autodesk. (2013). 3D Design, Engineering and Entertainment Software. Retrieved August 2, 2013, from <u>http://www.autodesk.com.my</u>
- Newman, S. L. (2013). Building Information Modelling: Enabling Smart Design, Construction Facility Management. Real Estate Institute, Baruch College New York.
- R. Volk, J. Stengel and F. Schultmann. Building Information Modelling (BIM) for Existing Building-Literature Review and Future Needs. Automation in Construction (2014)
- N. A. Ismail, E. Utiome, R. Owen and R. DRogemuler. Exploring Accuracy Factors in Cost Estimating Practice towards. Implementing Building Information Modelling (BIM) (2015)
- Park, C. S., Lee, D. Y., Kwon, O. S. and Wang, X., "A Framework for Pro-active Construction Defect Management Using BIM, Augmented Reality and Ontology Based Data Collection Template" Automation in Construction" (2013)
- Davies, R. and Harty, C., "Implementing 'site BIM': A Case Study of ICT Innovation on Large Hospital Project", Automation in Construction (2013).
- Porwal, A. and Hewage, K. N. "Building Information Modelling (BIM) Partnering Framework for Public Construction Projects," Automation in Construction (2013).
- Bhatt, M. L., Borrmann, A., Amor, R. and Beetz, J., "Architecture, Computing, and Design Assistance," Automation in Construction (2013)
- Kim, C., Son, H. and Kim, C., "Automated Construction Progress Measurement Using a 4D Building Information Model and 3D Data" Automation in Construction (2013).

- Zhang, S., Teizer, J., Lee, J. K., Eastman, C. M. and Venugopal, M., "Building Information Modelling (BIM) and Safety: Automatic Safety Checking of Construction Models and Schedules," Automation in Construction (2013)
- Tahir, M. M., Haron, N. A., Alias, A. H., Al-Jumaa, A. T., Muhammad, I. B. and Harun, A. N., 2017. Applications of building information model (BIM) in Mlaysian construction industry, International Conference on Architecture and Civil Engineering, 291 (2017) 012009
- Rogers, J., Chong, H. Y., & Preece, C., 2015. Adoption of building information modelling technology (BIM). Engineering, Construction and Architectural Management, 22(4), 424–445
- Blaine Fanning, Caroline M. Clevenger, Mehmet E. Ozbek and Hussam Mahmoud., 2015. Implementing BIM on Infrastructure: comparison of Two bridge Construction Projects, Practice Periodic on Structural Design and Construction, Vol. 20, Issue 4 (November 2015)
- Enegbuma, W. I., Aliagha, U. G., & Kherun, N. A., 2015. Effects of Perceptions on BIM Adoption in Malaysian Construction Industry, Jurnal Teknologi, 77:15 (2015) 69-75
- Haron, N. A., Zarifh, R. P. & Harun, A. N., 2016. Implementation of Building Information Modelling (BIM) in Malaysia: A Review, Pertanika Journal Science and Technology, 25(3): 661-674.
- Kherun N. A., Sharifah N. N. and Tan C. B., 2013. Building Information Modelling Awareness and Readiness: Among Quantity Surveyors and Quantity Surveying Firms. Selangor: Royal Institution of Surveyors Malaysia (RISM).
- Smith, P., 2014. BIM implementation Global strategies. Procedia Engineering, 85, 482–492