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ABSTRACT 

Xylan is the most abundant sugar in hemicellulose and can be found in plant 

biomass. Xylanase produced by microorganisms such as bacteria can be used in 

industries such as paper and pulp for deinking process. A halophilic bacterium, 

Microbulbifer sp. strain CL37, was previously isolated from mangrove sediment and 

its extracellular xylanase was characterized in this study. Strain CL37 is a motile 

Gram-negative bacterium with rod shape, catalase, and oxidase positive. Strain CL37 

also can hydrolyse xylan, casein, gelatin, Tween 20, Tween 40, Tween 60 and Tween 

80. Cells are sensitive to gentamicin, tetracycline, polymyxin B, doxycycline, 

minocycline and rifampicin. The xylanase exhibited maximum activity at 70°C, pH7, 

and absent of NaCl. The xylanase remained activity up to 14% (w/v) NaCl indicates 

it is halotolerant xylanase. The xylanase activity was enhanced in the presence of 

Al
3+

, Ca
2+

, Co
2+

, Cu
+
, Cu

2+
, Fe

2+
, Fe

3+
, Mn

2+
, and Zn

2+
 (112-175% relative activity), 

stable in K
+
, Na

+
, and Ni

2+
 (>80% relative activity), but reduced in the presence of 

Mg
2+

 (59% relative activity). The xylanase activity also enhanced in the presence of 

acetone (127% relative activity) and remains stable (>70% relative activity) in most 

of the tested detergent constituents. Xylanase is also compatible with commercial 

detergents such as Top
®
, Dynamo

®
, Sunlight

®
, Glo

®
, Breeze

®
 and Dixan

®
. 

Evaluation of the enzymatic deinking activity demonstrated that xylanase from strain 

CL37 has the ability to detach the adsorbed ink particle from the surface of paper. 

Collectively, xylanase from Microbulbifer sp. strain CL37 could have potential in 

various applications, such as detergent formulation, lignocellulolytic biofuel 

production and paper deinking.   
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ABSTRAK 

Xilan merupakan gula paling banyak dijumpai di dalam hemiselulosa dan 

boleh diperoleh daripada biomas tumbuhan. Xilanase yang dihasilkan oleh 

mikroorganisma seperti bakteria boleh digunakan dalam industri seperti kertas dan 

pulpa untuk proses membersihkan dakwat. Bacteria halofilik, Microbulbifer sp. 

strain CL37 telah dipencilkan daripada sedimen bakau dan xilanase telah dicirikan 

dalam kajian ini. Strain CL37 adalah Gram-negatif bakteria berbentuk rod, positif 

dalam penghasilan katalase dan oksidase. Strain CL37 juga boleh menghidrolisis 

xilan, casein, gelatin, Tween 20, Tween 40, Tween 60 dan Tween 80. Selain itu, sel 

juga sensitif kepada gentamicin, tetracycline, polymyxin B, doxycycline, 

minocycline dan rifampicin. Xilanase tersebut mempamerkan aktiviti maksimum 

pada 70°C, pH7, dan ketiadaan NaCl. Xilanase tersebut mengekalkan aktiviti 

sehingga 14% (w/v) NaCl dan ini menunjukkan ianya merupakan halotoleran 

xilanase. Seterusnya, aktiviti xylan dapat dipertingkatkan dalam kehadiran Al
3+

, 

Ca
2+

, Co
2+

, Cu
+
, Cu

2+
, Fe

2+
, Fe

3+
, Mn

2+
, dan Zn

2+
 (112-175% aktiviti relatif), stabil 

dalam K
+
, Na

+
, dan Ni

2+
 (>80% aktiviti relatif), tetapi dikurangkan dalam kehadiran 

Mg
2+

 (59% aktiviti relatif). Xilanase aktiviti juga dipertingkatkan dalam kehadiran 

acetone (127% aktiviti relatif) dan stabil (>70% aktiviti relatif) dalam kebanyakkan 

konstituen detergen yang diuji. Xilanase juga serasi dengan detergen komersial 

seperti Top
®
, Dynamo

®
, Sunlight

®
, Glo

®
, Breeze

®
 dan Dixan

®
. Penilaian aktiviti 

pembersihan dakwat enzimatik menunjukkan xilanase daripada strain CL37 

mempunyai kebolehan untuk melepaskan zarah dakwat yang terserap daripada 

permukaan kertas. Secara kolektif, xilanase daripada Microbulbifer sp. strain CL37 

mempunyai potensi dalam pelbagai aplikasi, seperti dalam formulasi detergen, 

pengeluaran biofuel daripada bahan lignoselulosa dan membersihkan dakwat 

daripada kertas. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

Lignocellulose which is the major component of plant biomass is abundant in 

our planet and many of them is considered as waste and dispose through burning 

which can cause environmental pollution (Howard et al., 2003). The lignocellulosic 

materials can be widely used in many industries such as paper, pulp and biofuel 

production industries (Chakdar et al., 2016). The use of lignocellulosic materials as 

sustainable biomass in industries can potentially help to reduce the production cost as 

well as reducing environmental problems. 

Lignocellulose consists of three types of polymers namely cellulose, lignin 

and hemicellulose. Cellulose is the main component of lignocellulose and can be 

found in the protective cell wall of plants (O'sullivan, 1997). Lignin is the component 

mainly found in the cell wall of woody tree species to provide structural support and 

resistance against microbial attack (Pérez et al., 2002; Duval and Lawoko, 2014; 

Norgren and Edlund, 2014). Hemicellulose is heterogeneous polymers of sugar acids, 

pentoses and hexoses. Xylan is found abundant sugar in hemicellulose and it gets 

high attention today due to its applications in many industries (Coughlan and 

Hazlewood, 1993). 

Xylanase is the enzyme used to degrade xylan in industrial processes such as 

biopulping of wood and biofuel production. Many organisms have been reported to 

produce xylanase (Polizeli et al., 2005). Bacterial xylanase has been more attractive 

than fungal xylanase to be used in industries because bacterial xylanase has optimum 

pH in 7-9 while pH optimum for fungal xylanase is in acidic range (pH 4-6). Many 

xylanase using industries such as paper and pulp industry normally operate in neutral 

to slightly alkaline condition. This means that low pH requirement for optimum 
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activity of fungal xylanase is an extra steps in industrial processes, which directly 

increase the production cost thus making fungal xylanase less attractive (Chakdar et 

al., 2016). 

Members from genera of Arthrobacter, Bacillus, Cellulomonas, 

Microbacterium, Micrococcus, Paenibacillus, Pseudoxanthomonas, Rhodothermus 

and Staphylococcus have been reported as xylan degrading bacteria (Beg et al., 2001; 

Gupta et al., 2001; Chapla et al., 2012; Chakdar et al., 2016). The extremophilic 

bacterial xylanases have advantage in industrial application, which these xylanases 

could be obtained from thermophilic, alkaliphilic and halophilic bacteria. 

Characterization on new xylanase producing bacteria and exploration on their 

xylanase with extraordinary properties are always in demand for researches and 

applications.  

1.2 Problem Statement/Significance of Study 

Halophilic bacteria produce unique enzymes that could be applied in various 

industries. For example, xylanase could be used in paper deinking and lignocellulosic 

waste degradation. Most of the current commercial xylanases are originated from 

fungus origin. These xylanases are active in acidic condition that are not suitable to 

be used in paper and pulp industry, which the working pH of this industry is usually 

in neutral or slightly alkali condition. Many xylanases produced from bacteria are 

found to be active in neutral and alkaline pH. Characterization on xylanase producing 

bacteria have been studied such as genera Streptomyces, Glaciecola and 

Gracilibacillus (Guo et al., 2009; Giridhar and Chandra, 2010; Liu et al., 2013). 

However, no study was reported on characterization of xylanase from genus 

Microbulbifer. In this study, a xylanase producing halophilic bacterium, 

Microbulbifer sp. strain CL37 and its crude xylanase were characterized.   
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1.3 Research Goal 

1.3.1 Research Objectives 

The objectives of the research are: 

i. To characterize Microbulbifer sp. strain CL37 from phenotypic aspect. 

ii. To determine the effect of pH, temperature and salinity on xylanase activity 

and stability. 

iii. To assess the stability of xylanase in presence of various metal ions, organic 

solvents and detergents. 

iv. To determine the xylanase efficacy in paper deinking activity. 

1.4 Scope of Study 

The previously isolated halophilic bacterium Microbulbufer sp. strain CL37 

was streaked from glycerol stock and the extracellular xylanase activity was screened 

qualitatively. Bacterial phenotype was studied by checking bacterial morphology, 

physiology and biochemical tests. After that, effects of pH, temperature and salinity 

on xylanase activity and stability were determined. Xylanase stability in the presence 

of various metal ions, organic solvents and detergents was assessed. Lastly, the 

efficiency of extracellular xylanase of Microbulbifer sp. strain CL37 in paper 

deinking activity was analysed by using qualitative and quantitative methods. 
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