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ABSTRACT  
 The purpose of this study is to investigate the evaporator tube performance 

with different outer surface roughness and under different feeder water load. A test 

rig with horizontal aluminum evaporator tube had been designed and fabricated to 

collect the steam from boiler and converted it into condensate. The study was carried 

out on two aluminum evaporator tubes with different outer surface roughness and 

under five different feeder water loads. The performance of each evaporator tube was 

based on the collected amount of condensate. A theoretical relationship was modified 

from previous study which derived based on the film wise condensation Nusselt’s 

equation, heat transfer equation and falling film equation. Theoretical calculation 

was conducted with Maple software and the outcomes were compared with the 

experimental results. Results showed that the mass flow rate of the condensate 

increases as the feeder water load increases for both the tube. The evaporator tube 

with higher outer surface roughness showed better performance compared with the 

one with lower outer surface roughness. Also, the modified theoretical relationship 

showed higher accuracy compared to the previous study. Based on the results, the 

evaporator tube outer surface roughness plays an important role in the evaporator 

tube performance.  
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ABSTRAK 
 

 Tujuan penyelidikan ini adalah untuk mengkaji prestasi tiub penyejat dengan 

kekasaran permukaan luar yang berbeza di bawah beban penyejuk yang berbeza. 

Ikatan ujian dengan tiub aluminium penyejat telah direka dan dibentuk untuk 

mengumpul wap dari dandang dan ditukar kepada kondensat. Kajian ini telah 

dijalankan ke atas dua tiub aluminium penyejat yang mempunyai kekasaran 

permukaan luar yang berbeza dan dengan lima beban penyejuk yang berbeza. 

Prestasi setiap tiub penyejat adalah berdasarkan kepada jumlah kondensat yang 

dikumpul. Dalam kajian ini, satu hubungan teori daripada kajian sebelumnya yang 

diperolehi berdasarkan persamaan filem pemeluwapan Nusselt, persamaan 

pemindahan haba dan persamaan filem jatuhtelah diubahsuai. Persamaan ini 

diselesaikan dengan menggunakan perisian Maple. Selepas itu, keputusan teori telah 

dibandingkan dengan keputusan ujikaji. Daripada keputusan ujikaji, kadar aliran 

kondensat bagi kedua-dua jenis tiub meningkat apabila beban penyejuk dinaikkan. 

Tiub penyejat dengan kekasaran permukaan luar yang lebih tinggi menunjukkan 

prestasi yang lebih baik berbanding dengan permukaan luar tiub yang mempunyai 

kekasaran yang lebih rendah. Selain itu, persamaan telah berjaya diubahsuaikan dan 

memberikan keputusan dengan ketepatan yang lebih baik berbanding dengan 

persamaan yang sebelumnya. Berdasarkan kepada keputusan yang didapati, 

kekasaran permukaan luar bagi tiub penyejat memainkan peranan yang penting 

dalam prestasi tiub penyejat.  
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CHAPTER 1  
INTRODUCTION  

1.1 Introduction   
In marine transportation, a large amount of fresh water is consumed for a 

single trip. Each crew consumes on average about 70 litres per day and in one of the 

passenger ships, consumption hasbeen reported to reach up to 225 litres per day for 

each capital. The fresh water is not only for drinking but also for daily use such 

asshowering and cleaning. (Smith 1983) 

 

According to Smith (1983), the ship did not take all the amount of fresh water 

which was needed along the trip as a large water tank will surely occupy a big 

portion of space in the ship. Therefore, it is common practice for the ship to take only 

a minimal supply of fresh water while the rest is supplied by the desalination plant on 

the ship. 

 

In a desalination plant, evaporators are the most important part in the whole 

plant due to condensation that is taking place there. Condensation will occur when 

the vapour temperature is reduced below its saturation temperature as mentioned 

byCengel(2006).  According to the paper regarding condensation inside the tube by 

Noor (1980),the same process occurred inside the evaporators when the vapourscome 

into contacted with the surface of the evaporators where the temperature was lower 

than the vapour saturation temperature.  During this process, the heat energy from the 

vapours inside the evaporator is transferred through the evaporator wall to the 

seawater feedas shown in Figure 1.1. 
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Theoretically, the higher the thermal conductivity of the evaporator, the better 

the heat transfer for the vapours inside the evaporator which will improve 

condensation. Hence, an experimental study of the thermal conductivity effect on the 

desalination plant performance will be done by determining the relationship between 

the thermal conductivity of the evaporator to the vapour condensation rate. This 

information will provide a good reference in choosing the most cost effective 

material for the evaporators.  

 

 

 

 Figure 1.1 Condensation inside evaporatortube. (Wolverine Tube Inc, 2006) 
 

1.2 Background of the Problem 

 

 A study had been done by Noor (1980) to investigate the performance of 

brass-aluminium evaporator with various feeder loads and feeder temperature. In the 

study, a theoretical equation had been derived to predict the condensate flow rate 

under different feeder loads. The fraction of summation of inlet and outlet water 

temperature β was found to play an importance role in theoretical results calculation 

and the results were more accurate when β was within the range of 0.5 and 0.7. 
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 However, a very important factor namely outer surface roughness of the 

evaporator tube was not taken consideration in previous work. Therefore, this project 

was carried out in order to improve the outcomes from the previous work by taking 

tis factor as a parameter. Also, an aluminium evaporator tube is selected for this 

projectinstead of brass-aluminium evaporator tube which has better conductivity.  

 

 As the result, a more accurate equation was derived from the previous work 

and the effect of outer surface roughness to the evaporator performance had been 

investigated. 

 

1.3 Objective of the Study  
This study embarks on the following objectives: 

 

1) To study the effect of feeder load and outer surface roughness on the 

performance of an aluminium evaporator. 

 

2) To improve previous equation to obtain more accurate theoretical 

results.   
1.4 Scope of Study   A study will be carried out to find out the evaporator tube’s outer surface 

roughness effect on the performance of the desalination process only. The selected 

material for this study is aluminium. The performance of the system willbe evaluated 

based on the volume of condensate produced per minute. 
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 1.5 Significance of Study  
 The study on the effect of outer surface roughness on evaporator performance 

enables the engineers to design more cost effective evaporator system. Besides that, 

the modified equation will also help to predict the amount of condensate produced 

more accurately.  
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