COTTON FABRIC-BASED FLEXIBLE ELECTRODE FOR ELECTROCARDIOGRAPHY

LAM CHEE LEONG

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Biomedical)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

FEBRUARY 2016

Librarian

Perpustakaan Sultanah Zanariah

UTM Johor Bahru

Johor

Sir,

CLASSIFICATION OF THESIS AS RESTRICTED COTTON FABRIC-BASED FLEXIBLE ELECTRODE FOR ELECTROCARDIOGRAPHY LAM CHEE LEONG

Please be informed that the above mentioned thesis entitled "COTTON FABRIC-BASED FLEXIBLE ELECTRODE FOR ELECTROCARDIOGRAPHY" is to be classified as RESTRICTED for a period of three (3) years from the date of this letter. The reasons for this classification are

- (i) The project has potential for future publication in certain journals.
- (ii) The project has potential for future commercialization.

Thank you.

Sincerely yours,

Dr. Dedy H.B. Wicaksono

Dept. of Clinical Sciences,

Faculty of Biosciences and Medical Engineering (FBME)

Universiti Teknologi Malaysia

Building V01, Block A, 5th Floor, Room 05-14-01

81310 UTM, Johor Bahru, Johor.

Phone No.:+607-553-8480 / +60-19-7564764

To my beloved family

ACKNOWLEDGEMENT

Firstly, I would like to express my gratitude to my advisor, Dr. Dedy H. B. Wicaksono for the never-ending support in completing my research. His tireless guidance and motivation have assisted me throughout my days in Universiti Teknologi Malaysia. Besides, I would also like to sincerely thank my co-supervisor, Dr. Hau Yuan Wen for her support and motivation.

In completing this research, I've been assisted by many individuals who have directly or indirectly contributed in my research. I would like to take this opportunity to specially thank Muhamad Firdaus Mohd Rafi, Mohamad Fahmi Hazwan Mohd Fishol, Muhamad Bakhtiar Mohd Yudin and Aldi Michi who have contributed much to the development of the flexible circuit. My gratitude also goes to Dr. Manohar Rao from JPK Instruments and Ms. Siti Hanisah Binti Zainuddin from KL Analytical for their help in atomic force microscopy characterization; and Ms. Nur Farhana Hasmuni for her help in field emission scanning electron microscopy characterization. Besides, I would also like to express my gratitude to members of Bio-Inspired Medical Device Group for their constructive criticism and also their idea to improve this research.

Lastly, I would like to dedicate my gratitude to my lovely family who supported me no matter what I choose to do; and to my late mother, her words of wisdom have kept me going through these years.

ABSTRACT

Early detection of heart abnormalities is one of the proposed methods to reduce number of death due to cardiovascular disease. Electrocardiography (ECG) is one of the commonly used methods in healthcare institution to monitor the heart condition. However, conventional ECG monitoring system is not suitable for longterm monitoring since it is bulky and experienced personnel is needed to interpret the ECG signal. In this study, flexible electrode and circuit using cotton fabric as the substrate material is proposed. Graphene-PEDOT:PSS ink which was synthesized via electrochemical exfoliation of graphite rod was used as the conductive material. The flexible electrode was fabricated using manual immersion of scoured fabric in the ink while wax patterning and pipetting methods were employed for fabrication of electrically conductive pattern for flexible circuit. Sheet resistance of the cotton fabric-based electrode coated with 5 layers of conductive ink is 75.9 Ω /sq. The ECG signal recorded using the cotton fabric-based electrode has similar features to that of using commercial silver/silver chloride electrode. On the other hand, the average resistance of as-fabricated 10 mm long and 1 mm wide conductive pattern is 128.68 Ω . The conductive pattern remained 42.1%, 41.1% and 53.6% of its conductance after 1000 bending cycles at bend radii of 0.50, 0.75 and 1.25 mm, respectively. Besides, the conductive pattern remained 70.4% and 50.8% of its conductance after 10 acute and obtuse folding cycles, respectively. A simple cotton fabric-based operational amplifier with gain of 1.67 was fabricated as an initial proof-of-concept for development of simple processing system on cotton fabric substrate

ABSTRAK

Salah satu kaedah untuk mengurangkan kadar kematian yang disebabkan oleh penyakit kardiovaskular ini adalah melalui pengesanan awal keadaan abnormal jantung seseorang. Elektrokardiografi (ECG) merupakan salah satu kaedah yang biasa digunakan untuk memantau aktiviti jantung seseorang dalam institusi perubatan. Namun, kaedah ECG ini tidak sesuai digunakan untuk pemantauan jangka masa yang panjang disebabkan oleh saiz mesin ECG yang besar dan juga kepakaran diperlukan untuk mengintepretasi maklumat yang diperoleh melalui ECG. Dalam kajian ini, elektrod dan litar fleksibel difabrikasi menggunakan kain kapas sebagai bahan substrat. Dakwat graphene-PEDOT:PSS dihasilkan melalui kaedah elektrokimia menggunakan rod grafit. Elektrod tersebut dihasilkan melalui kaedah pencelupan kain kapas yang telah dirawat ke dalam dakwat konduktif secara manual. Selain itu, litar fleksibel pula dihasilkan melalui kaedah aplikasi lilin ke atas kain dan juga aplikasi dakwat konduktif menggunakan pipet. Rintangan helaian elektrod berasaskan kain kapas yang mempunyai 5 lapisan dakwat konduktif adalah 75.9 Ω/segi. Isyarat ECG yang direkod menggunakan elektrod berasaskan kain kapas mempunyai persamaan dengan elektrod komersial daripada ciri-ciri isyarat yang diperolehi. Selain itu, purata nilai rintangan corak konduktif yang berukuran 10 dan lebar 1 mm ialah 128.68 Ω . Corak konduktif tersebut mengekalkan purata konduktif sebanyak 42.1%, 41.1% dan 53.6% setelah dibengkokkan secara berulang kali selama 1000 kali dengan jejari bengkokan sebanyak 0.50, 0.75 dan 1.25 mm. Selain itu, corak konduktif tersebut mengekalkan purata nilai konduktif sebanyak 70.4% dan 50.8% setelah dilipat sebanyak 10 kali ke arah sudut akut dan cakah. Sebuah litar penguat kendalian dengan nilai penguat sebanyak 1.67 telah direalisasikan atas kain kapas sebagai pembuktian awal penghasilan litar di atas kain kapas.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DE	CLARATION	ii
	DE	DICATION	iii
	AC	KNOWLEDGEMENT	iv
	ABS	STRACT	V
	ABS	STRAK	vi
	TA	BLE OF CONTENTS	vii
	LIS	ST OF TABLES	X
	LIS	ST OF FIGURES	xi
	LIS	ST OF ABBREVIATIONS	xvi
	LIS	ST OF SYMBOLS	xvii
1	INT	TRODUCTION	
	1.1	Introduction	1
	1.2	Background of Research	1
	1.3	Problem Statement	2
	1.4	Objectives	3
	1.5	Purpose of Study	4
	1.6	Significance of Study	5
	1.7	Scope	5
	1.8	Flow Chart	6
	1.9	Gantt Chart	7

2	LIT	ΓERATURE REVIEW	
	2.1	Introduction	10
	2.2	Development of Flexible Electrodes for	10
		Electrocardiography	
		2.2.1 Electrodes for Wearable System	11
		2.2.2 Problems Related to Hydrogel Usage	12
		2.2.3 Recent Development of Flexible	12
		Electrode	
	2.3	Development of Circuit on Flexible Substrates	16
		2.3.1 Cellulosic Material as Substrate Materia	ial 17
		for Flexible Circuit	
	2.4	Conclusion	19
3	M	ATERIALS AND METHODS	
	3.1	Materials	20
	3.2	Material Processing	21
	3.3	Development of Flexible Electrode	22
		3.3.1 Fabrication of Electroconductive Cotton	n 22
		Fabric Sample	
		3.3.2 Characterization of Graphene-Coated	23
		Cotton Fabric	
		3.3.3 Cell Viability Assessment	24
		3.3.4 Flexible Electrode Development	25
		3.3.5 Flexible Electrode Testing	25
	3.4	Development of Flexible Circuit	26
		3.4.1 Conductive Line Patterning	26
		3.4.2 Characterization of Conductive Line	28
		3.4.3 Mechanical Characterization of	28
		Conductive Line	
		3.4.4 Integration of Electronic Components of	n 29
		Cotton Fabric	

4	R	ESULTS AND DISCUSSION	
	4.1	Material Processing	30
	4.2	Development of Flexible Electrode	31
		4.2.1 Fabrication of Electroconductive Cotton	31
		Fabric Sample	
		4.2.2 Characterization of Graphene-Coated	32
		Cotton Fabric	
		4.2.3 Cell Viability Assessment	33
		4.2.4 Flexible Electrode Testing	35
	4.3	Development of Flexible Circuit	37
		4.3.1 Characterization of Conductive Line	37
		4.3.2 Mechanical Characterization of	39
		Conductive Line	
		4.3.3 Integration of Electronic Components on	43
		Cotton Fabric	
5	C	CONCLUSION AND RECOMMENDATION	
	5.1	Conclusion	46
	5.2	Recommendation and Future Work	47

REFERENCES 49

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	Gantt chart for semester 1	8
1.2	Gantt chart for semester 2	8
1.3	Gantt chart for semester 3	9
1.4	Gantt chart for semester 4	9
4.1	Average sheet resistance and standard deviation for	33
	increasing number of graphene coating on cotton fabric	
	sample	
4.2	Readings from the microplate reader at 570 nm with	34
	values of background (blank cells) subtracted	
4.3	Percentage cell viability of different samples	34
4.4	Resistance measurement of conductive line patterned using	37
	graphene-PEDOT:PSS and PEDOT:PSS ink	

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Flow chart for development of flexible cotton fabric-	6
	based electrode	
1.2	Flow chart for development of flexible electronic	7
	circuit on cotton fabric	
2.1	Concept of the Active Belt to monitor ECG signal	13
	using textile electrodes	
2.2	CNT/PDMS electrode fabricated in different	14
	thickness and diameter	
2.3	The quality of ECG signal recorded using the	14
	CNTs/PDMS electrode with different diameter (2cm,	
	3cm and 4cm) and different thickness (1mm, 2mm	
	and 3mm) with the ECG signal recorded using	
	conventional Ag/AgCl electrode as reference. (a)	
	CNTs concentration 1.0wt%. (b) CNTs	
	concentration 1.5wt%. (c) CNTs concentration	
	2.0wt%. (d) CNTs concentration 4.5wt%. (e)	
	Conventional Ag/AgCl electrode	
2.4	SEM images of (a) cotton fabric, (b) chemically	15
	polymerized polypyrrole-cotton fabric sample, (c)	
	twice chemically polymerized polypyrrole-cotton	
	fabric sample and (d) chemical-electrochemically	
	polymerized polypyrrole-cotton fabric sample	

2.5	ECG signals recorded using (a) Ag/AgCl electrode,	16
	(b) chemically polymerized polypyrrole-cotton fabric	
	sample (CP electrode), (c) twice chemical	
	polymerized polypyrrole-cotton fabric sample (CCP	
	electrode) and (d) chemical-electrochemically	
	polymerized polypyrrole-cotton fabric sample (ECP)	
	electrode	
2.6	Direct writing of conductive silver ink on paper	18
	substrate using rollerball pen and synthesized	
	conductive silver ink (inset)	
2.7	An example of fully functional circuit integrated on	19
	paper substrate. (A) Schematic diagram of a	
	Wheatstone bridge, (B) digital photograph of	
	Wheatstone bridge fabricated on paper substrate for	
	MEMS application and (C) plot of output voltage as	
	a function of force applied on the cantilever of the	
	fabricated paper-based device	
3.1	As-synthesized graphene-PEDOT:PSS ink	21
3.2	Cotton fabric scouring processes; a) as-received 10.0	22
	$cm \times 10.0$ cm cotton fabric, b) cotton fabric placed in	
	20 mg ml ⁻¹ solution of Na ₂ CO ₃ for 10 minutes and c)	
	drying of the scoured cotton fabric for at least 2	
	hours at ambient condition	
3.3	Schematic illustration of cotton fabric coating	23
	processes where the scoured fabric was dipped in	
	graphene-PEDOT:PSS ink for 1 minute and then	
	dried at 80°C for 10 minutes	
3.4	Schematic illustration on configuration of the flexible	25
	electrode developed using graphene-coated cotton	
	fabric	
3.5	Attachment of the flexible electrode developed using	26
	graphene-coated cotton fabric on human subject	

3.6	Schematic illustration (row above) and photograph	27
	(row below) of the processes taken to fabricate	
	conductive line on cotton fabric. (a) As-prepared	
	wax-impregnated paper which was cut using digital	
	craft cutter, (b) heat treatment to transfer wax from	
	wax-impregnated paper to the scoured fabric, (c)	
	Wax deposited on cotton fabric resulting in formation	
	of hydrophobic barrier and hydrophilic channel, (d)	
	graphene ink was deposited on the hydrophilic	
	channel and (e) as-fabricated conductive line	
3.7	Conductive line samples placed on translational stage	28
	and translated between flat condition to bend radii (r)	
	of 1.25 mm, 0.75 mm and 0.50 mm	
3.8	Schematic illustration of the conductive line folding	29
	in the acute and obtuse direction	
4.1	SEM images of as-received (left) and scoured (right)	30
	cotton fabric at different magnification	
4.2	As-fabricated conductive cotton fabric sample with 5	31
	coatings of graphene-PEDOT:PSS ink	
4.3	FESEM images of the scoured cotton fabric coated	32
	(a) without coating and with (b) 1 layer and (c) 5	
	layers of graphene-PEDOT:PSS coating	
4.4	Plot of sheet resistance as a function of increasing of	33
	number of coating	
4.5	Percentage cell viability of different samples	35
4.6	ECG signal of a healthy subject recorded using (a)	36
	fabricated graphene-based flexible electrode and (b)	
	conventional Ag/AgCl electrode	
4.7	Comparison between ECG signal recorded using (a)	36
	graphene-PEDOT:PSS electrode and (b) MWCNT	
	electrode	
4.8	AFM images on the boundary between conductive	38
	pattern (region on the left) and wax-coated fabric	

	(region on the right). (a) Height image, (b) Current	
	image where area that is conductive is red while area	
	that is less conductive is in blue, and (c) three-	
	dimensional representation of the overlay of the	
	height and current image	
4.9	SEM image of the region between conductive pattern	39
	and wax (left) and the corresponding EDX elemental	
	mapping image which shows area with different	
	elements (right); red represents carbon, green	
	represents oxygen while blue represents sulphur	
4.10	Relative conductance measurement of conductive	40
	lines against various bending cycles $(n = 3)$	
4.11	SEM images viewed at different magnification of	41
	crack formed on the conductive lines after 1000	
	bending cycles. The regions where crack formed in	
	the left images are highlighted in the red box	
4.12	Relative conductance measurement against number	42
	of folds of the conductive lines $(n = 5)$	
4.13	SEM images of different magnifications showing the	42
	formation of cracks on the conductive lines after 10	
	folding cycles in the (a) obtuse and (b) acute	
	direction	
4.14	Fabricated LED circuit integrated on cotton fabric	43
	using graphene-based conductive line as	
	interconnection before (left) and when (left) 9 V	
	battery was connected to the circuit	
4.15	LED circuit patterned on a T-shirt to demonstrate the	44
	possibility of a wearable system using simple wax-	
	patterning and direct deposition of ink on cotton	
	fabric techniques	
4.16	Non-inverting amplifier circuit developed on cotton	45
	fabric (top). Sinusoidal waveform recorded using	
	oscilloscope where V _{in} represents the input signal,	

 V_{meas} represents the output signal from the cotton fabric-based circuit while V_{ref} is the output from similar circuit developed on printed circuit board as reference

LIST OF ABBREVIATIONS

Ag/AgCl - Silver/silver chloride

AFM - Atomic force microscopy

AgNP - Silver nanoparticle

CVD - Cardiovascular disease

CNT - Carbon nanotube

DIY - Do-it-yourself

ECG - Electrocardiography

EDX - Energy-dispersive X-ray

FESEM - Field emission scanning electron microscopy

HSF - Human skin fibroblast

LED - Light emitting diode

MEMS - Micro-electro-mechanical-system

MWCNT - Multi-walled carbon nanotube

NECTEC - National Electronics and Computer Technology Center

PCB - Printed circuit board

 $PEDOT: PSS \quad - \quad Poly (3, 4-ethylene dioxythiophene) - poly (styrene sufonate) \\$

SNR - Signal-to-noise ratio

xvii

LIST OF SYMBOLS

r - Bending radius

T - Temperature

CHAPTER 1

INTRODUCTION

1.1 Introduction

In this chapter, the research background, problem statement, objectives, purpose of study, significance of study and scope of this project will be described. Besides, the flow chart and also Gantt chart to achieve the objectives of this project will also be provided.

1.2 Background of Research

Studies conducted shows that cardiovascular disease (CVD) is one of the leading causes of death even in developed countries such as United States. It is

estimated that the prevalence of CVD will increase by approximately 10% over the next two decades should there be no change made to the current prevention and treatment plan [1]. The number of death due to CVD can be reduced through early detection of abnormality of the heart, especially for people with history of CVD or heart related disease [2]. Therefore, there is a need for a long-term ECG monitoring system to detect the temporary change in ECG signal to diagnose CVD such as arrhythmia and cardiac infarction [3].

Several wearable physiological monitoring systems have been developed to monitor the health status of a person including ECG signal. Such wearable systems are small in size, low power consumption and light-weighted [4, 5]. However, the commercially available ECG electrode which is the silver/silver chloride (Ag/AgCl) electrode which is used in these systems is not suitable to be used in long-term ECG monitoring. In this project, the author aims at developing a textile-based ECG electrode to replace the commercially available ECG electrode to monitor the ECG signal of individuals who have a history of heart-related disease or for patients who had cardiac surgery. Besides, another focus of this project is on the development of flexible electronic circuit using cotton fabric as the substrate material. This project serves as an initial proof-of-concept on the possibility to develop a fully functional wearable monitoring system with possibility of integrating both the flexible electrode and circuit on clothing in the future.

1.3 Problem Statement

Conventional electrodes such as Ag/AgCl electrodes are used in electrocardiography monitoring. However, study shows that these electrodes are not suitable for long-term monitoring purpose due to the use of hydrogel which could cause skin irritation and the quality of signal is affected when the hydrogel dries.

Some studies have been conducted to replace the conventional electrodes with dry electrodes made from alternative substrate materials.

While there has been development of wearable devices for biomedical applications, signal processing circuits are still fabricated using conventional printed circuit board (PCB) resulting in a rigid and bulky system. Hence, such wearable systems are not totally portable and may be inconvenient for some people to perform long-term ECG monitoring.

1.4 Objectives

The objectives of this research are as follow:

- 1) To fabricate cotton fabric-based flexible electrode and electronic circuit using cost effective and easily available materials such as cotton fabric as the substrate material and also graphene-poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (graphene-PEDOT:PSS) ink as the conductive material for biomedical applications such as ECG monitoring.
- 2) To assess cell viability of human skin fibroblast (HSF) cells on the fabricated conductive cotton fabric *via* MTT assay.
- 3) To compare the performance of the developed flexible textile-based electrode in measuring biopotential signal such as ECG signal with the quality of signal measured using Ag/AgCl electrode in terms of features of the recorded signal.

1.5 Purpose of Study

The purpose of this study is to develop a low cost flexible electrode to be used in biomedical applications such as ECG monitoring. The novelties of this research are on the material used and also the simple fabrication methods. In this project, a textile-based electrode will be developed using cotton fabric as the substrate material and graphene-PEDOT:PSS as the conductive material to fabricate the sensor. The use of cotton fabric is proposed since it is cost effective and easily available as well as sustainable and environmentally friendly. Some of the commonly used methods to deposit conductive materials on flexible substrate include screen printing, inkjet printing and soft lithography techniques where these methods are costly and require the use of state-of-the-art technology which may not be accessible or affordable by people in some developing countries. Hence, we propose simple methods such as dip coating and drying methods to fabricate the flexible electrode.

Similarly for the second part of this project, we propose the use of cotton fabric as the substrate material for fabrication of flexible electronic circuit. Conventionally, electronic circuits are usually assembled on PCB but the rigidity of the board limits its' versatility. Although much research has been conducted on fabricating flexible electronic circuit on paper substrate, the application is limited due to its' brittleness. Hence, we propose the use of simple fabrication method using wax-patterning and pipetting of the conductive ink on cotton fabric to form a highly flexible electronic circuit.

1.6 Significance of Study

In this project, a cost effective flexible electrode and a preliminary study on the development of circuit on cotton fabric will be developed for ECG monitoring purpose. In this case, this system will enable user to afford to have a portable ECG monitoring system at home where the measurement can be taken by the users or their family members, where this will reduce the time wasted to have a check up at healthcare centre. Should there be any sign or indication of cardiovascular abnormality, the user can then be referred to specialist to have more accurate diagnosis and treatment. This will indirectly contribute to lowering the number of fatality since cardiovascular disease is one of the leading causes of death in the world. This is because the diagnosis could be performed at a lower cost which makes it more affordable to people with lower income where treatment can then be carried out should the person is diagnosed with cardiovascular disease to prevent complication in the future. Besides, the electrode will also be integrated into wearable system where people with history of cardiovascular disease or those who have undergone heart-related surgery could wear the ECG monitoring system integrated on clothing so that the patient or family members could take immediate action should there be abnormality indicated by the system. This could also reduce the risk of fatality since a precaution could be taken before the condition of the patient worsens.

1.7 Scope

Scope of this project includes the development of a cotton fabric-based flexible electrode for biomedical applications which include material processing, fabrication and characterization of the electroconductive fabric, development of electrode and testing of the electrode. Besides, another scope of this project is in the integration of the electronic components on cotton fabric to form a cotton fabric-

based circuit which involves material processing, fabrication and characterization of conductive line, integration of components and also testing of the developed circuit.

1.8 Flow Chart

The methodology used in this research is illustrated in the flow charts shown in Figure 1.1 and Figure 1.2.

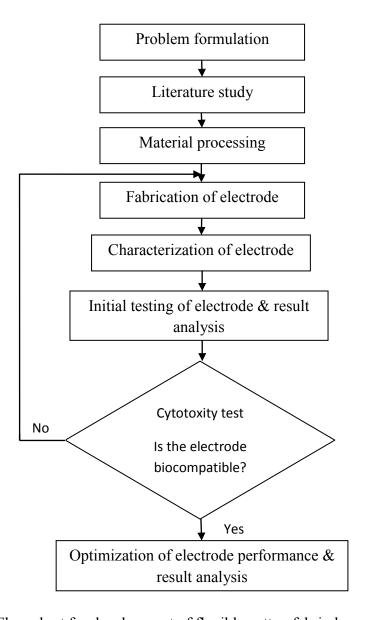


Figure 1.1 Flow chart for development of flexible cotton fabric-based electrode.

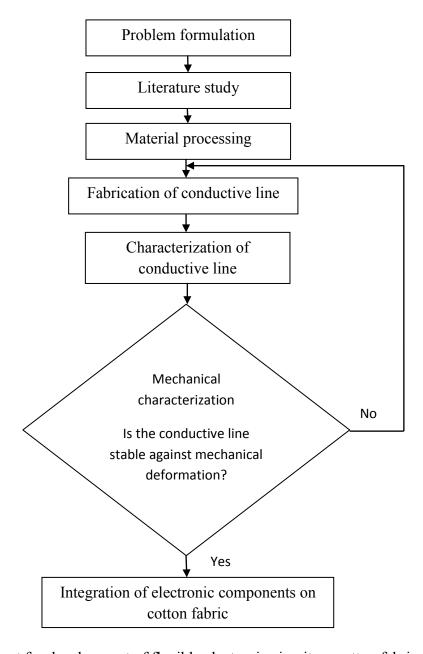


Figure 1.2 Flow chart for development of flexible electronic circuit on cotton fabric.

1.9 Gantt Chart

Table 1.1, 1.2, 1.3 and 1.4 show the Gantt chart for Semester 1, 2, 3 and 4, respectively. This project took a total of 4 semesters to be completed.

Table 1.1: Gantt chart for Semester 1

Month		Se	pt		0	ct '	201	3	Nov				Dec				Jan 2014			
IVIOIILII	2013					Ct 1	201		2013				2013							
Week	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Problem																				
Formulation																				
Literature Review																				
Material Processing																				
Electrode																				
Fabrication																				
Characterization																				
Initial Testing of																				
Sensor																				
Analysis of Initial																				
Result																				
Report Writing																				

Table 1.2: Gantt chart for Semester 2

Month		Feb 2014					rch	1		Αp	ril		May				June			
							2014				2014				2014				2014	
Week	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Cell Viability																				
Assessment																				
Electrode																				
Optimization and																				
Testing																				
Fabrication of																				
Conductive Line																				
Electrical																				
Characterization of																				
Conductive Line																				
Report Writing																				

Table 1.3: Gantt chart for Semester 3

Month	Sept 2014			О	ct 2	201	4	Nov 2014				Dec 2014				Jan 2015				
Week	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Mechanical																				
Characterization of																				
Conductive Line																				
Development of																				
LED Circuit on																				
Fabric																				
Testing of Flexible																				
LED Circuit on																				
Fabric																				
Development and																				
testing of op-amp																				
circuit on fabric																				
Report Writing																				

Table 1.4: Gantt chart for Semester 4

Month		Feb 2015					March				April				May				June			
		1 00 2013				2015				2015				2015				2015				
Week	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4		
Circuit Optimization																						
Final Testing of																						
Circuit																						
Review and																						
Analysis of Result																						
Finalize Project																						
Thesis Writing																						
Thesis Submission																						

REFERENCES

- P.A. Heidenreich, J.G. Trogdon, O.A. Khavjou, J. Butler, K. Dracup, M.D. Ezekowitz, E.A. Finkelstein, Y. Hong, S.C. Johnston, A. Khera, D.M. Lloyd-Jones, S.A. Nelson, G. Nichol, D. Orenstein, P.W.F. Wilson, and Y.J. Woo, Forecasting the Future of Cardiovascular Disease in the United States: A Policy Statement From the American Heart Association. *Circulation*, 2011: 123(8): 933-944.
- 2. K. Mankodiya, Y. Ali Hassan, S. Vogt, H. Gehring, and U. Hofmann. Wearable ECG module for long-term recordings using a smartphone processor. *Proceedings of the 5th International Workshop on Ubiquitous Health and Wellness*. Copenhagen, Denmark: IEEE. 2010. 26-29.
- 3. G.-Y. Jeong, M.-J. Yoon, and K.-H. Yu. Ambulatory ECG monitoring device with ST-segment analysis. *ICCAS-SICE*. IEEE. 2009. 509-513.
- 4. P.S. Pandian, K.P. Safeer, P. Gupta, D.T. Shakunthala, B.S. Sundersheshu, and V.C. Padaki, Wireless Sensor Network for Wearable Physiological Monitoring. *Journal of Networks*, 2008: 3(5): 21-29
- L. Hu, M. Pasta, F.L. Mantia, L. Cui, S. Jeong, H.D. Deshazer, J.W. Choi, S.M. Han, and Y. Cui, Stretchable, Porous, and Conductive Energy Textiles. *Nano Letters*, 2010: 10(2): 708-714.
- 6. M.S. Fernandes, J.H. Correia, and P.M. Mendes, Electro-optic acquisition system for ECG wearable sensor applications. *Sensors and Actuators A: Physical*, 2013: 203: 316-323.
- 7. A.C.K. Chan, H. Hamada, H. Fujiwara, S. Okochi, K. Higuchi, A. Kajiya, T. Fujita, and K. Maenaka. A small, wearable, stretchable electrocardiogram and physical activity monitoring system. *Proceedings of the 7th International Conference on Body Area Networks*. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering). 2012. 66-67.

- 8. E.-H.W. Kluge, Ethical and legal challenges for health telematics in a global world: Telehealth and the technological imperative. *International Journal of Medical Informatics*, 2011: 80(2): e1-e5.
- 9. B. Stanberry, Legal ethical and risk issues in telemedicine. *Computer Methods and Programs in Biomedicine*, 2001: 64(3): 225-233.
- 10. P. Brey, Freedom and Privacy in Ambient Intelligence. Ethics and Information Technology, 2005: 7(3): 157-166.
- 11. M. Chan, D. Estève, J.-Y. Fourniols, C. Escriba, and E. Campo, Smart wearable systems: Current status and future challenges. *Artificial Intelligence in Medicine*, 2012: 56(3): 137-156.
- H.-C. Jung, J.-H. Moon, D.-H. B, J.-H. Lee, Y.-Y. Choi, J.-S. Hong, and S.-H. Lee, CNT/PDMS Composite Flexible Dry Electrodesfor Long-Term ECG Monitoring. *Biomedical Engineering, IEEE Transactions on*, 2012: 59(5): 1472-1479.
- 13. M.M. Puurtinen, S.M. Komulainen, P.K. Kauppinen, J.A.V. Malmivuo, and J.A.K. Hyttinen. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel. *Engineering in Medicine and Biology Society*, 2006. EMBS '06. 28th Annual International Conference of the IEEE. 2006. 6012-6015.
- 14. Y. Zhou, X. Ding, J. Zhang, Y. Duan, J. Hu, and X. Yang, Fabrication of conductive fabric as textile electrode for ECG monitoring. *Fibers and Polymers*, 2014: 15(11): 2260-2264.
- K.-S. Kim, Y.-C. Lee, J.-W. Kim, and S.-B. Jung, Flexibility of Silver Conductive Circuits Screen-Printed on a Polyimide Substrate. *Journal of Nanoscience and Nanotechnology*, 2011: 11: 1493-1498.
- T. Kim, H. Song, J. Ha, S. Kim, D. Kim, S. Chung, J. Lee, and Y. Hong, Inkjet-printed stretchable single-walled carbon nanotube electrodes with excellent mechanical properties. *Applied Physics Letters*, 2014: 104(11): 113103.
- 17. J. Yoo, L. Yan, S. Lee, H. Kim, and H.-J. Yoo, A Wearable ECG Acquisition System With Compact Planar-Fashionable Circuit Board-Based Shirt. *IEEE Transactions on Information Technology in Biomedicine*, 2009: 13(6): 897-902.

- 18. X. Liu, M. Mwangi, X. Li, M. O'Brien, and G.M. Whitesides, Paper-Based Piezoresistive MEMS Sensors. *Lab on a Chip*, 2011: 11(13): 2189-2196.
- K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, and P.M. Ajayan, Inkjet Printing of Electrically Conductive Patterns of Carbon Nanotubes. *Small*, 2006: 2(8-9): 1021-1025.
- A. Russo, B.Y. Ahn, J.J. Adams, E.B. Duoss, J.T. Bernhard, and J.A. Lewis, Pen-on-Paper Flexible Electronics. *Advanced Materials*, 2011: 23: 3426-3430.
- 21. Y.-L. Tai and Z.-G. Yang, Fabrication of Paper-Based Conductive Patterns for Flexible Electronics by Direct-Writing. *Journal of Materials Chemistry*, 2011: 21: 5938-5943.
- W.J. Hyun, O.O. Park, and B.D. Chin, Foldable Graphene Electronic Circuits Based on Paper Substrates. *Advanced Materials*, 2013: 25: 4729-4734.
- L. Valentini, S. Bittolo Bon, and J.M. Kenny, Transfer writing of foldable graphene nanoplatelet patterns on paper substrates. *Materials Letters*, 2013: 113(0): 54-58.
- A.C. Siegel, S.T. Phillips, M.D. Dickey, N. Lu, Z. Suo, and G.M. Whitesides, Foldable Printed Circuit Boards on Paper Substrates. *Advanced Functional Materials*, 2010: 20: 28-35.
- 25. H.M. Lee, S.-Y. Choi, A. Jung, and S.H. Ko, Highly Conductive Aluminum Textile and Paper for Flexible and Wearable Electronics. *Angewandte Chemie*, 2013: 125(30): 7872-7877.
- 26. L. Buechley and M. Eisenberg, Fabric PCBs, Electronic Sequins, and Socket Buttons: Techniques for e-Textile Craft. *Personal and Ubiquitous Computing*, 2009: 13(2): 133-150.
- 27. Q. Li and X.M. Tao, Three-dimensionally deformable, highly stretchable, permeable, durable and washable fabric circuit boards. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science*, 2014: 470(2171): 20140472.
- C. Sriprachuabwong, C. Karuwan, A. Wisitsorrat, D. Phokharatkul, T. Lomas, P. Sritongkham, and A. Tuantranont, Inkjet-printed graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing. *Journal of Materials Chemistry*, 2012: 22(12): 5478-5485.

- 29. C. Karuwan, C. Sriprachuabwong, A. Wisitsoraat, D. Phokharatkul, P. Sritongkham, and A. Tuantranont, Inkjet-printed graphene-poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) modified on screen printed carbon electrode for electrochemical sensing of salbutamol. *Sensors and Actuators B: Chemical*, 2012: 161(1): 549-555.
- 30. A. Nilghaz, D.H.B. Wicaksono, D. Gustiono, F.A. Abdul Majid, E. Supriyanto, and M.R. Abdul Kadir, Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. *Lab on a Chip*, 2012: 12(1): 209-218.
- J. Banaszczyk, A. Schwarz, G. De Mey, and L. Van Langenhove, The Van der Pauw method for sheet resistance measurements of polypyrrole-coated para-aramide woven fabrics. *Journal of Applied Polymer Science*, 2010: 117(5): 2553-2558.
- 32. C.L. Lam, N.N.Z.M. Rajdi, and D.H.B. Wicaksono. MWCNT/Cotton-based flexible electrode for electrocardiography. *IEEE Sensors Conference*. Baltimore, Maryland: IEEE. 2013. 1-4.