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ABSTRACT 

 

 Tall buildings are widespread in Malaysia and the majority of them are 

designed to carry only gravity and wind loads. Seismic regulations are not taking into 

account for such buildings in both design stage and construction stage. This study 

addresses the seismic behaviour of tall buildings in Malaysia by developing fragility 

curves for two tall concrete walls. Both buildings are 80m height with two different 

configurations. The first building with five car park levels and the second one with 

three car park levels. The structural system of both buildings is moment resisting frame 

(MRF) at the parking levels and shear wall system at the residential levels. The 

reference structures were subjected to fifteen near field earthquake records. Fragility 

curves were obtained by relating the obtained seismic demands from nonlinear time 

history analysis to the peak ground acceleration using a reliable statistical model. It 

was found from fragility curves of building (A) the exterior frame is more vulnerable 

than interior frame for both damage states, while in building (B) the probabilities of 

both frames to have severe damage were close to each other, but for minor damage, 

fragility curves illustrate that the exterior frame was more fragile than interior frame. 

The developed fragility curves demonstrated that the seismic behaviours of both 

buildings were different under the same ground motion intensities. Results showed 

that building (A) with five car-park levels has better resistance to seismic load compare 

to building (B) with three car-park. It can be concluded that design concept of such 

buildings against wind and gravity is adequate in fulfilling the required performance 

if the design PGA is less than 0.2g.  
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ABSTRAK 

Bangunan-bangunan tinggi yang meluas di Malaysia dan majoriti daripada 

mereka direka untuk membawa beban yang hanya graviti dan angin. Peraturan-

peraturan seismik tidak mengambil kira bangunan tersebut di kedua-dua peringkat 

rekabentuk dan pembinaan. Kajian ini berucap kelakuan seismik bangunan tinggi di 

Malaysia dengan membangunkan kerapuhan keluk bagi dua tembok konkrit yang 

tinggi. Kedua-dua bangunan adalah 80m ketinggian dengan dua tatarajah yang 

berbeza. Bangunan pertama dengan lima aras tempat letak kereta dan yang kedua 

dengan tiga aras tempat letak kereta. Sistem struktur kedua-dua bangunan adalah 

rangka menentang masa di aras tempat letak kereta dan sistem dinding ricih di 

peringkat kediaman. Struktur tugas adalah tertakluk kepada lima belas berhampiran 

bidang rekod gempa bumi. Kerapuhan lengkung yang diperolehi oleh berkaitan 

permintaan seismik yang diperolehi dari analisis sejarah masa tak linear dengan 

pecutan puncak tanah menggunakan model statistik yang boleh dipercayai. Didapati 

dari lengkung kerapuhan bangunan (A) rangka luar adalah lebih banyak terdedah 

daripada kerangka dalaman bagi kedua-dua negeri kerosakan, manakala dalam 

bangunan (B) kebarangkalian bingkai kedua-dua mempunyai kerosakan teruk adalah 

berhampiran antara satu sama lain, tetapi bagi kerosakan kecil, kerapuhan lengkung 

menggambarkan bahawa kerangka luar adalah lebih mudah rosak berbanding kawasan 

pedalaman bingkai. Lengkung kerapuhan maju menunjukkan tingkah-laku seismik 

dari kedua-dua bangunan yang berbeza di bawah keamatan aktiviti pergerakan tanah 

sama. Hasil kajian menunjukkan bahawa bangunan (A) dengan lima aras tempat letak 

kereta mempunyai ketahanan yang lebih baik untuk seismik beban berbanding 

bangunan (B) dengan tiga-tempat letak kereta. Maka dapatlah disimpulkan bahawa 

konsep reka bentuk bangunan tersebut terhadap angin dan graviti adalah mencukupi 

untuk memenuhi prestasi yang dikehendaki jika Reka bentuk PGA kurang daripada 

0.2 g.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

Buildings in Malaysia are mostly built of reinforced concrete. Many of them 

are designed to carry only wind and gravity loads without consideration of seismic 

forces. Assessment of the vulnerability of these buildings is significant for predicting 

the potential earthquake losses.  

Malaysia seismicity falls between low to moderate. The seismic hazard of 

Malaysia is characterized by far-field events from Sumatra and near-field events due 

to local seismic faults (Balendra and Li, 2008). The recent earthquake in Ranau drew 

attention to predicting and mitigating earthquake losses. 

Fragility curves are one of the essential tools in the risk assessment field and 

effective approach to evaluate the performance of different structures under various 

level of seismic events intensities(Calvi et al., 2006). This tool describes the 

probability of structures to exceed certain limit states under various ground motion 

scenarios(Mwafy, 2012). 

Derivation of fragility curves for tall wall concrete building in Malaysia 

through non-linear time history analysis is discussed in this study. One reference 

building is designed according to the building codes adopted in Malaysia. The building 

behaviour is evaluated under 15 input near-field ground motions. The seismic response 

is measured for two concrete walls. 
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1.2 Problem Statement 

Building codes and construction practice adopted in Malaysia do not take into 

account the anti-seismic regulations (Abas, 2001). Although Malaysia is considered as 

a stable region, but in 2015, Ranau, East Malaysia had been stricken by an earthquake 

with 5.9 magnitude. Several buildings were damaged due to Ranau earthquake since 

many of them are designed only based on gravity and wind loads. 

Post-event investigations indicated that the primary reason behind the damaged 

buildings is the poor design and workmanship. Many of buildings were damaged 

because of the non-engineering construction practice, lack in reinforcement, soft-story 

phenomenon. These findings promoted the policy makers, engineers and researchers 

to seriously consider the potential consequences from natural hazard in the future. 

Fragility relations are used to evaluate the seismic impact on buildings. These 

relations are used to predict the potential damage under different earthquake events, 

and they also effective for mitigating seismic risk in future. The latter objective can be 

achieved through reinforcement jacketing, steel jacketing and FRP installation for 

existing structures as well as calibration of the seismic design provisions of new 

structures (Mwafy, 2012). 

Few studies have been conducted to evaluate the seismic performance of 

different structures in Malaysia(Hamid and Mohamad, 2013).These studies are limited 

for low to medium rise concrete buildings in Malaysia (Saruddin and Nazri, 2015). 

However, high-rise building stock is the most significant since it represents the 

majority of building inventories in Malaysia.  

The focus of this study is on the physical damage of tall wall concrete building 

in Malaysia since it has not been addressed yet. The seismic behaviour of tall wall 

concrete building will be discussed through fragility relations.  
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1.3 Research Goal 

This study aims to increase the awareness of the policy makers and the planners 

toward seismic vulnerability of existing tall buildings, improve the disasters planning 

and risk assessment strategies, and dispose anti-seismic regulations and retrofitting 

schemes. 

1.3.1 Research Objectives 

The objectives of the research are: 

(a) To investigate failure mode of the reference structure when subjected to near-

field earthquakes. 

(b) To obtain seismic demand of the reference structures through nonlinear time 

history analysis. 

(c) To derive seismic fragility curves for the reference structures under near-field 

excitations. 

 

1.3.2 Research Scope 

The scope of this study can be defined as following: 

(a) The employed compressive strength of concrete is 40Mpa. 

(b) The employed yield strength of reinforcing bar is 460Mpa 

(c) The employed finite element software is ETABS 2017 software. 

(d) The foundation will not be modelled in this study. 

(e) Two-dimensional idealization models will be modelled.  



4 

(f) It is assumed the structures are constructed on stiff soil.  

(g) Fifteen near-field earthquake records are selected to perform nonlinear 

dynamic analysis. 
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