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ABSTRACT 

In recent time, the offshore oil and gas industry is facing many challenges like 

ferocious competition from shale field operators and alternative energy sources, 

production drop, rising cost etc. All these factors play major role in low crude oil 

prices.  To combat these challenges, the operators are focusing on several untapped 

field with low production capacity, known as “Marginal Fields” that require innovative 

design approach to make it economically viable. Minimum facility platform is 

promising solutions for marginal fields; however, reliability of such structure is a 

major concern among the operators. In most of the past studies, the reliability 

technique is effective applied on four (4) legged jacket structure for optimization. This 

research has attempt to apply reliability analysis method to Mono-tower structure, as 

minimum facility platform for marginal fields around Malaysia region. The structure 

was designed as per API RP 2A (WSD). The maximum wave height and current data 

from Malaysian offshore is using to generate random variables as per Weibull 

distribution and Monte Carlo Simulation (MCS) have been developed. The surface 

modelling and curve fitting is done to develop quadrilateral equation in MATLAB for 

environmental load modelling. Design cases developed as per API RP 2A or ISO19902 

must provide adequate levels of reliability throughout the service life. A combination 

of engineering technique i.e. component based reliability analysis and safety factors, 

used to ensure integration of all types of uncertainties such as loads, structural 

properties as resistance, failure modes. FEM method is use for accurate modelling. 

The probability of failure and reliability index of critical members and other structural 

members of interest was determined with First Order reliability Method (FORM). The 

fluctuation in loads and variation material properties were accounted in the assessment. 

The target reliability level can be achieved either by comparing with existing 

traditional jacket structure or by following analytical probabilistically models. The 

partial factors evaluated using reliability assessment is in accordance with concept of 

Load Resistance Factor Design (LRFD) presented in ISO-19902. Further, the ISO 

recommendations are followed to calibre the factors as per regional climatic 

conditions. The estimated reliability Index is 3.95 and probability of failure (Pof) is 

5.3x10-5 as per reliability analysis results. Therefore, the conclusion is that Mono-

tower as minimum facility platform is suitable for marginal field development that is 

fulfilling the requirement of reliability, safety and certification. The minimum 

structure demonstrates equal or higher reliability index for selected members as per 

ISO. The environmental load calibration has result in factor of 1.26, as against 1.35 

suggested by ISO, indicates the potential reduction for Malaysian region without 

compromising the safety level of structure. 
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ABSTRAK 

Sejak kebelakangan ini industri minyak dan gas luar pesisir menghadapi 

banyak cabaran termasuklah persaingan sengit dari pengendali-pengendali lapangan 

syal dan sumber tenaga alternatif, penurunan dalam pengeluaran, peningkatan kos dan 

lain-lain. Kesemua faktor ini menyumbang kepada harga minyak mentah yang rendah. 

Bagi menangani cabaran ini, pengendali-pengendali kini sedang menumpukan 

perhatian kepada beberapa sektor yang belum lagi diterokai dan mempunyai kapasiti 

pengeluaran yang rendah; ianya juga dikenali sebagai Bidang Marginal (Marginal 

Fields) dan memerlukan pendekatan reka bentuk yang inovatif untuk menjadikan 

sektor ini berdaya maju. Platform kemudahan minimum merupakan inovasi yang 

sangat memberangsangkan untuk bidang marginal; walau bagaimanapun, 

kebolehpercayaan struktur itu menjadi kebimbangan utama di kalangan pengendali. 

Kajian-kajian sebelum ini menunjukkan bahawa penggunaan teknik kebolehpercayaan 

berkesan dalam mengoptimumkan struktur jaket berkaki empat. Penyelidikan ini 

bertujuan untuk menerapkan kaedah analisis kebolehpercayaan kepada struktur 

menara ‘Mono’ sebagai platform kemudahan minimum untuk bidang marginal di 

rantau Malaysia. Struktur ini direka berdasarkan kepada API RP 2AWSD. Ketinggian 

maksimum gelombang serta data semasa untuk kawasan luar pesisir Malaysia telah 

digunakan untuk menjana pemboleh ubah rawak untuk pengedaran Weibull dan 

menghasilkan Simulasi Monte Carlo (Monte Carlo Simulation. Pemodelan permukaan 

dan penyesuaian lengkung dijalankan agar dapat mewujudkan persamaan segi empat 

menggunakan perisian MATLAB untuk tujuan pemodelan beban persekitaran. Kes 

reka bentuk yang dihasilkan mengikut API RP 2A atau ISO19902 perlu memastikan 

tahap kebolehpercayaan yang mencukupi sepanjang hayat perkhidmatan. Gabungan 

teknik-teknik kejuruteraan, iaitu di antara komponen analisis kebolehpercayaan dan 

faktor keselamatan berasaskan komponen, digunakan untuk memastikan integrasi 

semua jenis ketidakpastian seperti beban, sifat struktur sebagai rintangan, mod 

kegagalan. Kaedah FEM digunakan untuk menghasilkan pemodelan yang tepat. 

Kebarangkalian kegagalan dan indeks kebolehpercayaan anggota kritikal serta elemen 

struktur penting lain ditentukan menggunakan kaedah kebolehpercayaan First Order 

(First Order Reliability Method). Keadaan turun naik dalam beban dan variasi sifat 

bahan juga telah diambil kira dalam penilaian. Tahap kebolehpercayaan sasaran boleh 

dicapai melalui pembandingan dengan struktur jaket tradisional sedia ada ataupun 

dengan mengikuti model probabilistik secara analitik. Faktor-faktor separa yang 

dinilai menggunakan penilaian kebolehpercayaan adalah selaras dengan konsep LRFD 

dalam ISO-19902. Selanjutnya, ISO mencadangkan untuk menentukur faktor-faktor 

seperti keadaan iklim serantau. Indeks kebolehpercayaan yang dianggarkan ialah 

sebanyak 3.95 dan Probability of failure (PoF) adalah 5.3x10-5 berdasarkan hasil 

analisis kebolehpercayaan. Kesimpulannya, Mono-tower sebagai platform kemudahan 

minimum sesuai untuk pembangunan dalam bidang marginal dan memenuhi keperluan 

kebolehpercayaan, keselamatan dan persijilan. Struktur minimum menunjukkan 

indeks kebolehpercayaan yang sama atau lebih tinggi untuk sesetengah elemen 

mengikut ISO. Penentukuran beban persekitaran menghasilkan faktor 1.26, 

berbanding dengan faktor1.35 yang dicadangkan oleh ISO, dan ini menunjukkan 

potensi untuk pengurangan bagi rantau Malaysia tanpa menjejaskan tahap keselamatan 

struktur. 
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CHAPTER 1  
 

 

 

 

INTRODUCTION 

1.1 Background of Study 

Petroleum Nasional Berhad (PETRONAS) started operating in 1974 as the 

Malaysia’s National Oil and Gas Company. This was possible with the setting up of 

the Petroleum Development Act in conjunction with the blossoming oil and gas 

industry in Malaysia back in the mid 70’s. Long before that, oil was only discovered 

in Sarawak which is located at the eastern part of Malaysia. It was named the Grand 

Old Lady, which served as an offshore oil production platform in 1900’s. In recent 

days, Malaysian offshores oil and gas activities are operating at Sarawak Operations 

(SKO) near Sarawak, Sabah Operations (SBO) in Sabah and Peninsular Malaysia 

Operations (PMO) near Terengganu. Most of the oil and gas activities near Malaysian 

offshores are managed by Petronas Carigali Sdn. Bhd. (PCSB), in particularly the 

Exploration and Production (E&P) of Petronas with 200 offshore platforms on 

operation up to date (Fadly, 2011).  These platforms are mostly of the fixed jacket 

platforms, because it lies at Sunda-Shelf region (South China Sea- shallow water area).  

It is an undeniable fact that the contribution of oil and gas industry to the 

Malaysian economy has been extremely significant over the years. As per the 

Malaysian oil and gas Industry report, Price Waterhouse Coopers (2016) study reports 

that “Malaysia’s Gross Domestic Production (GDP) in year 2014 upholds gas and 

condensed crude oil as the highest export material after the electronic and electrical 

supplies. In addition, this industry also contributes to this country’s Gross Domestic 

Production (GDP) in these years as much as 20%. Along with this, PETRONAS alone 

profited an overwhelming of RM 881 billion in the form of taxes, royalties, dividends, 

and duties to the governments within 40 years of its incorporation”.  
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Without doubt, the dropping prices over 60% in the year 2014 and fluctuation 

within the range USD 35 to USD 45 per barrel in the year 2016 and 2017 with very 

slow and uncertain recovery in year 2018, implies that the upstream growth force 

would be difficult or rather questionable. This will cause activities in the domestic 

upstream which ranges on 6 Risk Sharing Contracts (RSC) and 101 Production Sharing 

Contracts (PSC) which will put immense pressure on Malaysia’s three prolonged 

approach to unlock reserves: 

1.1.1 Marginal Field Development 

Malaysia hoped to release an approximate of 600 million Barrel of Equivalent 

(BOE) spreading them over 100 marginal fields. This approach seems to be facing a 

lot of challenges, even with a breakeven cost of USD 55 per barrel  

1.1.2 Explored Deep Water Fields  

Approximately, seven (7)  billion of Barrel of Equivalent (BOE) are yet to be 

discovered resources, with only 50% found by oil and gas organizations up till date, 

and deep water exploration are obvious facts. However, the delay in this strategy is 

due to its high cost remuneration which seems reasonable to its current environment 

situation.  

1.1.3 Enhanced Oil Recovery (EOR) 

The Enhanced Oil Recovery (EOR) could be carried out onto 14 known 

oilfields across the country, with its ability to unlock approximately 0.8 to 1.0 Billion 

of Barrel of Equivalent (BOE) is captivating. Along with the “Monetise Marginal 

Field” and “Tap under Explored deep water potential” approaches, the possibility to 

commence with this approach will go through critical observation in this current price 
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environment. This is because 14 billion is needed to execute the first 10 Enhanced Oil 

Recovery (EOR) projects. 

Malaysia is not alone in facing the new challenges, the current geopolitical 

scenario and volatility in crude oil prices have impacted on offshore field development 

activities around the world. The projects were delayed and abounded due to low cost 

benefit ratio. Every passing day, it is becoming more demanding and operators need 

to look for best practices of doing business as well as consider adopting new 

technologies, new method of designing, fabricating, installation. The demand for 

technological advancement as well as emphasis on regional requirement are high. The 

industry is responding to such demand various ways such as 

1. By conducting joint industry Project, workshop and seminars to 

establish the gap in current standards and develop new standards to 

serve the industry at large. OGP work shop on OGP Report No. 486, 

March 2014 (IOGP, 2014) states the Reliability of Offshore Structures 

- Current Design and Potential Inconsistency is one such attempt to 

highlight the gaps in various industry standard. The gap in international 

standard is discussed later in this thesis.  

2. Harsh economic challenges faced by the operators and minimal 

platform designer introducing new concepts caused changes in 

technology and promoting the use of minimal platforms. Operators and 

minimal platform designer are working towards simplification on deck, 

minimize environment impact, design with low visit, sustainable 

solutions, secondary installation fix, as well as platform automation. 

For instance, Mustang Engineering and Offshore magazine found 150 

operators that has minimal deck designs and 47 engineering companies 

via “2nd Worldwide Survey of Fixed Minimal Structures”. The 

knowledge and expertise in developing these marginal field is yet to 

transfer in Malaysian oil and gas industry.   

Currently, the structural designs are solely based on the structural standards 

including the codes In their documentation a comprehensive methodology is presented 
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that can result in sufficient levels of reliability either as an absolute value of reliability 

or as an outcome of good practice once the methodology has been followed (Kolios & 

Bernnan, 2009). This refer to conventional jacket structure having 4-legged or 8-

legged structure connected with robust bracing system that was designed as per RP 

2AWSD (American Petroleum Institute, 2008). These structures have demonstrated 

satisfactory performance in term of safety and redundancy. However, such structures 

are economically not viable for marginal field and hence requires innovative design.  

(Kolios & Bernnan, 2009) further mentioned that “Designing novel structures, 

involves the difficulty that no previous experience exists for their design or operation. 

Therefore, the conditions for design should be determined very thoroughly. Structural 

standards that refer to specific structures cannot accommodate this scope and therefore 

a different approach should be considered.” The reliability method of designing 

structure can be promising while it needs to vet for Malaysian environment. Petronas 

is ambitious to develop capability in design and manage marginal field projects by 

using innovative approach. The basic requirement for the resulting design should be 

to build a structure that can perform adequately, able to meet requirements and 

specifications, based on sound engineering techniques that can be verified and later 

certified from appropriate certification bodies (Kolios & Bernnan, 2009).  It is very 

important to ensure the safety and the dependability of every offshore structures. These 

offshore structures have to meet every standard requirement without any fatality and 

assets loss, at the same time maintaining economic balances. 

1.2 Problem Statement 

Structural design is an art of managing risk and material cost (Wisch, 1997).  

The offshore platforms are primarily designed for following three categories of 

loading.  

1. Permanent Action (Dead Load):  self-weight of structure, equipment, 

piping,  
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2. Variable Action (Live Load): consisting weight of consumables, fluid 

in equipment & piping, temporary storage of construction and 

maintenance material and working crew 

3. Environmental Action (Environmental Load): This include Waves, 

Current and Wind 

API RP 2A-WSD is set to be the corner stone of all offshore platform design 

all around the world. This standard design has been proved and accepted since its first 

issue in the year 1969 (Theophanatos, Cazzulo, Berranger, Ornaghi, & Wittenberg, 

1992).  In working stress design theory, a factor of safety is applied on material yield 

strength to reduce the ultimate strength to allowable working strength. A single safety 

factor is used to cover all kind of uncertainty on material. For the load’s factors are 

generally based on experience. According to (Ayyub, Hill, Shah, Kotwicki, & Gupta, 

2007), the usage of deterministic factor of safety with an uncertainty would cause 

fluctuating reliability which may result in conservative design since WSD does not 

include individuals uncertainties and real safety margin effects. Overall, this method 

inherits considerable safety margined which can be optimize and reduce the weight 

structure suitable for marginal field development.   

In 1993, API had published, API Recommended Practice 2A (LRFD), 

established using Load and Resistance Factor Design method to implement new 

knowledge gain over the period of offshore engineering practices. However, the same 

was withdrawing, to merge with ISO 19902 (ISO, 2007).  Now ISO 19902 is the latest 

international standard available for the design of offshore structure. There is drastic 

difference in the approach of these standards which also create gaps and confusion 

among users. The approach has been based by the application of variations statistical 

methods, whereby structures under loading and material geometry strength. A 

satisfactory safety level for every limit state under consideration can be accomplished 

when the design capacity is great or equal to design action. The benefit of the reliability 

technique is to ensure that the structural safety may be defined in a concise manner 

with different safety factors being applied to the various contributing parameters, each 

representing differing degrees of uncertainty.  



 

6 

The LRDF code give much emphasis on certain site condition because of the 

changes from material fabrication and geography. Hence, LFRD method will bring out 

every variation on the regional differences from the extreme operating conditions of 

which the designs are referred about ((Nizamani, Kurian, & Liew, 2014)). For offshore 

structure, it is more relevant due to varying nature of environmental loading which is 

not distributed normally. The result of load variabilities, effect of the structural 

reliability is measured by the reliability index ().  

The semi-probabilistic based codes, ISO 19902 (ISO, 2007) and API (LRFD) 

each have resistance factors and environmental loads that has been based on calibration 

in Gulf of Mexico and North-Sea. These are the areas of sever environmental condition 

having natural disasters such as hurricanes (typhoons in Pacific Oceans) as well as 

severe winter storm respectively. Hence, this particular code is used to design 

platforms jackets that has lesser severe environment impact such as, South China Sea 

or more specifically Malaysia or Indonesian region than the design become over-safe 

and uneconomical. In an estimate, it is presented that by using GoM criterial, the 

design is amplified by 40-60% due to the lack of data. As a result of this reason, it is 

entirely important that the actual load factors to be ascertained for this particular region 

for estimating system reliability. These calibrated factors can be adopted in Petronas 

Technical Standard (PTS) (2010), to be align the company standard with ISO 

standards. 

1.3 Objectives of the Study 

The objectives of this research is performing reliability analysis for Minimal 

offshore structure suitable for marginal field development. These are the following 

main objectives for this research: 

1. To study the factors affecting reliability index and develop 

environmental load equation by surface response technique. 

2. To evaluate component-based reliability index of Minimum facility 

platform (Mono-Tower) using Form Method.  
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3. To compare the reliability index of Minimum facility platform (Mono-

Tower) with typical four (4) legged Jacket structure.  

4. To calibrate ISO based environmental load factors for Malaysian met-

ocean conditions. 

The objectives will be achieved by modeling the whole structure using analysis 

software which will be discussed in detail in Chapter three (3).  After which the 

offshore platform is to be statically analyzed for its stability by only considering the 

gravity load and environmental load. 

1.4 Scope and Limitation of Work 

A Mono-Tower structure is selected as minimum facility platform suitable for 

marginal field development in Malaysian offshore. The structure selection is based on 

availability of structural data including drawings, foundations i.e. soil data, metocean 

data from Malaysia region,  The structure is assume to be to light weight and new 

structure designed as per API RP 2A (WSD). The life extension and reassessment is 

not the intent of this research. The computer based structural modelling has to retain 

the original design’s geometry with an allowance of changes in design variable and 

loading. Suction pile foundation is the new concept which can be adopted in Malaysia 

to further reduce the cost of platform. The data about suction pile foundation was not 

available in time hence the research proceeded with drilled pile foundation system. 

Further, this research will focus reliability of Mono-Tower substructure and reliability 

of pile foundation is excluded. The scope is distributed in three parts for this research 

project. 

First part of scope of work includes study of met-ocean data i.e. 1 year and 100 

years wave, current and wind from Malaysian offshore. Develop of environmental 

parameters using Weibull distribution and generate environmental load equations, for 

using in reliability analysis. The wave height and current speed is basic parameters in 

environmental load modelling based on extreme wave parameter.  
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The second part covers the response of Mono-Tower due to environmental 

actions. Static In-place structural analysis by applying gravity and environmental 

loading on structure. The simulation performed in SACS provides base shear, 

overturning moments and member utilization. The member selection for reliability 

analysis is as per simulation results from static analysis.   

As third part, the scope of work includes carrying out component-based 

reliability analysis using FORM method. With the help of reliability analysis program 

developed in MATLAB, estimate reliability index (), probability of failure (Pof) of 

critical members and any other member of particular interest.  Compare the results 

with four (4) legged jacket structure reliability index. Evaluate of the effect of 

environmental loadings variation and finally calibrate the environmental load factors 

for Malaysian offshore.  

This research specifically will not include design condition such as Earthquake, 

Boat impact and Fatigue. The effect of variation of marine growth and corrosion is not 

considered. However, corrosion allowances are included as per API RP 2A 

recommendation for new structures. For simplicity purpose, the dynamic effects are 

not included at this stage albeit the Minimum facility platform tends to be slender and 

sensitive to the dynamic effects. These can be included in future as the work progress 

and time permits. The loadings will be considered as per designed value recommended 

in American Petroleum Institute (2008) and in platform design premises.  

1.5 Computational Tools  

In order to conduct linear and non-linear structural analysis, computer models 

were used by utilizing some of the easily available commercial software such as 

Structural Analysis and Computing System (SACS). MATLAB and Microsoft Office 

(Excel), computer based mathematical programming tools are utilized to perform 

every reliability analyses as well the typical computing tasks for this study. The 

response surface method has unpredictable models for resistance and load which was 

created to encompass in this method and has been utilized into the reliability analyses, 
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First Order Reliability Method (FORM) and Monte Carlo Simulation (MCS) is used 

to determine the reliability index and the probability failure. The analysis approach is 

component based reliability analysis  

1.6 Expected findings 

It is expected that this research will apply the theory and methodology of 

reliability analysis developed based on typical four legged jacket to Mono-Tower 

offshore structure. The study identified in detail the various level of reliability analysis 

methods. The factors which influence the reliability index () and probability of failure 

(PoF). It is common perception that the minimal structure tended to be less reliable 

and weak as compared with four (4) legged jacket structure, hence after performing 

serval analysis, this study can provide a bases for validating and acceptance of minimal 

structural concept in Malaysia. The main task is to identify the actual load factors 

which produce structure with acceptable safety levels that can be classify as “Fit for 

Purpose”. The gravity load and environmental load factors will be studied. It is 

anticipated that gravity factor will not influence much because of degree of certainty, 

while environmental factors will plays major role in providing economical design. 

However, this hypothesis must be verified with multiple structural analysis and 

mathematical calculations. Following is the summary of expected results after rigorous 

analysis and research is,  

1. Identify the latest development in assessment of reliability of offshore 

structures.  Recommended procedure for reliability analysis. 

2. Compute the reliability index and bench mark against four (4) legged 

jacket structure 

3. Validate the ISO LRFD (Nizamani et al., 2014) factors by calibrating 

environmental factors based on component reliability of Mono-Tower 

Structure for Malaysian water. 

The research intends to run several analyses on Mono-Tower platform by 

varying the factors to prove the correct structural response under regional geophysical 
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condition. On return, a proper recommendation will be stated based on the results of 

the analyses and data. 

1.7 Layout of Project/Research 

The organization of this research is done in order to provide the reader deep 

overview of the achievement of this study with a very clear and digestive layout. The 

study will be following after this chapter by another four (4) chapters, where the details 

of the chapters are as follow:  

Chapter one (1) identifies the need for the current research and highlights the 

objectives to be achieved as well as determines the scope and limitation for this study. 

Chapter two (2) will discuss the previous works and literature available on the 

same topic. Specifically, it will highlight a background of Minimum facility platform 

structures, environmental loading on offshore structures, background of early works 

conducted on reliability of offshore structures in various part of the world with specific 

focus on Malaysian region.  

Chapter three (3), on the other hand, will highlight the methodology practiced 

for the achieving objectives of this study. In chapter three, thorough details will be 

addressed in determining the concept, the practice of modelling and preparing the 

model to be analyzed to reach the appointed findings. It will also highlight the methods 

adopted in creating static In-place analysis model and mathematical modeling for 

environmental load modeling. Moreover, the source of data will be detailed out and 

the methods used by software for analysis purposes will be discussed.  

Chapter four (4) will shed the light on analysis conducted and the results 

acquired from the analysis. The important results are summarized in tables and figures 

and the detail results are attached in the Appendices. This chapter summarizes for all 

the analysis conducted for this study. A detailed discussion is done in this chapter to 

further explanation of the concept, as required, with the help of available results.  
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Chapter Five (5) provides the conclusion for all the results as well as the 

justification for some concepts. It detailed out listed objectives of this research and 

provides the recommendations for correct application of reliability theory. The chapter 

ends with list of suggestions for future research to further develop the concept of 

Minimal facility offshore platform and advancement of technology 
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