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ABSTRACT 
 

 

 

 

In this study, free vibration of anti-symmetric angle-ply, and cross-ply 

laminated rectangular plates under first order shear deformation theory using 

clamped boundary condition is analysed.  Two different numerical methods called 

Splines approximation and Radial Basis Functions (RBFs) are considered to 

approximate the functions.  The fundamental frequency for anti-symmetric angle-ply 

plates are analysed with respect to aspect ratio, length-to-thickness ratio, ply angles 

and number of layers with different type of material arrangements.  The problem of 

free vibration of cross-ply laminated plates are analysed for frequency parameter 

with respect to length-to-thickness ratio, aspect ratio, and number of layer with 

different disposition of materials.  For both of the problems, the equations of motion 

derived using Yang Nooris and Stavsky (YNS) theory and the solution is assumed in 

separable form to obtain a coupled differential equations in term of displacement and 

rotational functions.  These functions are approximated using cubic Spline function 

for the first case and the differential equations are then approximated using RBF for 

the second case.  Preliminary studies on anti-symmetric angle-ply laminated plates 

with higher order shear deformation theory under simply supported boundary 

condition are studied using Spline method.  The free vibration of anti-symmetric 

angle-ply laminated plates are analysed, under third order shear deformation theory 

using spline approximation.  The equations of motions are derived using Reddy 

theory with third order shear deformation theory and the solution is assumed in 

separable form to obtain a coupled differential equations.  The displacement and 

rotational functions are approximated using cubic and quantic Splines.  These 

procedures produce a set of ordinary differential equation, along with boundary 

condition equations and become a generalized eigenvalue problem.  The resulting 

eigenvalue problem is solved for the frequency parameter.  The frequency parameter 

was analysed with respect to aspect ratio, length-to-thickness ratio, ply angles and 

number of layers with different type of material arrangements.  The aim of this 

research is to provide the free vibration of layered plates for anti-symmetric angle-

ply and cross-ply laminated plate with first order shear deformation theory with 

clamped boundary condition and identifies the difference between two different 

methods applied. 
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ABSTRAK 
 
 
 
 

 Dalam kajian ini, getaran bebas bagi plat segi empat tepat berlamina lapis-

serong dan lapis silang antisimetri dengan teori ubah bentuk ricih peringkat pertama 

menggunakan syarat sempadan terkapit dianalisis.  Dua kaedah berangka yang 

berbeza dikenali sebagai, fungsi penghampiran Spline dan Fungsi Asas Jejarian 

(RBF) dipertimbangkan sebagai penghampiran kepada fungsi.  Frekuensi asas bagi 

plat lapis serong antisimetri, dianalisis terhadap nisbah aspek, nisbah sisi kepada 

ketebalan, sudut lapis dan bilangan lapisan dengan gabungan jenis bahan yang 

berbeza.  Masalah getaran bebas plat berlamina lapis silang dianalisis untuk 

parameter frekuensi terhadap nisbah sisi kepada ketebalan, nisbah aspek, dan 

bilangan lapisan dengan sususan bahan yang berbeza.  Bagi kedua-dua masalah, 

persamaan gerakan telah diterbitkan dengan menggunakan teori Yang Nooris dan 

Stavsky (YNS) dan penyelesaian diandaikan dalam bentuk bolehpisah untuk 

mendapatkan persamaan perbezaan berganding dalam sebutan fungsi anjakan dan 

putaran.  Fungsi ini dihampirkan dengan menggunakan fungsi Spline kuasa tiga bagi 

kes pertama dan persamaan perbezaan telah dihampirkan dengan menggunakan 

fungsi RBF bagi kes kedua.  Kajian permulaan ke atas plat berlamina lapis-serong 

antisimetri dengan menggunakan teori ubah bentuk ricih aras tinggi dengan syarat 

sempadan disokong mudah telah dikaji menggunakan kaedah Spline.  Getaran bebas 

bagi plat berlamina lapis-serong antisimetri dianalisis dengan teori ubah bentuk ricih 

peringkat ketiga, dengan menggunakan penghampiran Spline. Persamaan gerakan 

diterbitkan dengan menggunakan teori Reddy dengan teori ubah bentuk ricih 

peringkat ketiga dan penyelesaian diandaikan dalam bentuk bolehpisah untuk 

mendapatkan persamaan perbezaan berganding.  Fungsi anjakan dan putaran 

dihampirkan menggunakan fungsi Spline kuasa tiga dan kuasa lima.  Prosedur ini 

menghasilkan satu set persamaan pembezaan biasa, berserta dengan persamaan 

syarat sempadan dan menjadi masalah nilaieigen teritlak. Masalah nilaieigen yang 

terhasil diselesaikan untuk parameter frekuensi. Parameter frekuensi dianalisis 

terhadap nisbah aspek, nisbah sisi kepada ketebalan, sudut lapis dan bilangan lapisan 

dengan gabungan jenis bahan yang berbeza.  Tujuan kajian ini adalah untuk 

menyediakan nilai frekuensi bagi plat berlapis untuk plat berlamina lapis-serong dan 

lapis silang antisimetri dengan teori ubah bentuk ricih peringkat pertama dengan 

syarat sempadan terkapit dan mengenalpasti perbezaan diantara dua kaedah berbeza 

yang digunakan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction  

 

 

The history of composite material starts three decades ago, where the mixture 

of straw and mud are used to form bricks to make buildings and shelters.  As the time 

passes the technology has developed and improvisation on mixture of composite 

plates are increasing, from straw and mud to glued laminated wood, laminated metal 

and fibre-glass for various purpose.  Now the structure of plates are the centre of 

attraction for most of the contemporary engineers for being stiffer structural element 

in modern construction. Fields such as aerospace, automobile and shipbuilding are 

some industries that are widely using this because of composite plates have more 

desired damping and shock absorbing characteristic. 

 

 

 The natural frequency of the plates play an important role in constructions.  

The stability of the plates in construction based on the natural frequency of the 

plates.  Free vibration of plates is, the vibration occurs in the absence of loads on the 

plates but implied some initial boundary conditions on plates. Therefore, natural 

frequency of the plate must be consider in order to construct any plate structure. 

 

 

 The combination of macroscopic structural unit of two or more separate 

materials called the composite materials.  There are few advantages of composite 

material design, for instance they are resistant to high temperature, lower in weight 

and it has better damping and shock absorbing characters.  This is because of the 
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composite materials have structural unit, and each of the unit will have specific 

properties in comparison to their monolithic counterpart. 

 

 

 

 

1.2 Structure of Plate 

 

 

Nowadays most of the companies and engineers are focusing more on ratio of 

strength to weight or ratio of stiffness to weight, while designing any structures or 

object.  As result of higher specific modulus and specific strength, the composite 

materials have higher shear modulus compared to metallic materials. This condition 

leads to the increased usage of laminated composite materials in engineering sector 

for the past few decades, and laminated composite materials have been widely used 

in engineering field due to higher specific modulus and specific strength.  

 

 

 Shear deformation plays an important role during the calculation of materials’ 

frequencies.  Shear deformation means the tendency of an element change its shape 

without change in length of the element.  The change in angle at the corner of an 

original rectangular element called the shear strain while the ratio between shear 

stress and shear strain define as elasticity modulus of shear. 

 

 

 Most of the composite plates consist of multiple laminae or plies oriented in 

the desired direction.  Hosokawa et al., (2001), Hua et al.,(2001), mentioned that the 

ply orientation, geometric parameters and boundary conditions affect the natural 

frequency of the plate.  Apart from that, Abrate (1994) mention that, by having the 

angle-ply laminations for the composite plates, the design can reach its optimization 

and it contribute to adjust the natural frequency of the structure. 

 

 

 There are two methods are adopted in this study, Spline and Radial Basis 

Function (RBF).  Spline functions are fast convergence function and it successfully 

applied to boundary value problems.  The existing spline method already analysed by 

Viswanathan and Kim (2008), Viswanathan and Lee (2007), Javed et al (2016), 

Viswanathan et al (2016) and Viswanathan (2016).  The RBF is a new method, 
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which is widely used by Ferreira et al (2003), Ferreira et al (2004), and Ferreira et al 

(2010) to solve the plate problems.  In this study, the work is based on comparing the 

two numerical approximations.  The problems on anti-symmetric angle-ply and 

cross-ply plates under simply supported (S-S) boundary conditions already done by 

Viswanathan and Kim (2008) and Viswanathan and Lee (2007).  In the present work 

anti-symmetric angle-ply and cross-ply plates under clamped-clamped (C-C) 

boundary conditions are analysed using Spline approximations and also motivated to 

compare the results to one of the approximation called Radial Basis Function (RBF) 

approximations. 

 

 

 In this research, angle-ply and cross-ply laminated plate are used.  Angle-ply 

laminates are laminates, which have ply angles other than 90˚, and cross-ply 

laminated which contain ply angles 0˚ and 90˚ only. There two types of boundary 

condition used in this research, one clamped and another boundary condition is 

simply supported.  For all the problem both end the of y-axis are considered as 

simply-supported, and the x-axis are considered as clamped-clamped (C-C) and 

simply supported (S-S) boundary conditions, and the equation of motion are derived 

under first order shear deformation theory (FSDT) and higher order shear 

deformation theory (HSDT).  The frequency parameters are analysed using two 

different numerical methods, Spline and Radial Basis Function (RBF) with respect to 

various parameters.  The frequency parameters obtained by using Spline functions 

subtracted with respective to the frequency parameter obtained by RBF method.  The 

differences in these two values are recorded and analysed the maximum difference 

between frequency parameter obtained using these two methods.  

 

 

 

 

1.3 Problem Statement 

 

 

There are numerous studies that have been carried out on composite structure 

in line with increase of its applications in various industries. A study is needed to 

produce better approximation method to compute frequency parameter for laminated 

plates.  It is needed to fulfil the results of the current study, there are some essential 

results to be carried out for further analysis in composite structure.  Relative layers, 
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aspect ratio, side-to-thickness ratio, ply angles and material properties with boundary 

conditions affect the strength and stiffness of the structural composite materials.  

Therefore, this work shows the latest result on further analysis on anti-symmetric 

angle-ply, cross-ply laminated rectangular plates under first and higher order shear 

deformation.  The free vibration of anti-symmetric angle-ply, cross-ply laminated 

plates under first order shear deformation and free vibration of anti-symmetric 

angles-ply laminated plate under third order shear deformation theory problems are 

studied.  The frequency parameter need to be identify by using two different methods 

with clamped-clamped and simply supported boundary conditions. The differences 

between frequency parameters obtained using these two methods are calculated, and 

identify the maximum differences between frequency parameter obtained using 

Spline approximation and RBF approximation. 

 

 

 

 

1.4 Objectives 

 

 

1. To compare the differences between frequency parameters obtained 

using spline approximation and radial basis function method. 

2. To study the frequency parameter for various fixed parameters for angle-

ply under first order shear deformation theory. 

3. To study the frequency parameter for various fixed parameters for cross-

ply under first order shear deformation theory. 

4. To extend the angle-ply laminated plate problem for higher order shear 

deformation theory. 

 

 

 

1.5 Scope of the Study 

 

 

This study focused on anti-symmetric laminated angle-ply and cross-ply 

plates under first order shear deformation theory.  Two different numerical methods, 

Spline approximation and Radial Basis Function (RBF) approximation are adopted 

and obtain the frequency parameters.  The displacement and rotation functions are 

obtained from governing equation is approximated using spline functions for first 
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case and the differential functions are approximated using RBF for the second case, 

and reduce to a system of homogeneous simultaneous algebraic equations by 

imposed the boundary conditions.  Now this becomes as a generalized eigenvalue 

problem, which can be solved to obtain eigenfrequencies as well as corresponding 

eigenvectors.  In our problem, we analyse the fundamental frequencies of the 

composite rectangular plates.  Preliminary study for a new problem also focused in 

this study.  Here the angle-ply plate problem extended under third order shear 

deformation theory and preliminary studies conducted for anti-symmetry angle-ply 

laminated plates under simply supported boundary conditions. 

 

 

 

1.6 Significance of the Study 

 

 

In this research, the vibration of cross-ply and angle-ply plates are analysed 

under the first order shear deformation theory using Spline method and Radial Basis 

Function method.  The main purpose of this study is to compare the frequency 

parameters obtained using two different numerical methods, Spline and Radial Basis 

Functions with respect to the various parameters.  Then the problem is extended for 

higher order shear deformation theory and analysed using Spline approximation 

under simply supported (S-S) boundary conditions.  The fundamental frequency 

parameter is analysed with respect to the aspect-ratio, side-to-thickness ratio, ply 

angels, number of layers and material properties with clamped-clamped and simply 

supported boundary conditions.  Hence it can be helpful for designers to analyse the 

problem for various parameters and boundary conditions. 

 

 

 

1.7 Definitions and Preliminaries  

 

 

1.7.1 The Classical Plate Theory (CPT) 

 

 

 Ventsel and Krauthammer (2001) mention that Euler proposed membrane 

theory for thin plate.  Furthermore, he solved some problems, which includes 

rectangular, triangular and circular elastic membrane.  Bernoulli, was the student of 
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Euler, who successfully expanded Euler’s analogy by replacing the string net with a 

grid work of beam and focused mainly on bending rigidity, he found the results for 

both the experimental, and theoretical values were not close to each other. 

 

 

 Ventsel and Krauthammer (2001) said that Kirchhoff derived the same 

differential equation as Navier, yet Kirchhoff used a different technique, where he 

successfully introduced some boundary forces to the plates.  He also derived the 

equation based on Bernoulli’s beam hypothesis. He proposed two basic assumptions, 

which known as Kirchhoff’s hypothesis and it is useful to solve 3-D into bending 

plate theory.  The Kirchhoff’s assumptions are as follows; 

a) The material obey Hooke’s law. 

b) The plate is initially flat. 

c) When bending, the middle surface remains unstrained. 

d) The thickness of the plate is small compare to the other dimensions. 

 

 

Ventsel and Krauthammer (2001) mention that, Love extended the Kirchhoff 

plate theory related to 2-D problems of plates.  Kirchhoff ignored the shear 

deformation, but Reissner and Mindlin had come out with a new theory for moderate 

thick plate that includes shear deformation as well. 

 

 

 

 

1.7.2 Shear Deformation Theory  

 

 

1.7.2.1 First Order Shear Deformation Theory (FSDT) 

 

 

In the year 1951, Mindlin proposed that the middle surface of the plate will 

remain straight and not necessarily be perpendicular to the middle surface. Moreover, 

the Mindlin mentioned that, there is a displacement across the thickness yet there is 

no change in the thickness during the shear deformation; of the plate and the normal 

stress through the thickness is not considered.  Therefore, Reissner assumed that the 

bending stress is linear and shear stress is quadratic through the thickness.  “Reissner 
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– Mindlin” theory allows to calculate the deformation and stress of the thick plate 

moderately. This theory known as the first order shear deformation theory (FSDT). 

 

 

 

 

1.7.2.2 Higher Order Shear Deformation Theory (HSDT) 

 

 

 The FSDT is limited for linear distribution of transverse shear strain along the 

thickness of plate.  Hence, researchers develop higher order shear deformation 

theory.  To illustrate the nonlinear deformation, Levinson (1980) developed a model 

with the third order polynomial, which excluded the shear correction factor.  In 1984, 

Reddy comes out with higher order in plane displacement with constant deflection 

and known as simple higher order shear deformation theory.  Reddy (1984) 

introduced nonlinear (cubic) shear deformation theory for flat plates. 

 

 

 

 

1.7.3 Laminated Theories  

 

 

 Lamina is a basic building block of a composite structure that usually consists 

of one of the fibre configurations.  However, the unidirectional reinforced or 

unidirectional lamina with an arrangement of parallel, continuous fibres is the most 

appropriate starting point for the purpose of mechanics analysis. 

 

 

Orientations of lamina determined the type of material, which  differentiated 

between isotropic and anisotropic. Figure 2.1 depicts the lamina of four plies in x, y, 

and z directions. 
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Figure 1.1: Lamina of four plies (Ronald,1994) 

 

 

 Lamination is combination the best aspects of the constituent layers in order 

to achieve a more useful material.  Two or more laminae will form laminated which 

bonded together as an integral structural element (Ye, 2003).  The capability to the 

structure and orient material layers in a prescribed sequence leads to several 

particularly significant advantages for composite materials compared with 

conventional monolithic materials.  There are few type of laminates such as angle-

ply, cross-ply and unidirectional.  Angle-ply laminates have lamina orientations of 

either +θ or –θ with 0 90   , whereas the cross-ply laminates are oriented at 

either 0   and 90   .  In Figure 2.2, the laminates for angle-ply and cross-ply 

were explained.  

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Examples of (a) angle-ply and (b) cross-ply anti-symmetric laminates 

 

 

The initiation of laminated structures have a close connection with the shear 

deformable theories. Since composite materials have high ratio of in-plane Young’s 

moduli to transverse shear moduli, shear deformation effects are included as well. 

90˚ 

0˚ 

90˚ 

0˚ 

90˚ 

0˚ 

+45˚ 

-45˚ 

+45˚ 
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This theory originally proposed for the first time by Stavsky (1965), for laminated 

isotropic plates. He applied Reissner-Mindlin theory for layered plates, which was 

later generalized by Yang et al. (1966), to laminate anisotropic plates also known as 

YNS (Yang Nooris and Stavsky) theory. Pagano (1970), evaluated laminated plates 

theories. At the same time, Whitney and Pagano (1970) presented the first 

application of YNS theory for symmetric and anti-symmetric rectangular plates. 

 

 

 A detail overview on composite laminates presented by George (1999), and 

Soedel (1993, 2004) explained the vibration of plates comprehensively.  Recently, 

composite laminated structures focused more in detail by Autar (2006), and Reddy 

(2004, 2007).  Laminated structures mostly used in various types of engineering 

industries.  

 

 

 

 

1.7.4 Splines 
 

 

 Schoenberg and Whitney (1953) introduce spline functions.  The attention of 

researchers increased by the year 1960.  Spline composed of weight attached to a flat 

surface at the points to be connected and a flexible strip then bent across each of 

these weights, drawing in a smooth curve.  Homogeneously, mathematically the 

spline could be taken into account the points in this case are numerical data and the 

weights are the coefficients on the cubic polynomials used to insert the data.  The 

data with uneven response, the coefficients bend the line so that it passes through 

each point. 

 

 

 A spline function is a complex curve; it consists of a number of polynomial 

arcs of a given degree pieced.  Greville (1967) mention that, a function of S(x) with 

degree m has points of knots under a sequence of real numbers, 0 1, ,......, Nx x x , 

satisfies the properties: 
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(i) Each sub-interval  1i ix x  , i = 0, 1, 2,…., N, S(x) is given by some 

polynomial of degree m or less. 

(ii) S(x)  and its derivatives of all order up to (m-1) are continuous, for  m 

> 0. 
 

 

 Holladay theorem mention that, cubic spline fulfils the minimal curvature 

properties, where all functions of  , 0,1,....,i if x y i N  , the spline function 

 " ;S f a    " ; 0S f b   minimizes the integral; 

 

 

 
2

"
b

a
f x dx   

 

 

 Spline function is the truncated power function 
mx  , defined by; 

 

 

, 0

0, 0

m

m x x
x

x


 
 



  

 

 

For m = 0 the function defines as Heaviside Unit function. 

 

 

 Greville (1967), represent spline function S(x) of degree m and knot 

sequence: 0 1, ,......, Nx x x  as follow, 

 
 

     
0

N
m

m j j

j

S x P x C x x




    

 

 

 An even degree spline or a parabolic spline, is very limited in its scientific 

applications.  Hence, Ahlberg et al. (1967) used the point’s collocation between the 

knot points.  This is always a disadvantage because polynomial splines of even 

degree, interposing to prescribed function at mesh points may not exist as shown by 

Ahlberg et al. (1967). 
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1.7.4.1 Splines of Odd Degree 

 

 

 A piecewise polynomial of odd degree, (2K+1) which is continuously 

differentiable up to the even order, 2K, with mesh points; 

 

 

0: ... Na x x b       

 

 

and a corresponding set of ordinates; 

 

 

0 1: , ,...., NY y y y   

 

 

 A function,  2 1 ;kS Y x   , can be represented as  S x  when there is no 

ambiguity constructed satisfying the following properties.  An odd order spline 

function with respect to the mesh △, satisfies the following properties; 

 

 

i)   1, 0,1,2,...,iS x y i N    

 

ii)  S x  is a polynomial of odd degree in each sub-interval  1 ,i ix x i  

= 0, 1, 2,…., (N-1), and 

 

iii)    2

0,k

NS x C x x   

 

 

The spline function is cubic when k = 1, and quantic when k =2. 

 

 

 A cubic spline of the above interpretation can be form starting from the fact 

that, since S(x) is a cubic  S x   is linear.   S x  correlate to the moment fact 

 M x  in the draftsman’s spline, which can be held by simple supports at the knots, 

therefore making the variation of the moment linear, afterward one appeared at the 

recurrence relation. 
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  1 1
1 1 1 12 6 i i i i

i i i i i i i

i i

y y y y
h M h h M h M

h h

 
   

 
        1,2,..., 1i N      (1.1) 

 

 

where 1i i ih x x    

 

 

 The phrase  S x , which corresponds to the slope m  of the draftman’s 

spline, one can get the recurrence relation 

 

 

1 1 1 1

2 2

1 1 1

1 1
2 3i i i i i i

i

i i i i i i

m m y y y y
m

h h h h h h

   

  

 
         1,2,...., 1i N      (1.2) 

 

 

 Whenever the knots are equally separated, given by 0 ,ix x ih   0,1,..., Ni   

equation (1.1) and equation (1.2) respectively became 

 

 

 1 1 1 12

6
4 y yi i i i iM M M

h
                       (1.3) 

 

 

and 

 

 

 1 1 1 1

3
4 y yi i i i im m m

h
           1,2,...., 1i N            (1.4) 

 

 

 Equation (1.3) or equation (1.4) consists of set of (N-1) equations in (N+1) in 

knowns. Meanwhile, in order to determine the interpolating spline uniquely supplied 

by the end, two additional conditions are required.  

 

 

 In case the end moments are set equal to zero, i.e. if 0 0nM M  , the 

resulting spline is called a natural spline.  If the end slopes 0m  and nm are authorised, 

the resulting spline is a 1D  spline.  A spline with authorised end moments is called a 

2D  spline.  From the recurrence relations of equation (2.3) and equation (2.4), the 
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orders of error occur in the cubic spline derivatives can be formally shown to be 

given by, (Spath, 1969); 

 

 

 4

i iy S O h                    (1.5) 

 

 

 
2

4

12

iv

i i i

h
y S y O h                    (1.6) 

 

 

   2

1

1

2
i i iy S S O h                   (1.7) 

 

 

and 

 

 

   4

1

1iv

i i iy S S O h
h

                   (1.8) 

 

 

 Approximations for ,iy ,iy  and 
iv

iy  can be done more precisely than for iy . 

 

 

 Spath (1969) proved that a quantic spline could be construct over the mesh 

points   with the piecewise quantic polynomials: 

 

 

           
5 4 3 2

j j j j j j j j j j jS x A x x B x x C x x D x x E x x F             (1.9) 

 
 

where , , , , ,j j j j jA B C D E  and jF  are spline coefficients. 

 

 

 A recurrence relation that results is  

 

 

   1 1 1 1 1 12

10 4
4 2i i i i i i j jD D D y y y y y

h h
     

          1,2,..., 1i N     

(1.10) 

 

 

 The recurrence relation it can be show that, 
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 4

j jy S O h                  (1.11) 

 

 

 4

j jy S O h                 (1.12) 

 

 

   
2

41

12

iv iv iv iv

j jj j

h
y S S y O h

h
                  (1.13) 

 

 

These show that the quantic spline approximations to the second and third 

derivatives are more efficient than that of the fourth derivatives. 

 

 

 The analysis of errors shows that the quantic spline method provides quick 

convergences – a condition that contributes to its success.  Another plus point of this 

technique, that is in starting with  S x  is that it provides the values of jy  as well as 

those of its derivatives, which are often required in physical problems. 

 

 

 The convergences of spline approximations 
   ,S f x


  to the approximated 

function 
   f x


 as the mesh norm 1max i ix x     approaches zero, has been 

examined by many authors.  Walsh, Ahlberg and Nilson (1963) showed that if 

   2 ,f x C a b , then, for cubic splines of interpolation to  f x  at the mesh points, 

   ,S f x


  converges uniformly to 
   f x


 for 0,1   Ahlberg and Nilson (1963) 

investigated the Converges of polynomial splines of odd degree.  

 

 

 

 

1.7.4.2 Bickley Spline 

 

 

 Bickley spline used to analyse linear differential equations very precisely.  

Although the method presented by Schoenberg (1946) and Bickley (1968) were 

similar but Bickley presented a practical and efficient technique to study two-point 
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boundary value problems for the first time.  Bickley’s technique yields quick 

convergence and better accuracy for lower- order approximation as compared to a 

global higher order approximation.  Bickley formulate his cubic spline over the mesh 

0 1: ... Nx x x     as follows,  

 

 

         
1

2 3*

0 0 0 01 2
0

N

j j

j

y x a a x x a x x b x x H x x




                 (1.14) 

 

 

where H is the Heaviside step function,  

 

 

 
1, 0

0, 0

x
H x

x


 


               (1.15) 

 

 

and for third derivation of    * 2

0, Ny x C x x  it’s discontinuous. 

 

 

 The number of unknown in  *y x  is (N+3) and the number of knots in 

 0 , Nx x  is (N+1), including the end points. 

 

 

 If  *y x  approximates the solution of the boundary value problem 

 

 

         p x y x q x t r x y s x                   (1.16) 

 

 

0 0 0 0aty y y x x                    (1.17) 

 

 

atN N N Ny y y x x                   (1.18) 

 

 

 Moreover, we require that    *y x y x  at the knots , for 0,1,..., .ix i N   The 

compensation of the differential equation by collection at these points givens (N+1) 

equation in the spline coefficients equation (1.17), the total number of these resulting 
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equations is (N+3), equal to the number of spline coefficients.  Where this condition 

is against with the fact that in conventional cubic spline interpolation, there would 

yet remain two degrees of freedom. 

 The equations will be obtained would be 

 

 

     
2

0 1 0 2 0 02 2k k k k k k k k ka r a r x x q a r x x q x x p            
+ 

     
1

3 2

0

3 6
k

j k k j k k j k k j k

j

b r x x q x x p x x s




      
     1,2,...,k N        (1.19) 

 

 

and the pair 

 

 

0 0 0 1 0a a                   (1.20) 

 

 

     
2

0 0 1 0 2 0 02N N N N N N Na a x x a x x x x                

   
1

3 2

0

3
k

N N j N N j j N

j

a x x x x b 




                (1.21) 

 

 

 This case appears in Hessenberg form where the ordering the equations and 

the coefficient matrix are properly arranged. The system can be solved by forward 

elimination and back substitution.  The form may be different for different sort of 

problems, but a suitable method can always be used. 

 

 

 Few researchers had work on the computational efficiency and preciseness 

yield by the spline. This spline technique has been used effectively by Viswanathan 

et al. (2007, 2008) to solve a few problems. 

 

 

 

 

1.7.5 Radial Basis Function(RBF) 

 

 

 Radial Basis Function (RBF), is one of the grid-free numerical method where 

it can give out an accurate boundary representations and it is a simpler and easier 
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way to use in calculation (Baxter, 1992).  It is classified as infinitely smooth 

piecewise radial functions with the shape parameter,  .  This parameter varies the 

radial function from sharp peaked until flatten gradient peak.  In this function, it is 

approximated as linear combination with its radial function  . , where it is 

radially symmetry about the centre.  The RBF approximation,  s x  can be 

represented in the form of (Ferreira et al., 2004), 

 

 

       
1 1

n m

j j j j

j j

u x s x x x p x  
 

          (1.22) 

 

 

with the constraint condition 𝜆𝑗 as 

 

 

 
1

0 1,2,...,
m

j j

j

p x j m


               (1.23) 

 

 

The equation above is for given 
d

ix   with  , 1,2,...,iu x i n , where 

 jx x   is radial basis function and ||.|| is Euclidean norm. j  will be unknown 

RBF coefficient with n number of interpolation, jp  is a polynomial with m terms, 

and jx x  will be the distance between point x and a node jx . 

 

 

 The most interesting characteristic of radial basis function methods is the 

feature that has a unique interpolant which is always guaranteed under relatively 

conditions on the centres. But, the only restriction in few important cases, are that 

there are at least two centres and they are all distinct, which are as simple as one 

could wish (Ferreira, 2003). 

 

 

 Multiquadratic (MQ), Inverse Multiquadratic (IMQ), Gaussian (GA), and 

Polyharmonic Splines are examples of radial basis function.  Here, MQ radial 

function will be used, which can be defined as, 
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   
22 .

q

cr r C d   
 

         (1.24) 

 

 

where there r is the distance between point x and a node, jx , q is a constant which 

dependent on domain, the average nodal spacing between two nodal defined as cd  

and C is the dimensionless shape parameter, in our study we take C = . 

 

 

The functions that have an arbitrary order of accuracy are considered as a 

complete approximation. This is mainly because an approximation which can 

certainly regenerate linear polynomials can reproduce any smooth function and its 

derivative with high accuracy as the approximation, and this approximation has 

linear consistency and completeness (Hubbert, 2002).  Wang and Liu (2002) stated 

that RBF without a polynomial could not produce the exact linear polynomial and 

would not able to pass the standard patch test even when the nodes are refined it and 

can approach accuracy.  Powell (1992) proposed that by adding the polynomial term 

in RBF, it could reproduce any function in the basis and the consistency can be 

assured. 

 

 

 Pascal’s triangle can be chosen as polynomial basis, and the polynomial term, 

m must be less than the number of nodes.  The linear and quadratic polynomial for 2-

D problem can be representing as follow; 

 

 

   1, ,Tp x x y                (1.25) 

 

 

  2 21, , , , ,Tp x x y x xy y                  (1.26) 

 

 

The compute coefficient j  and j  in equation 1.21, this equation must satisfies n 

nodes surrounding point x. Equation (1.21) and (1.22) can represent in matrix form 

as 
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0

0 0T

u P

P

 



     
     

     
               (1.27) 

 

 

where, 

 

 

     
     

     
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Since there is no direction in the distance of jx x  and matrix  0 r  is symmetry, 

and the interpolation express as follows, 

 

 

    eu x x u                (1.30) 

 

 

In which  x will be the shape function with n number of shape function, 

 

 

         1 2, ,... ,...,j nx x x x x                    (1.31) 

 

 

and 

 

 

 1 2, ,...,T

e nu u u u                (1.32) 

 

 

 In order to obtain a unique solution, an inverse matrix must exist.  Since 

Powell (1992) and Wendland (1998) had proved the existence of 0  inverse for 

arbitrary scattered nodes, this became as an advantage for polynomial basis function, 
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and the order of polynomial in equation (1.20) is low, therefore in general the inverse 

matrix do exist.  The homogenous property of equation (1.21) and non-singular 

property of matrix 
1

0


 leads to obtain the shape function  x , 

 

 

         
1 1

n m
T T

j j

x r S P x S r S p r S     
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               (1.32) 

 

 

where, 
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 1

0S I PS                   (1.34) 

 

 

 The interpolation can be written as 

 

 

     T Tu x r S P x S u                  (1.35) 

 

 

 For given point L, the function  x  can be written as 

 

 

     
1 1

n m

L k L kj j L kj

k j

x r S p r S  
 

                (1.36) 

 

 

where kjS
 is the (k, j), S matrix elements, and kjS

is the (m, j) S  matrix element.  

These two matrices are constant matrices for the given location of the n nodes in the 

support domain, and the matrix represent as 

 

 

  0

T

Lx S P S                      (1.37) 
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Where TP  is given in equation. (1.26) and 0  is given in equation. (1.27). 

Substituting equation. (1.33) and (1.34) into the equation. (1.37) to produce an 

outcome as 

   1

0 0 0

T T

Lx S P S I PS P S I                        (1.38) 

 

 

Therefore, the shape function  x  obtained through the above procedure 

possesses Kronecker delta function properties 

 

 

 
1

0
j L jL

j L
x

j L
 


  


              (1.39) 

 

 The term interpolation and approximation is referring to the data that fitting 

the curve and do not pass through nodal data. 

 

 

 

 

1.8 Thesis Outline 

 

 

 This thesis consists of seven chapters, where Chapter 1 is an introduction to 

the research.  Chapter 2 contains literature review, Chapter 3 is the methodology 

used to solve the problems.  Result are discussed in Chapter 4, Chapter 5 and Chapter 

6, and Chapter 7 is the closure of the thesis. 

 

 

 Chapter 1 includes a brief introduction and background study about the, 

problem statement, research objectives, scope and significant of study and chapter 

organization.  Chapter 2 gives an overview of previous work done by various 

researchers on free vibration of plate and literature review on methods, Spline and 

Radial Basis approximations, and Chapter 3 discusses the methodology for all the 

problems. 

 

 

 In Chapter 4, the first problem, anti-symmetric angle-ply laminated plates 

including first order shear deformation studied.  The frequency parameter are 
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analysed with respect to aspect ratio (a/b), length-to-thickness ratio (a/h), and ply 

angle for two- and four-layered plates consisting of two different materials, 

AS4/350-6 Graphite/epoxy (AGE) and Kevlar-49/epoxy (KGE) under clamped-

clamped boundary conditions using Spline approximation and Radial Basis Function 

method.  The model validated with available literature and the new results are 

depicted in term of tables and graphs. 

 

 

Chapter 5 presents the cross-ply laminated plates with odd and even number 

of layered plates.  Here the governing equations developed using first order shear 

deformation theory.  The frequency parameter are analysed with respect to aspect 

ratio (a/b), and length-to-thickness ratio (a/h) with odd and even number of layered 

plates using material combinations of AS4/350-6 Graphite/epoxy (AGE) Kevlar-

49/epoxy (KGE) and E-glass/Epoxy (EGE).  The problem is analysed for three-, 

four-, five-, six-, seven-, and eight- layered plates.  The results compared with the 

available data and the new results presented. 

 

 

 In Chapter 6, the problem of free vibration of anti-symmetry angle-ply 

laminated plates under higher order shear deformation theory has been analysed.  

The problem was analysed with simply supported boundary conditions using the 

materials AS4/350-6 Graphite/epoxy (AGE) Kevlar-49/epoxy (KGE) and E-

glass/Epoxy (EGE).  The frequency parameter is studied with respect to aspect ratio 

(a/b), length-to-thickness ratio (a/h), and ply angle for two- four- and six-layered 

plates.  The results compared with the existing results and the new results shown in 

tables and graphs.  General conclusions are be given based on this study and the 

possible extension studies proposed. 
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