EFFECTS OF QUARRY BLASTING TOWARDS THE RESIDENTIAL AREA AT KANGKAR PULAI

KARTHIGEYAN S/O AL. RAMANATHAN

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Geotechnics)

> School of Civil Engineering Faculty of Engineering Universiti Teknologi Malaysia

> > JANUARY 2019

This project report is dedicated to,

My brilliant UTM supervisor, Dr. Rini Asnida bt. Abdullah;

> My beloved parents, Rama and Malar;

My dear UMS lecturers, Mr. Mohd. Ali Yusof bin Mohd. Husin Madam Hennie Fitria W. Soehady E.;

BAUER colleagues and all my dear friends.

Thank you for supporting me.

ACKNOWLEDGEMENT

This project report is made possible by the help and guidance from many people and it is a pleasure to thank them all wholeheartedly and not forgetting the Almighty God. First and foremost, I would like to thank my supervisor, Dr. Rini Asnida binti Abdullah for being very supportive and providing encouragement with sound advice regarding my project report. I would have been lost of ideas without her.

My sincere thanks to related Quarry Managers, Instantel and Tenaga Kimia Sdn. Bhd for providing construction blasting and instrumentation data that allows me to carry out my data interpretation in this project report.

I am also indebted to few of my lecturers back in Universiti Malaysia Sabah (UMS) for their kind assistance and motivation during the period of preparing this project report. Thank you to Mr. Mohd. Ali Yusof bin Mohd. Husin and Madam Hennie Fitria W. Soehady E. Lastly, I would love to thank all of my fellow postgraduate students and most importantly my parents for encouraging me morally during the study in UTM.

ABSTRACT

The drill and blast technique have been widely used recently due to demand for natural building materials such as rock aggregates namely granites. However, the intensity of blasting effects has been questioned on its validity towards the nearby affected residential areas. An attempt incorporating empirical methods established by previous researches to quantitatively asses these effects have delivered such a promising solution to this problem. By using these methods, the safety of the studied residential areas from blasting impacts can be compared and assessed with regards to the blast design parameters implemented in the quarries. In this study, the blasting effects from two quarries, known as Quarry A and B have been assessed based on the constant location of the residential areas namely Taman Pulai Hijauan (TPH) and Taman Bandar Baru Kangkar Pulai (TBBKP) respectively. The blasting effects are highly dependent on the maximum instantaneous charge in blast holes (Q) which are dependent on parameters like number of blast holes, charge per column, Powder Factor and number of blast per delay. A simple correlation was successfully established using the multiple regression analysis from the SPSS software. Besides that, assessments on blasting impacts are done such as ground vibration and air blast empirically where the final outputs of these assessments in terms of Peak Particle Velocity (PPV) and air blast (dBL) were evaluated based on the safety limits set by JMG and DOE. This study was able to show that with an increase of the independent variables, the Q value rises significantly. The average mean of Q from Quarry A (181.07 kg) was much higher than Quarry B (180.22 kg). The correlations made for each quarry showed that Quarry A had a better regression line with lower standard error due to the high number of blast data obtained during the monitoring period of about 1 year and 8 months. While, the impact assessments showed higher PPV value at higher Q holding blast holes in Quarry A where some of the blasts has exceeded the safe limit of DOE compared to Quarry B and decreases with increasing distance. The similar relationship was observed for the air blast assessments. Nevertheless, all of the blasts produced are relatively within safe limits which are less than 3 mm/s (DOE), less than 5 mm/s (JMG) and less than 125 dBL. Thus, extra precaution can be taken by estimating the suitable Q value such as A (97.66 kg) and B (271.68 – 495.01 kg) to maintain safe blasting operations and prevent damages to the nearby residential areas.

ABSTRAK

Teknik gerudi dan letupan telah digunakan secara meluas barubaru ini disebabkan oleh permintaan untuk bahan binaan semula jadi seperti agregat batu seperti granite. Walaubagaimanapun, keamatan kesan letupan telah dipersoalkan atas kesahihannya terhadap kawasan perumahan yang berdekatan. Cubaan menggunakan keadah empirikal daripada pengkaji dahulu untuk menilai kesan-kesan tersebut secara kuantitatif telah memberi penyelesaian yang realistik untuk masalah ini. Keselamatan kawasan perumahan dikaji dari kesan letupan boleh dibandingkan dan dinilai dari segi parameter rekabentuk peletupan dilaksanakan di kuari. Dalam kajian ini, kesan letupan dari dua kuari dikenali sebagai Kuari A dan B telah dinilai berdasarkan lokasi yang tetap dari kawasan perumahan masing-masing iaitu Taman Pulai Hijauan dan Taman Bandar Baru Kangkar (TPH) Pulai (TBBKP). Kesan letupan adalah sangat bergantung kepada maximum instantaneous charge (Q) yang bergantung kepada parameter seperti nombor lubang letupan, caj per lubang, Powder Factor dan bilangan letupan setiap kelewatan. Korelasi mudah telah berjaya ditubuhkan dibuat dengan menggunakan analisis regresi berganda dari perisian SPSS. Selain itu, penilaian ke atas kesan letupan dilakukan seperti getaran tanah dan letupan udara secara empirical. Penilaian dari segi Peak Particle Velocity (PPV) dan letupan udara (dBL) telah dinilai berdasarkan had keselamatan yang ditetapkan oleh JMG dan DOE. Hasil kajian ini menunjukkan bahawa dengan peningkatan pembolehubah bebas, nilai Q akan meningkat. Nilai purata Q Kuari A (181.07 kg) adalah lebih tinggi daripada Kuari B (180.22 kg). Korelasi yang dibuat menunjukkan bahawa Kuari A mempunyai garisan regresi yang lebih baik dengan ralat piawai yang lebih rendah kerana jumlah yang tinggi data letupan diperolehi semasa tempoh pemantauan kirakira 1 tahun dan 8 bulan. Manakala, penilaian impak menunjukkan nilai PPV lebih tinggi pada lubang letupan pegangan Q lebih tinggi dalam Kuari A di mana sebahagian daripada letupan telah melebihi had selamat DOE berbanding Kuari B dan berkurangan dengan peningkatan jarak. Hubungan yang sama telah dilihat dalam penilaian letupan udara. Walaubagaimanapun, semua letupan berada dalam had yang selamat iaitu kurang daripada 3 mm/s (DOE), 5 mm/s (JMG) dan 125 dBL. Oleh langkah berjaga-jaga boleh diambil itu. dengan menganggarkan nilai Q yang sesuai seperti A (97.66 kg) dan B (271,68-495,01 kg) untuk memastikan operasi letupan yang selamat.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENTS	iv
	AST	RACT	v
	ABS	ТКАК	vi
	TAB	LE OF CONTENTS	vii
	LIST	COF TABLES	xi
	LIST	COF FIGURES	xiii
	LIST	COF ABBREVIATIONS & SYMBOLS	xix
	LIST	COF APPENDICES	xxi
1	INTI	RODUCTION	1
	1.1	Overview	1
	1.2	Background of Problem	2
	1.3	Problem Statement	4
	1.4	Objective of Study	5
	1.5	Scope of Study	6
	1.6	Significance of Study	7
	1.7	Outline of Project Report	7

LITE	RATUI	RE REVIEW	9
2.1	Introd	uction	9
2.2	Histor	y of Quarry Blasting Industry	10
2.3	Case I	Histories	13
	2.3.1	Case History 1 – Nonmetal Mine,	
		USA	15
	2.3.2	Case History 2 – Rix's Creek Mine) ,
		Australia	17
	2.3.3	Case History 3 – Langat Basin,	
		Malaysia	19
	2.3.4	Case History 4 – Tanjung Bungah,	
		Malaysia	21
2.4	Param	eters Affecting Quarry Blasting	22
	2.4.1	Blast Design Parameters	23
		2.4.1.1 Blast Geometry	24
		2.4.1.2 Types of Explosive	29
		2.4.1.3 Powder Factor	32
		2.4.1.4 Detonation	34
2.5	Effect	s of Quarry Blasting	37
	2.5.1	Flyrock	39
		2.5.1.1 Assessing Effects of	
		Flyrock	40
	2.5.2	Ground Vibrations	46
		2.5.2.1 Assessing Effects of Groun	d
		Vibrations	44
	2.5.3	Air Blast	50
		2.5.3.1 Assessing Effects of Air	
		Blast	51
	LITE 2.1 2.2 2.3 2.4 2.5	LITERATUI 2.1 Introd 2.2 Histor 2.3 Case H 2.3.1 2.3.2 2.3.2 2.3.3 2.3.4 2.4 Param 2.4.1 2.5 Effect 2.5.1 2.5.2 2.5.2	LITERATURE REVIEW 2.1 Introduction 2.2 History of Quarry Blasting Industry 2.3 Case Histories 2.3.1 Case History 1 – Nonmetal Mine, USA 2.3.2 Case History 2 – Rix's Creek Mine Australia 2.3.3 Case History 3 – Langat Basin, Malaysia 2.3.4 Case History 4 – Tanjung Bungah, Malaysia 2.4 Parameters Affecting Quarry Blasting 2.4.1 Blast Design Parameters 2.4.1.1 Blast Geometry 2.4.1.2 Types of Explosive 2.4.1.3 Powder Factor 2.4.1.4 Detonation 2.5 Effects of Quarry Blasting 2.5.1 Flyrock 2.5.2 Ground Vibrations 2.5.2 Ground Vibrations 2.5.3 Air Blast 2.5.3.1 Assessing Effects of Air Blast

2

	2.6	Concl	uding Remarks	55
3	RES	EARCH	I METHODOLOGY	56
	3.1	Introd	uction	56
	3.2	Overv	iew of Methodology	57
	3.3	Site C	bservation	58
	3.4	Data (Collection	62
	3.5	Data 4	Analysis	63
	3.6	Concl	uding Remarks	68
4	DAT	A ANA	LYSIS AND DISCUSSION	69
	4.1	Introd	uction	69
	4.2	Relati	onship between Blast Design	
		Param	eter and Effects of Blasting	70
		4.2.1	Effects of Number of Blast Holes	
			towards the Q Value	72
		4.2.2	Effects of Charge per Column	
			towards the Q Value	75
		4.2.3	Effects of Powder Factor towards	
			the Q Value	77
		4.2.4	Effects of Number of Blast per	
			Delay towards the Q Value	82
		4.2.5	Statistical Package for Social	
			Science (SPSS) Analysis	84
	4.3	Asses	sments on Effects of Quarry Blastin	g 85
		4.3.1	Ground Vibration Assessments	86
		4.3.2	Air Blast Assessments	97
	4.4	Safety	of Affected Residential Areas	

		from Quarry Blasting	100
	4.5	Concluding Remarks	105
5	CONC	CLUSION AND RECOMMENDATIO	N 108
	5.1	Overview	108
	5.2	Conclusions	109
	5.3	Significance of Project Report	
		Contribution	111
	5.4	Recommendation	112
REFE	RENC	ES	114
APPENDICES (A - B) 128 - 1			8 - 129

LIST OF TABLES

PAGE

TABLE. TITLE

Table 2.1	The suitability of blast hole diameter based on	
	the UCS values of rock.	25
Table 2.2	Product quality of quarry blasting based on	
	BSR value (Explosives Engineers' Guide,	
	2017)	28
Table 2.3	Vibration intensity based on different	
	explosive agents (Matheu, 1984).	29
Table 2.4	Comparison of constants from various	
	countries.	48
Table 2.5	Comparison of threshold limit of PPV in	
	various countries.	49
Table 2.6	Structural damage in relation to PPV values	
	based on DOE (2007).	50
Table 2.7	Effects of air blast overpressure (Ladegaard-	
	Pedersen and Dally, 1973).	52
Table 3.1	Comparison of used parameters for blasting	
	works in respective quarries.	62
Table 3.2	Calculation example to obtain Q value.	65
Table 3.3	Calculation example to obtain PPV value of	
	ground vibrations.	66
Table 3.4	Calculation example to obtain A value of	

	blasting induced air blast.	67
Table 4.1	Data comparison of number of blast holes with	
	volume of rock and Q.	74
Table 4.2	Constant variables used in this study.	76
Table 4.3	Classification of rock breakage difficulty at	
	studied quarries (Dick et al., 1987).	78
Table 4.4	Effects of number of blast per delay on the	
	ground vibrations.	83
Table 4.5	Type of variables and data used for the SPSS	
	analysis.	84
Table 4.6	Frequency and PPV values based on the age of	
	buildings (USBM, 1980).	90
Table 4.7	Comparison of data analysed between studied	
	quarries.	101
Table 4.8	End results of SPPS analysis.	106
Table 4.9	Comparison of safety limit for both studied	
	quarries.	106

LIST OF FIGURES

FIGURE TITLE

PAGE

Figure 2.1	Monuments that are made up from products of	
	mining activities (Vleet, 2011).	11
Figure 2.2	Summarized data of fatal injuries in the	
	United States (NIOSH, 2000).	14
Figure 2.3	Numerical data from 2009 to 2015 (Health	
	and Safety Authority, 2018).	15
Figure 2.4	Total number of accidents by sector as of	
	October 2017 (DOSH, 2017).	15
Figure 2.5	View of the limestone quarry in Livingston	
	County (U.S. Department of Interior, 1993).	16
Figure 2.6	Data of PPV values for each blast during the	
	monitoring period (Gad et al., 2005).	18
Figure 2.7	Structural cracks induced by blasts that	
	exceeded the PPV's limit value (Gad et al.,	
	2005).	19
Figure 2.8	The inversely proportional relationship	
	between dustfall level and distance from the	
	nearest quarry (Pereira and Ng, 2004).	20
Figure 2.9	Possible occurrence of landslide due to	
	vibration triggered by blasting activity (Chow,	
	2018).	21

xiii

Figure2.10	The parameters that influence the quarry	
	blasting works.	23
Figure2.11	Pathway of quarry blasting.	24
Figure2.12	The blast geometries and 'rule of thumb' that	
	influence the blasting operation (modified	
	from Explosives Engineers' Guide, 2017).	26
Figure2.13	The effect of burden sizes on blasting	
	(modified from Berta, 1985).	27
Figure2.14	Relationship between type of explosives with	
	burden and blast hole diameter (Rajpot, 2009).	30
Figure2.15	Interpolation of ANFO density with blast hole	
	diameter to obtain 7.47 kg/m of charged	
	column in blast hole (red cloud).	31
Figure2.16	Stemming dimensions in a blast hole.	32
Figure2.17	Relationship between MFS and PF (Prasad et	33
	<i>al.</i> , 2015).	
Figure2.18	Flyrock risks based on PF values (modified	
	from Jimeno et al., 1995).	34
Figure2.19	Available methods to fire blast holes.	35
Figure2.20	A complete set of the Non Electrical	
	detonation system (Tatiya, 2013).	36
Figure2.21	Fixed Non Electrical detonation in blast holes	
	(Zhendong et al., 2016)	37
Figure2.22	The major effects of blasting to the	
	surrounding environment.	38
Figure2.23	A simple diagram on causes of blast damage	
	(Wylie and Mah, 2004).	38
Figure2.24	Wild flyrock about 350 m from Masai quarry	

xiv

	site (Edy <i>et al.</i> , 2013).	39
Figure2.25	Flyrock induced damages (Edy et al., 2013).	40
Figure2.26	Maximum traveling distance of flyrock (L in	
	metres) as a function of PF and blast hole	
	diameter (d) (Swedish Detonic Research	
	Foundation, 1975).	41
Figure2.27	Parameters involved in Equation 2.2 (Raina et	42
	<i>al.</i> , 2010).	
Figure2.28	Relationship between Lmax and B (Eze,	43
	2014).	
Figure2.29	Damages induced by ground vibration	44
	(Moore, 2016).	
Figure2.30	Wave amplitude structural damages (Belcher	
	and Cottingham, 1994).	45
Figure2.31	PPV blast monitoring instrumentation.	46
Figure2.32	Formula used to obtain Q value.	48
Figure2.33	Damages by air blast overpressure (Murray	
	and Holbert, 2015).	51
Figure2.34	Instrumentation to monitor air blast frequency	
	(Sigicom, 2013).	53
Figure2.35	Air blast frequency ranges (Aloui et al.,	
	2016).	53
Figure2.36	Relationship between PPV and air blast	
	frequency (Siskind et al., 1980).	54
Figure2.37	Summarized version of issue regarding this	
	study.	55
Figure 3.1	Flowchart of operational framework that will	
	be used in this study.	57

Figure 3.2	Location of study area (image soften due to	
	restriction).	58
Figure 3.3	Geological background of study area (black	
	box) (JMG, 2004).	59
Figure 3.4	Blasted granite boulders rich with quartz.	60
Figure 3.5	Aerial view of Quarry A site and TPH	
	(monitoring point).	60
Figure 3.6	Aerial view of Quarry B site and TBBKP	
	(monitoring point).	61
Figure 3.7	Blast face of Quarry A.	61
Figure 3.8	Assessments on effect of blasting in the data	
	analysis stage.	63
Figure 3.9	An example of a double blast where more	
	than one hole is blasted at time delay of less	
	than 7 ms.	65
Figure 4.1	Effecting parameters on the Q value of blast.	71
Figure 4.2	The relationship between Q value and number	
	of blast holes.	72
Figure 4.3	The relationship between Q value and charge	
	per column.	75
Figure 4.4	The relationship between Q value and Powder	
	Factor (PF).	77
Figure 4.5	Rock breakage mechanism initiated from a	
	charged blast hole with explosives and PF	
	(modified from Wylie and Mah, 2004),	80
Figure 4.6	Tensional failure of rock mass during blast	
	(Beicher and Cottingham, 1994).	80
Figure 4.7	Site and rock mass condition before	

xvi

	production blast.	81
Figure 4.8	Site and rock mass condition after production	
	blast.	81
Figure 4.9	The relationship between Q value and number	
	of blast per delay.	82
Figure4.10	The relationship between PPV and Q value.	87
Figure4.11	The relationship between PPV and distance.	88
Figure4.12	The relationship between PPV and frequency	
	via USBM method.	91
Figure4.13	The distribution of the frequency from Quarry	
	A blasting operation.	92
Figure4.14	The distribution of the frequency from Quarry	
	B blasting operation.	92
Figure4.15	The PPV values from both quarries according	
	to various threshold values.	94
Figure4.16	The distribution of the frequency from Quarry	
	A blasting operation based on DOE limits.	96
Figure4.17	The distribution of the PPV values from	
	Quarry A blasting operation based on DOE	
	limits.	96
Figure4.18	The relationship between PPV and distance.	98
Figure4.19	The air blast values from both quarries	
	according to USBM safe limit.	99
Figure4.20	The Q value required to induce 3 mm/s	
	ground vibrations.	103
Figure4.21	The air blast values expected from the 3 mm/s	
	blast induced ground vibrations.	104

LIST OF ABBREVIATIONS & SYMBOLS

JMG		Jabatan Mineral & Geosains (Malaysia)
DOE	-	Department of Environment (Malaysia)
AQ	-	Quarry A
BQNF	-	Quarry B North Face
BQSF	-	Quarry B South Face
TPH	-	Taman Pulai Hijauan
TBBKP	-	Taman Bandar Baru Kangkar Pulai
ANFO	-	Ammonium Nitrate – Fuel Oil
DOSH	-	Department of Safety & Health (Malaysia)
NIOSH	-	National Institute of Occupational Safety and Health
PPV	-	Peak Particle Velocity
В	-	Burden
PF	-	Powder Factor
NONEL	-	Non Electrical detonation method
Q	-	Maximum Instantaneous Charge
USBM	-	United States Bureau of Mining
SPSS	-	Statistical Package for Social Science
m	-	metres
km	-	kilometers
mm	-	millimeters
kg	-	kilograms
g/m ² d	-	grams per square meter per day

MPa	- Mega Pascal's	
m/s	- metres per seco	ond
ms	- milliseconds	
dBL	- decibels	
Hz	- Hertz	

LIST OF APPENDICES

APPENDIX TITLE

PAGE

A	Result output of multiple regression	
	analysis for Quarry A.	128
В	Result output of multiple regression	
	analysis for Quarry B.	129

CHAPTER 1

INTRODUCTION

1.1 Overview

Malaysia has been facing a boom in demand recently for resources such as land space and building materials to cater to the country's increasing population. These require the clearance or leveling of hilly area through the surface excavation process (Yilmaz *et al.*, 2016). However, not all the Earth material can be normally excavated using a backhoe. Many contractors have spent heavy coins on alternative method like drill and blast technique due to the high strength and volume of rock.

Blasting contractors should try to minimize the impact of quarry blasting on surrounding environment and the public. This is due to the effect of blasting that induces strong ground motions, flyrock and air blast pressure that may lead to major accidents (Sharma, 2017). As we are aware, the current limited land space forces the placement of blasting quarries to be nearer to residential area. Thus, organizations such as the local Councils, Enforcers, Mineral & Geoscience Department (JMG) and Department of Environment (DOE) need to be more attentive during blasting activities. This is to ensure blasting is done according to the approved safe guidelines, especially by controlling the blast design parameters.

1.2 Background of Problem

The safety of surrounding environment is the utmost important aspect to be considered when an engineer designs the blast parameters required for blasting. Here, the help of instrumentation system located at strategic places in the surrounding environment allows only a mere prediction of frequency, air pressure and vibration models induced by the blast. A general hypothesis that can be made is that the effects of quarry blasting are much higher if the instrumentations are located nearer to the blast surface. This hypothesis caused Malaysia to brand the quarry activities as heavy industry and has set a minimum buffer zone limit of 500 metres from the intended blasting area to the nearest residential or industrial area (Environmental Requirements: A Guide for Investors, 2010). But, this limit has been on the stake when a tragic blast caused a flyrock incident to occur on the 19^{th} of July 2013 at Masai quarry near Seri Alam, Johor, Malaysia. Flyrock are rocks ejected from the blast surface at high speed that may cause injuries and damages to surrounding environment, people, buildings and vehicles. This massive explosion caused rocks and boulders to rain down on the nearest industrial park located at Jalan Bukit 2 which is 700 metres from the site. It was a fatal accident in which a factory worker was killed, 10 people were injured, 18 cars and 14 factories were damaged (Edy *et al.*, 2013).

It is stated that one of the main reasons that this incident occurred was the inappropriate design of blast geometry. At the Masai quarry, blasted granitic rocks generally tend to have high rock strength. So, in order to blast these rocks, a greater weight of explosive charge is needed to increase blast efficiency (Sazid and Singh, 2012). But, if the burden provided by the blast surface is insufficient, then greater energy will be released to the surrounding environment via rock fragments causing flyrock issue to occur. The lack of understanding in this blast design parameters by the explosive engineers will definitely harm the surrounding environment.

1.3 Problem Statement

Blast design parameters are controllable parameters that allow explosive engineers to perform efficient and safe blasting in a quarry. The parameters involved are blast surface burden, spacing, bench height, explosive weight, powder column geometry and maximum charge per delay (Blasting Training Module, 2004). With the aid of this blast design, blasting activities can be carried out and analyzed in terms of fragmentation, blast surface stability and environmental safety.

From the previous case history stated in Subchapter 1.2, the problem statement of this study can be justified to prevent the occurrence of flyrock accidents, extreme ground vibration and air blasts at the studied quarry sites. For example, the nearest distance from Quarry A (AQ) to Taman Pulai Hijauan (TPH) is 533 metres while the Quarry B North Face (BQNF) and South Face (BQSF) to Taman Bandar Baru Kangkar Pulai (TBBKP) is about 1585 metres and 889 metres respectively. The granitic rock behavior, blast design parameters used and literally short distanced location of residential area from the quarry site might have some chances of mismatches to occur. Hence, a detailed study must be done based on blast design parameters by analyzing and assessing the aftereffect of the blasting industry with the help of instrumentations installed at the residential areas (Aloui *et al.*, 2016). This will crucially help to

understand the effects of quarry blasting towards the safety of the residential areas studied.

1.4 **Objective of Study**

The main aim of this project is to investigate the effects of quarry blasting from Quarry A and B towards the nearby residential area. This outcome may contribute to the knowledge of rock blast management by enriching the parameters selection for future blast design refurbishment. The previously stated project aim can be solved by tackling these specific objectives below which are:

- a) To identify the blast design parameters that will affect the surrounding environment.
- b) To assess the effects of blasting quantitatively based on the blast design parameters obtained.
- c) To compare the safety of affected nearby residential areas from the impact of quarry blasting.

1.5 Scope of Study

Although there are many factors that may influence the effect of quarry blasting towards the residential area, this project report focuses on the blast design parameters. These parameters are highly dependent on the critical rock mass classifications at each slope face. Nevertheless, field works and site visits will be done in order to acquire a thorough understanding of the actual blast face direction and blasting reports from the quarry operation team with lesser emphasize on the rock mass classification. With this understanding, the effects of blasting towards the residential areas will be predicted using the given blast design parameters.

In addition to the above, this study is done in limited number of quarries which are the Quarry A and Quarry B. These quarries are located at the peripheral of the granitic Gunung Pulai. Therefore, the data comparison that will be analyzed in this study comprises of information obtained from these two quarries as well as the instrumentation monitoring data from the nearby residential area of TPH (near Quarry A) and TBBKP (near Quarry B).

1.6 Significance of Study

The aftereffects of blasting are highly dangerous and harmful for both human and building structures. This awareness need to be projected to all organizations including community, stakeholders, blasting contractors and government officials. By saying so, this study will highlight the influential blast design parameters which play an important role in maintaining the safety of a residential area situated near quarry sites. Furthermore, this study will assist to identify a safe blast design that will increase the efficiency of a production blast with lesser risk towards the residential area. Hence, this project report shall serve as a stepping stone in order to achieve a more accurate relationship between each parameter of blasting to determine the safe bounds of the blast area.

1.7 Outline of Project Report

This project report is a monograph that consists of a complete set of data interpretation starting from desk studies, literature reviews and site assessments that are finally concluded in the final stage of this study. These steps are shown in the outline of the project report that comprises of 5 chapters as stated below:

- Chapter 1: Introduction
 - Stating the general topic and giving some background. Besides that, outlining and evaluating the current related situation to the topic.
- Chapter 2: Literature Review
 - Summarizing and synthesize the arguments and ideas of others without adding new contributions.
- Chapter 3: Methodology
 - Broad philosophical underpinning to the chosen study methods, including theu sage of qualitative or quantitative methods, or a mixture of both, and their specific reasons.
- Chapter 4: Data Analysis and Discussion
 - To interpret and describe the significance of the findings in light of what was already known about the study problem being investigated, and to explain any new understanding or insights about the problem after taking the findings into consideration.
- Chapter 5: Conclusion and Recommendation
 - Forms an important part of a project debrief which is a key part of the value offered to clients by professional market research.

REFERENCES

- Ajaka, E. O. and Adesida, P. A. (2014). Importance of Blast Design in Reduction of Blast Induced Vibrations. *International Journal of Science, Technology and Society*, 2 (3), 53 58. SceincePG.
- Alavi Nezhad Khalil Abad, S. V., Edy, T. M., Ibrahim Komoo, Kalatehjari, R. (2015). Assessment of Weathering Effects On Rock Mass Structure. Jurnal Teknologi (Science & Engineering), 72 (1), 71 – 75.
- Aloui, M., Bleuzen, Y., Essefi, E., and Abbes, C. (2016). Ground Vibrations and Air Blast Effects Induced by Blasting in Open Pit Mines: Case of Metlaoui Mining Basin, Southwestern Tunisia. *Journal of Geology & Geophysics*, 5 (3), 1 8.
- Atlas Powder Company (1987). *Explosives and Rock Blasting*. 1st Edition. Dallas, Atlas Powder Co. 1987.
- Australian and New Zealand Environmental Council (1990). *Report* (Australian Environmental Council). 1st Edition. Canberra, Australian Government Public Service. 1990.
- Bajpayee, T. S., Bhatt, S. K., Rehak, T. R., Mowrey, G. L., and Ingram, D. K. (2000). A Summary of Fatal Accidents Due to Flyrock and Lack of Blast Area Security in Surface Mining, 1989 to 1999. *Proceedings of the 28th Annual Conference on Explosives and Blasting Technique*, 10 - 13 February, Las Vegas, Nevada, 105 - 118.

- Baxter, N. L. (2001). Troubleshooting Vibration Problems: A Compilation of Case Histories. Proceedings of the 55th Meeting of the Society for Machinery Failure Prevention Technology, Virginia Beach, 2 5 April, Virginia, 467 482.
- Belcher, J. M., and Cottingham, K. (1994). Earthquake Hypocenters in Washington and Northern Oregon, 1987-1989, and Operation of the Washington Regional Seismograph Network. Washington: Divison of Geology and Earth Resources.
- Bender, W. L. (2007). Understanding Blast Vibration and Air
 Blast, their Causes, and their Damage Potential. *Golden West Chapter*, 1, International Society of Explosives
 Energy.
- Bhandari, S. (2011). Information Management for Improved
 Blasting Operations and Environmental Control
 Proceedings of the 3rd Asia Pacific Symposium on Blasting
 Techniques, 10 13 August, Xiamen, China, 298 305.
- Berta, G. (1985). *L'Esplosivo Strumento di lavoro*. Milano: Italesplosivi.
- Bhandari, S. (2011). Information Management for Improved
 Blasting Operations and Environmental Control
 Proceedings of the 3rd Asia Pacific Symposium on Blasting
 Techniques, 10 13 August, Xiamen, China, 298 305.
- Blaasstse, S. (1981). US Army Test and Evaluation Command Test Operations Procedure Electronic Measurement of Air Blast Overpressure. Report 14 USA Army, Maryland.

- Blasting Training Module (2004). Office of Surface Mining Reclamation and Enforcement. USA: Department of the Interior's Office of Surface Mining.
- Buffington, G. L. (2000). The Art of Blasting on Construction and Surface Mining Sites. ASSE Professional Development Conference and Exposition, 25 - 28 June, Orlando, Florida, 1-9.
- Calnan, J. (2015). Determination of Explosive Energy Partition Values in Rock Blasting through Small-Scale Testing. PhD. Thesis, University of Kentucky, England.
- Carvalho, F. P. (2017). Mining Industry and Sustainable Development: Time for Change. *Food Energy Secur.*, 6 (2), 61 – 77.
- Cevizci, H. (2013). A New Stemming Application for Blasting: A Case Study. *R. Esc. Minas, Ouro Preto*, 66 (4), 513 519.
- Chow, M. D. (2018, January 25). Tg Bungah SCI: No quarry blasting on the day of landslide. *FMT News*. Retrieved January 25, 2018, from http://www.freemalaysiatoday.com.my.
- Crum, S. V., Sisking, D. E., and Eltschlager, K. (1997). Blast Vibration Measurements at Far Distances and Design Influences on Ground Vibrations. International Society of Explosives Energy, OSMRE.
- Davis, W. C. (1998). Introduction to Explosives. In: Zukas J. A.,
 Walters W. P. (eds) Explosive Effects and Applications.
 High-Pressure Shock Compression of Condensed Matter.
 New York: Springer. 1 22; 1998.

- Deiring, D. (2000). Keynote Address: 6th International Symposium for Rock Fragmentation by Blasting. *The Journal of the South African Institute of Mining and Metallurgy*, 6, 1 6.
- Dessureault, S., and Scoble, M. J. (2003). Data Infrastructure for a Tactical Mine Management System. *Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology*, 112 (2), 73 - 85. Scopus.
- Dhar, B. B., Pal Roy, P., and Singh, R. B. (1993). Optimum
 Blasting for Indian Geomining Conditions Suggestive
 Standard and Guidelines. India: CMRI Publications.
- Dick, R. A., Fletcher, L. R., and Andrea, D. V. (1987). *Explosives and Blasting Procedures Manual*. Bureau of Mines Information Circular 8925, 57 - 74.
- DOE: The Planning Guidelines for Vibration Limits and Control in the Environment (2007). *Department of Environment*. Malaysia: Ministry of Natural Resources and Environment.
- DOSH: Occupational Accidents Statistics by State until October 2017 (2017). *Department of Occupational Safety and Health*. Malaysia: Ministry of Human Resources.
- Dowding, C. H. (1996). *Construction Vibrations*. 1st Ed. USA: Prentice Hall. 1996.
- Duvall, W. I., and Fogelson, D. E. (1962). Review of Criteria for Estimating Damage to Resistances from Blasting Vibrations. United States Bureau of Mines (USBM): Washington.

- Edy, T. M., Danial, J. A., and Hossein, M. (2013). The Effect of Geological Structure and Powder Factor in Flyrock Accident, Masai, Johor, Malaysia. *EJGE*, 18 (X), 5661 – 5672.
- E. I. du Pont de Nemours & Co. (1978). *Blaster's Handbook*. 16th
 Ed. Wilmington, Delaware: E. I. 1978.
- Environmental Requirements: A Guide for Investors (2010). *Department of Environment*. Malaysia: Ministry of Natural Resources and Environment.
- Evans, M. K. (2002). *Practical Business Forecasting*. 1st Ed. UK: Blackwell Publishers. 2002.
- Explosives Engineers' Guide (2017). *EEG*. Dyno Nobel Asia Pacific: Australia.
- Eze, C. L., and Usani, U. U. (2014). Hard Rock Quarry Seismicity and Face Bursting Flyrock Range Prediction in the Granite and Migmatites Rocks of North Central Nigeria. *Int. Journal of Engineering Research and Applications*, 4 (12), 1 6. IJERA.
- Gad, E., Wilson, J. L., Moore, A. J., and Richards, A. B. (2005).
 Effects of Mine Blasting on Residential Structures. Journal of Performance of Constructed Facilities, 19 (3), 222 228. ASCE.
- Gurney, R. W. (1943). The Initial Velocities of Fragments from Bombs, Shells, and Grenades, BRL-405". Aberdeen, Maryland: Ballistic Research Laboratory.
- Hashim, M. H. M., and Khider, M. A. (2017). Improving BlastDesign for Optimum Rock Breakage SustainableOperations. *International Journal of Society for Social*

Management System, 11 (1), 224 – 234. Society for Social Management System.

- Hagan, T. N., and Kennedy, B. J. (1980). The Design of Blasting Procedures to Ensure Acceptable Noise, Air Blast and Ground Vibrations in Surface Coal Mining. Environmental Controls for Coal Mining (First National Seminar). Sydney.
- Health and Safety Authority Occupational Accidents (2018). *Health and Safety Authority*. Ireland: HSA.
- Hutchison, C. S. (1997). Granite Emplacement and Tectonic Subdivision of Peninsular Malaysia. *Geological Society of Malaysia Bulletin*, 9, 187 207. Geol. Soc. Malaysia.
- IBM SPSS Data Collection Divesture (2016). *Divesture* Announcement of IBM. USA: IBM.
- Jimeno, E. L., Jimino, C. L., and Carcedo, A. (1995). Drilling and Blasting of Rocks. 1st Ed. USA: Taylor & Francis Group. 1995.
- JMG, Jabatan Mineral & Geosains (2004). Geo. Map of West Malaysia Mod. 8th Ed., 1:750,000. Kuala Lumpur.
- Juna, A. A. A. G., and Syed, F. S. H. (2013). The Importance of K and β Values for Scaled Distance Technique for Prediction of Ground Vibrations Level Induced during Granite Quarry Blasting for Peninsular Malaysia. *National Geoscience Conference*. 25 – 26 May. Ipoh, Perak, B16.
- Just, G. D., and Chitombo, G. P. (1987). The Economic and Operational Implications of Blast Vibration Limit Mining and Environment. Australia: IMM.

- Karlos, V. and Solomos, G. (2013). Calculation of Blast Loads for Application to Structural Components. JRC Technical Reports, Italy.
- Kim, D. S. and Lee, J. S. (1988). Source and Attenuation Characteristics of Various Ground Vibrations. In: Dakoulas, P., Yegian, M., and Holtz, B., Geotechnical Earthquake Engineering and Soil Dynamics III. ASCE, *Geotechnical Special Publication*, 75 (2), 1507-1517.
- Kirsanov, A. K., Vokhmin, S. A., and Kurchin, G. S. (2016). A Brief History of the Development of Blasting and the Modern Theory of Rock Breaking. *Journal of Degraded and Mining Lands Management*, 3 (4). 1 8, Universitas Brawija.
- Kopp, J. W. and Siskind, D. W. (1986). Effects of Millisecond-Delay Intervals on Vibration and Air Blast from Surface Coal Mine Blasting. Bureau of Mines Report of Investigation 9026, 44.
- Krehl, P. O. K. (2008). History of Shock Waves, Explosions and Impact: A Chronological and Biographical Reference. 1st Ed. Germany: Springer. 2008.
- Kumar, R., Choudhury, D., and Bhargava, K. (2016).
 Determination of Blast Induced Ground Vibration Equations for Rocks using Mechanical and Geological Properties. *Journal of Rock Mechanics and Geotechnical Engineering*, 8 (3), 341 – 349. ScienceDirect.
- Ladegaard-Pedersen, A., and Holmberg, R. (1973). The Dependence of Charge Geometry on Flyrock caused by

Crater Effects in Bench Blasting. Sweden: Swedish Detonic Research Foundation.

- Liu, Z., and Meng, Y. (2015). Key Technologies of Drilling Process with Raise Boring Method. Journal of Rock Mechanics and Geotechnical Engineering, 7 (4), 1 – 10. Science Direct.
- Mainiero, R., Verakis, H., and Lobb, T. (2012). Mine Blasting Safety: Decades of Progress. Proceeding of the 38th Annual Conference on Explosives and Blasting Technique. 12 – 15 September. Nashville, USA, 31 – 42.
- Matheu, W. (1984). Factors Affecting magnitude and Frequency of Blast-Induced Ground and Air Vibrations. *Transactions of the Institution of Mining and Metallurgy*, 93, 173 - 180. IMM.
- Miller, G. F., and Pursey, H. (1955). On the Partition of Energy between Elastic Waves in a Semi-Infinite Solid. *Proc.R. Soc. London*, 233. 55 69. England.
- Mishra, A. (2009). Design of Surface Blasts A Computational Approach. B. Tech Thesis, National Institute of Technology, Rourkela, India.
- Mohamed, F., Hafsaoui, A., Talhi, K., and Menacer, K. (2015).
 Study of Powder Factor in Surface Bench Blasting. *Procedia Earth and Planetary Science*, 15, 892 899.
 Elseiver.
- Monjezi, M., and Rezaei, M. (2011). Developing a New Fuzzy
 Model to Predict Burden from Rock Geomechanical
 Properties. *Expert Syst. Appl.*, 38, 9266 9273. Expert
 Syst. Application Association.

- Moore, M. (2016, February 18). Blasted: Home Owners near Mine Seek Recourse for Property Damage. *The Appalachian Voice*. Retrieved February 18, 2016, from <u>http://appvoices.org/2016/02/18/blastinghomeownerspropert</u> <u>y-damage-coal/.</u>
- Murray, R. L., and Holbert, K. E. (2015). Nuclear Energy: An Introduction to the Concepts, Systems, and Applications of Nuclear Processes. 7th Ed. USA: Elseiver. 2015.
- MSHA (1990b). Accident Investigation Report, Surface Nonmetal Mine (Limestone), Fatal Explosives and Breaking Agents Accident, Weston. ID No. 11-00291.
- Ng, T. F. (2001). Engineering and Petrographic Properties of Granite Aggregates and Characteristics of Dustfall from Quarries in the Kuala Lumpur – Nilai Area Peninsular Malaysia. Ph.D Thesis, Universiti Malaya, Kuala Lumpur.
- Nicholls, H. R., Johnson, C. F., and Duvall, W. I. (1971). *Blasting Vibrations andtheir Effects on Structures, Bulletin 656.* United States Bureau of Mines (USBM): Pittsburgh.
- Nicholson, R. F. (2005). Determination of Blast Vibrations using Peak Particle Velocity at Bengal Quarry in St. Ann, Jamaica. MSc. Thesis, Lulea University of Technology, Sweden.
- Niklasson, B., Olsson, M., and Beyglou, A. (2014). Does Charge Confinement Affect The Vibration Level in Blasting? Phase 1 Feasibility Study. BeFo Report 132, Stockholm.
- NIOSH: Occupational Accidents Statistics of 2000 (2000). The National Institute for Occupational Safety and Health.
 USA: Centre of Disease Control and Prevention.

- NONEL User's Manual (2008). NONEL System. USA: DYNO Nobel.
- NSW (New South Wales) Minerals Council (2009). Fact Sheet Blasting and the NSW Minerals Industry. Sydney, Australia: NSWMC.
- Padhan, M. (2016, October 27). Electrical Detonation System
 Lecture Notes. *inSlideShare*. Retrieved October 27, 2016, from
 <u>https://www.slideshare.net/mukteswarpadhan/electric-</u>
 detonation-system.
- Pataki, E., and Sheehan, M. (2005). New York State Oil, Gas and Mineral Resources 2005. Albany: Department of Environmental Conservation USA.
- Pereira, J. J., and Ng, T. F. (2004). Construction Aggregates for Urban Development: Consumption, Sterilization and the Environment. *Geological Society of Malaysia Bulletin*, 48, 21 – 24. Geol. Soc. Malaysia.
- Person, P., Holmberg, R., and Lee, J. (1994). *Rock Blasting and Explosives Engineering*. UK: RCR Press.
- Prasad, S., Choudhary, B. S., and Mishra, A. K. (2015). Effect of Stemming to Burden Ratio and Powder Factor on Blast Induced Rock Fragmentation A Case Study. *IOP Conf. Series: Material Science and Engineering*, 225 (1), 1 5. IOPScience.
- Pradhan, M., and Jade, R. K. (2012). Detonation Behavior of Bulk
 Emulsion Explosive in Water Filled Blast Hole. *Performance of Explosives and New Developments*, 1, 65 70. CRC Press.

- Prdhan, S. K., and Das, A. (2007). Evaluation of Explosives using Ground Vibration Criterion. B. Tech, National Institute of Technology, India.
- Raina, A. K., Chakraborty, A. K., Choudhury, P. B., and Sinha, A. (2010). Flyrock Danger Zone Determination in Opencast Mines: A Risk based Approach. *Bulletin Engineering Geology Environment*, 70, 163–72. Elseiver.
- Rajpot, M. A. (2009). The Effect of Fragmentation Specification on Blasting Cost. MSc. Thesis, Queen's University, Canada.
- Roth, J. (1979). A Model for the Determination of Flyrock Range as a Function of Shot Conditions. CA: Management Science Associates. 1979, U.S. Bureau of Mines contract J0387242.
- Roy, P. (2005). *Rock Blasting Effects and Operations*. 1st Ed. Netherlands: Leiden. 2005.
- Rustan, A. P. (1998). Micro-Sequential Contour Basting How
 Does It Influence the Surrounding Rock Mass ?.
 Engineering Geology, 49, 303 313. Elseiver.
- Sazid, M., and Singh, T. N. (2012). Economically and Environmental Friendly Control Blasting Results through Stemming Plug. *Int. Mining Congress and Expo.* 26 - 29 Oct. Tehran, Iran, 1 - 13.
- Schneider, L. (1997). Flyrock Part 2: Prevention. Journal of Explosives Engineering, 14 (1), 1 4. Explosives Engineers' Association.

- Sharma, A. (2017). Estimating the Effects of Blasting Vibrations on the High Wall Stability. MSc Thesis, University of Kentucky, USA.
- Shirani Faradonbeh, R., Jahed Armaghani, D., Abdul Majid, M. Z.,
 MD Tahir, M., Ramesh Murlidhar, B., Monjezi, M., and
 Wong, H. M. (2016). Prediction of Ground Vibration
 due to Quarry Blasting Based on Gene Expression
 Programming: A New Model for Peak Particle Velocity
 Prediction. *International Journal of Environmental*, *Science and Technology*, 13, 1453 1464. Springer.
- Sia, C. C., and Rozi, M. U. (2002). Geochemical Study of Igneous Rocks around Gunung Pulai area, Johore. *GSM Annual Geological Conference*. 26 – 27 May. Kota Bharu, 71 – 80.

Sigicom (2013). Construction Site Monitoring. Sweden: Sigicom.

- Singh, P. K., Roy, M. P., Paswan, R. K., Sarim, Md., Kumar, S., and Jha, R. R. (2016). Rock Fragmentation Control in Opencast Blasting. *Journal of Rock Mechanics and Geotechnical Engineering*, 8 (2), 225 – 237. ScienceDirect.
- Siskind, D. E., Stagg, M. S., Kopp, J. W., and Dowding, C. H. (1980). Structure Response and Damage Produced by Ground Vibrations from Surface Blasting, RI 8507. United States Bureau of Mines (USBM): Washington.
- Swedish Detonic Research Foundation (1975). Computer Program for Charge Calculations by Bench Blasting. Sweden: SDRF.

- Tatiya, R. R. (2013). Surface and underground excavations: Methods, Techniques and Equipment. USA: CRC Press. 2013.
- U.S. Department of the Interior (1993). *The Mineral Industry of Kentucky in 1993: U.S. Bureau of Mines*. USA: Mineral Industry Survey.
- Verakis, H. C., and Lobb, T. E. (2001). Blasting Accidents in Surface Mines: A Two Decade Summary. Proceedings of the 27th Annual Conference on Explosives and Blasting Technique. 27 – 30 January. Cleveland, 145 - 152.
- Vleet, C. V. (2011). Seven Wonders of the World: Discover Amazing Monuments to Civilization with 20 Projects. 1st Ed. USA: Nomad Press. 2011.
- Wylie, D. C., and Mah, C. W. (2004). Rock Slope Engineering: Civil and Mining. 4th Ed. New York: Spoon Press. 2004.
- Yilmaz, T., Karaman, K., Cihangir, F. Ercikdi, B., and Kersimal, A. (2016). Effect of Tunnel Blasting Operation on the Surface Penstock Pipe. *IOP Conference Series: Earth and Environmental Sciences*. 5 9 September. Prague, 1 8.
- Zeeman, J. D. (2009). Phase 2 Social And Environmental Impact Assessment: Ground Vibration and Air Blast Study for Rio Tinto, Rössing Uranium Mine Expansion Project, Namibia. Report Ref. No.: RUM~Jan2009EIAV4, South Africa.
- Zhendong, L., Wenbo, L., Ming, C., Peng, Y., and Yinguo, H. (2016). A New Theory of Rock Explosive Matching Based

on Reasonable Control of the Crushed Zone. *ENGINEERING*, 12 (6), 32 - 38. Chinese Eng. Association.