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ABSTRACT 

 

 

 

 

Carbon fiber reinforced plastic (CFRP) composite is often used in combination 

with other materials, requiring it to be machined during fabrication of a structure. In 

the aerospace industry, CFRPs are often stacked together with metals to provide 

stronger and better performance of aircraft structural components with the advantage 

of weight reduction and increasing mechanical strength. Drilling which is the most 

common machining process of CFRP is complex and often results in delamination of 

the composites. This study presents the findings of an experimental investigation in 

drilling of CFRP plate stacked on top of Aluminum 2024 plate. Uncoated carbide and 

TiAlN coated carbide tool were used to perform the drilling of the CFRP/aluminum 

stack at cutting speeds of 70, 85, 100 mm/min with constant feed rate of 0.1 mm/rev 

using dry drilling. The responses that were analyzed include thrust force, torque, hole 

quality, CFRP surface delamination, and tool wear. Experimental results showed that 

the application of various cutting speeds have no significant effect on all the responses 

analyzed when drilling CFRP/aluminum stacks for both tools. In terms of hole quality 

and CFRP surface delamination, the uncoated tool displayed better results compared 

to coated tool at cutting speeds of 85 and 100m/min. This is due to the sharp cutting 

edge of the uncoated tool that enabled efficient cutting in producing holes. 

Experimental results also showed that coated tool performed better than uncoated tool 

producing lower thrust force and torque, lower surface roughness, and lower tool wear 

rate.  
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ABSTRAK 

 

 

 

 

Komposit karbon bertetulang gentian plastik (CFRP) lazimnya digabungkan 

dengan bahan lain yang memerlukan ia dimesin ketika fabrikasi sebuah struktur. Di 

dalam industri aeroangkasa, CFRP lazimnya disusun berlapis bersama-sama logam 

untuk memberi kekuatan dan prestasi yang lebih baik bagi komponen struktur pesawat 

dengan pengurangan berat dan menambah kekuatan mekanikal. Penggerudian CFRP 

adalah proses pemesinan yang sukar di mana lekangan komposit seringkali berlaku. 

Kajian ini menunjukkan penemuan ujikaji ketika menggerudi kepingan CFRP yang 

disusun berlapis di atas kepingan Aluminum 2024. Mata alat karbida tidak bersalut 

dan karbida bersalut TiAlN digunakan untuk menggerudi kepingan CFRP/aluminum 

pada halaju pemotongan pelbagai iaitu 70, 85, dan 100 m/min serta kadar uluran tetap 

pada 0.1 mm/pusingan dalam keadaan kering. Sambutan yang dianalisa adalah daya 

tujah, daya kilas, kualiti lubang, lekangan permukaan CFRP, dan kehausan mata alat. 

Keputusan ujikaji menunjukkan bahawa penggunaan halaju pemotongan yang 

pelbagai tidak memberi kesan yang ketara terhadap semua sambutan yang dianalisa 

ketika menggerudi lapisan kepingan CFRP/aluminium bagi kedua-dua mata alat. Dari 

segikualitilekangan; iaitu masing-masingdndisebabkancekap Keputusan ujikaji juga 

menunjukkan prestasi mata alat bersalut lebih baik daripada mata alat tidak bersalut 

dengan menghasilkan daya tujah dan daya kilas yang rendah, kekasaran permukaan 

yang rendah, serta kadar kehausan mata alat yang perlahan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Machining is widely used in the manufacturing industries to produce accurate 

and precise components. A material is considered machinable when it can be 

machined with relative ease while producing the desired range of surface finish. The 

characteristics of a good machinability materials are when less power is consumed in 

a short machining time, good surface finish and can be produced without causing the 

cutting tool to wear in a short period of usage. It is difficult to determine the 

machinability of a material since it involved many criteria such as workpiece material, 

type of cutting tool used, the cutting parameters, and also machine tool. Among all 

the machining processes, drilling is known to be most used machining process which 

is usually done at the end of manufacturing stage [1].  

 

 

Carbon fiber reinforced plastic is (CFRP) a unique material that is highly used 

in industries such as aerospace, automotive, marine, electronics, medical, and others. 

This is due to the unique characteristics of CFRP especially in the materials structure 

that provides high performance properties such as high strength-to-weight and 

stiffness-to-weight ratios [2]. Since the mechanical properties of CFRP is superior and 
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having different structure than the majority of conventional material, a different 

approach is needed in order to obtain the best results when drilling CFRP. The 

uniqueness of CFRP structure is based on its fiber orientation, fiber and matrix 

properties, and relative volume of the fiber and matrix [2]. In the CFRP drilling 

process, the tool encounters different layer of fiber materials and matrix thus causing 

the tool to experience a variety of cutting mechanisms.  

 

 

Aluminum or aluminum alloys play a significant role in the world of 

manufacturing, especially in the aerospace industry. Aluminum alloy 2024 is chosen 

in this research as they are widely used as structural applications of aircrafts around 

the world [3]. This highly abundant material is favored due to its properties such as 

high durability, high strength, and light weight that are highly suitable for aircrafts. 

These advantages are utilised in aircraft structural applications such as fuselage, wing 

tension members, shear webs and ribs and in vital places that require stiffness, 

outstanding fatigue resistance and good strength-to-weight ratio. There are also 

substantial applications of aluminum alloy 2024 in commercial and military aircrafts. 

These include fuselage skins, wing skins, and engine parts that usually experience 

high temperatures. 

 

 

Combining the advantages of CFRPs high strength-to-weight ratio with 

aluminium in the structural applications of aerospace, a hybrid multi-layer material is 

produced. This combination allows the properties structural component of an aircraft 

to be heightened to a new level. CFRP is usually selected as a substitute for aluminium 

in an aircraft, whereby it provides considerable weight reduction to an aircraft while 

maintaining its strength comparable to metals [4]. For instance, the new Boeing 787 

Dreamliner and Airbus A350 utilised the benefits of CFRP as aircraft parts as it 

comprises more than 60% of the weight of the aircraft when empty [5]. When 

composites and metals are joined together in a manufacturing line, the processing time 

and productivity can be improved. However, in a drilling process, different materials 

have different machining characteristics. Both materials have different set of 
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machining parameter settings as they are of different properties. The stacking of CFRP 

with aluminium means that a tight control of drilling procedure must be followed to 

avoid errors such as hole diameter tolerances and hole location. A number of studies 

in drilling multi-layer materials such as CFRP stacked on top of metals are available; 

however, they are still limited as compared to studies that focused on drilling on a 

single material only. Thus, various characteristics can be explored in drilling multi-

layer materials. Through the findings of this study, it is expected that a further 

apprehension of the machinability and the effect of coating performance and drilling 

parameters in drilling stack of CFRP/Aluminium 2024.  

 

 

 

 

1.2 Problem Statement 

 

 

Drilling a stack of different materials such as CFRP and aluminum plates 

posesses great challenges to manufacturing industries. Both materials behave 

distinctly during drilling process due to the fact that CFRP has low thermal 

conductivity and highly abrasive properties. The abrasiveness nature of CFRP, would 

accelerate tool wear and shorten tool life. Meanwhile aluminum is a ductile material 

which cause built up edge (BUE) on the cutting tool during machining. The formation 

of BUE is caused by the adhesion of aluminum to the cutting tool. This BUE is 

responsible for accelerating the tool wear leading to premature tool failure, low quality 

of hole, poor surface roughness, and high deviation of hole diameter. 

 

 

Suitable cutting tool selection must be done in order to allow good finishing 

for both materials. In addition, cutting conditions must comply with tool and 

workpiece as the response differently towards cutting parameters. The general cutting 

parameter recommended for drilling CFRP is to employ relatively high speed 

combined with low feed rate [6]. This cutting parameter is most likely selected to 

minimize or avoid drilling-induced delamination. As such for aluminum alloys, there 
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is a contrasting effect between drilling at high and low speed [7]. Selection of suitable 

cutting parameters to create holes with good quality when drilling aluminum alloy is 

not easy because of the ductility and the tendency of this material to cause BUE to the 

cutting tool thus causing undesireable continuous chips and poor hole quality [7]. 

BUE usually occurs frequently at low cutting speed thus one of the solution to reduce 

or avoid BUE is to apply higher cutting speed. However, increasing the cutting speed, 

increases the drilling temperature. Aluminum alloy is much more ductile, harder, and 

having more density than CFRP, thus cutting tools that is suitable to drill aluminum 

is also suitable for drilling CFRP/aluminum stack. 

 

 

Fiber-reinforced materials possess better mechanical properties and its 

strength-to-weight ratio is highly advantageous compared to most metal alloys. These 

advantages lie in the material structure of fiber-reinforced materials. Due to the 

material structure of CFRP, as compared to metal alloys [2]. The different behaviour 

of CFRP during drilling process causes defects that are dissimilar compared to drilling 

of metal. The process is used to produce holes in the composite’s body before joining 

with other materials. In drilling process, it is highly desirable to avoid defects. The 

defects that were commonly found in CFRP drilling are matrix cracking, fiber pullout, 

fiber fracture, fiber debonding, delamination, fuzzing and spalling. Among the 

common defects induced by drilling process, delamination is the most undesirable and 

most frequently occurs [3,4,5,7-12].  

 

 

Delamination is of interest when drilling CFRP since it may result in reduction 

of material strength and fracture toughness [10] and the fact that 60% of part rejections 

during final assembly in aircraft industry consist of delamination rejects due to drilling 

[11]. There are various factors in the process parameters that are directly related to the 

defects in drilling CFRP. For example, the most common factors identified were the 

cutting tool type, cutting tool material, point angle, and helix angle of the cutting tool, 

cutting speed, feed rate, and thrust force [3,4,5,7-12]. These factors in turn can be 
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related to the progress of the tool wear which is used to determine the appropriate tool 

life of a drilling tool. 

 

 

 

 

1.3 Objectives 

 

 

The main objective of this research study is to investigate the machinability of 

CFRP/Aluminum 2024 stack during drilling process. The specific objectives of this 

study are as follows: 

i. To evaluate the machining performance of uncoated and TiAlN coated carbide 

tools when drilling of CFRP/Aluminum 2024 stack. 

ii. To study the effect of cutting speed on thrust force, torque, hole size, delamination, 

surface roughness, and tool wear. 

 

 

 

 

1.4 Scope of Study 

 

 

This study focuses on the drilling of CFRP/Aluminum 2024 stack using 

carbide drill bits, which are uncoated carbide, and TiAlN coated carbide. The cutting 

conditions include variation in cutting speed of 70. 80, and 100 m/min and constant 

feed rate of 0.1 mm/rev. The workpiece, CFRP plate was supplied by CTRM 

Malaysia. All experimental and analysis works are conducted at the Production 

Laboratory, FKM, UTM using a CNC machining centre various measuring 

equipments. 
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