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ABSTRACT 

 

 

 

 

Hydraulic and well control studies are the essential parts of well construction 

planning, especially for drilling of complex and challenging wells with narrow drilling 

margins. However, the complete applications of dynamic hydraulic analysis and 

multiphase kick tolerance studies in well design are scanty, which result in ineffective 

mud pressure management and extra cost spent on unnecessary casing strings, due to 

excessive emphasis on previous practices (steady-state model) with liberal sprinkling 

of safety factors. This research project was set out clearly to improve the well design 

for narrow margin field, in terms of hydraulics and well control. A deductive 

quantitative method constitutes major part of the research methodology, in which 

simulation of real case studies and interpretation were conducted. The dynamic 

hydraulics simulated equivalent circulating density (ECD) was compared with steady-

state results in terms of accuracy and extensiveness in providing a good well design. 

In addition, the single bubble kick tolerance results which are commonly used by the 

industry in spreadsheet format were compared with the multiphase model results. 

Sensitivity studies were performed to understand the effect of each of the operational 

or well design parameters towards primary and secondary well control. As compared 

to steady-state hydraulics, transient model covers important parameters like pressure 

and temperature dependent fluid properties, thermophysical properties, detailed 

geometry description and operational effects, thus it is more representative to the 

operational ECD. Meanwhile, multiphase kick model is proven to be more effective 

for the evaluation of kick tolerance as it is able to provide the information of pressure 

development during a well control operation, from initial influx and shut-in until influx 

is circulated out of the well at the surface. This includes all phase transitions including 

dissolving of a gas kick in oil based mud and breakout of free gas when the gas 

contaminated mud reaches the bubble point at shallower depth in the well. The flow 

model is much more accurate and reliable than the over-conservative traditional single 

bubble theory. 
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ABSTRAK 

 

 

 

 
Kajian kawalan telaga dan hidraulik ialah komponen yang penting dalam 

perancangan untuk membina telaga terutama bagi penggerudian yang rumit dan mencabar 

dengan margin tekanan yang sempit. Namun begitu, tahap kesedaran yang rendah tentang 

kepentingan penganalisisan hidraulik dinamik dan toleransi tendangan multifasa dalam 

kerja mereka bentuk telaga telah menjejaskan keberkesanan pengurusan tekanan lumpur. 

Akibatnya, kos tambahan diperlukan untuk pemasangan rentetan selongsong berikutan 

penekanan terhadap model keadaan mantap yang sentiasa memberikan margin 

keselamatan secara berlebihan. Kajian ini bertujuan untuk memperbaik reka bentuk telaga 

yang menghadapi margin tekanan yang sempit, dari segi kawalan telaga dan hidraulik. 

Kajian secara kuantitatif and deduktif ini melibatkan penyelakuan kes telaga sebenar dan 

pentafsirannya. Ketumpatan peredaran setara (ECD) yang diperoleh daripada penyelakuan 

hidraulik dinamik telah dibandingkan ketepatan dan rangkumannya dengan keputusan 

daripada model keadaan mantap bagi menghasilkan reka bentuk telaga yang baik. Di 

samping itu, keputusan toleransi tendangan gelembung tunggal yang menjadi amalan 

industri turut dibandingkan dengan hasil daripada model multifasa. Kajian kepekaan 

dilaksanakan untuk memahami kesan setiap parameter operasi dan reka bentuk telaga 

terhadap kawalan telaga utama dan sekunder. Model hidraulik dinamik yang mencakupi 

parameter penting, misalnya sifat bendalir yang peka terhadap suhu dan tekanan, sifat 

termo-fizikal, huraian geometrik telaga, dan kesan operasi, didapati mampu memberikan 

keputusan operasi ECD yang lebih praktikal berbanding model keadaan mantap. Selain 

itu, model tendangan multifasa adalah lebih jitu dalam penilaian toleransi tendangan 

kerana model terbabit mampu memberi maklumat tentang perubahan tekanan ketika 

operasi kawalan tekanan, bermula daripada berlakunya tendangan gas dan kurungan, 

hingga ke bendalir tendangan dikeluarkan di permukaan. Maklumat turut mencakupi 

perubahan semua fasa termasuk keterlarutan gas tendangan di dalam lumpur dasar minyak 

dan pelepasan gas bebas bila lumpur yang dicemari gas mencapai takat gelembungnya 

pada kedalaman yang dangkal. Model aliran ini ternyata lebih tepat dan boleh dipercayai 

berbanding teori gelembung tunggal yang konservatif. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Well construction activities are executed within a pressure window bounded 

on the lower side by reservoir pressure (is also known as pore pressure) and on the 

upper side by the fracture pressure of the formation in an openhole (Figure 1.1). As the 

drilling continuously expands into harsher and high complexity terrains, the pressure 

window can be very narrow as less than 1 ppg, requiring the operations to be performed 

by walking the tight rope between these limits.  

 

 

 
(a)                                                       (b) 

Figure 1.1 Normal drilling margin (a) and narrow drilling margin <1ppg (b) 
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Thus, conventional drilling methods typically become strained when 

attempting to drill wells with narrow operational windows (Li et al., 2012). For 

instance, non-productive time to drilling operational problems, such as kicks, loss 

circulation, and stuck pipe events are commonly mount and result in hefty cost 

(Noniface and Marcus, 2014).  

 

 

Several subsurface settings can contribute to narrow margin, such as increasing 

of water depths and widely varying formation pressures (Figure 1.2).  Particularly in 

deepwater environment, the high water depth alters the subsurface pressure profiles by 

decreasing the overburden stress on the formation, which eventually translates to a 

reduced fracture gradient in the vicinity of the wellbore. Meanwhile the pore pressure 

gradient is typically determined by hydrostatic head of overlying fluid, therefore it is 

not affected by the water depth (Rocha et al. 2004).  

 

 

Apart from that, the presence of abnormal pore pressure pockets (where the 

pore pressure is greater than hydrostatic pressure) further reduces drilling margin. 

These pockets are originated from tectonic movements, salt dome effects, under-

compaction, as well as chemical and thermal actions (Freire et al., 2010). The ensuing 

challenges share a commonality relating to safe navigation between the drilling 

margins.  

 

 

 

Figure 1.2 Increasing water depth and under-compaction narrow the drilling margin 
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The hydrostatic pressure created by the drilling fluid column is commonly 

expressed as equivalent static weight (ESD), by relating the pressure at a specified 

depth to its corresponding fluid density. During circulation conditions, the mud creates 

an equivalent circulating density (ECD) which is higher than ESD. Referring to IADC 

Lexicon, ECD, in the unit of ppg, is defined as the summation of fluid’s hydrostatic 

pressure, cuttings, and annular friction pressure loss divided by vertical depth and by 

0.052 (API RP59, 2012). ESD and ECD (Figure 1.3) must be kept between pore 

pressure and fracture pressure gradients throughout the drilling process. Once the 

wellbore pressure falls below the pore pressure, an influx of wellbore fluids can lead 

to a kick or even an underground blowout. Similarly, excessive hydrostatic pressures 

must also be avoided, as it can initiate and propagate fractures, which will cause loss 

of circulating fluid into the formation (Stave, 2014). 

 

 

 

(a)                                                          (b) 

Figure 1.3 Equivalent static density (a) and equivalent circulating density (b) 
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Figure 1.4 illustrates the drilling window of a hypothetical well, the pressure is 

represented by the step profile created when a successively heavier mud is used 

(vertical line) and the wellbore is drilled to a maximum depth in which mud pressure 

approaches pore pressure (horizontal line) which a casing is set.  

 

 

In addition to ECD and ESD computation, the well design has to take 

consideration of kick effect in which every section must be able to withstand the well 

killing pressure without exceeding the fracture pressure. The maximum volume of gas 

kick in barrels, known as kick tolerance is usually set by operator as a well design 

standard which measure the integrity of the openhole to successfully shut in during 

kick event and circulate the kick out of the hole without breaking the weakest 

anticipated formation straight in wellbore (usually at previous casing shoe) (Redmann, 

1991).  

 

 

 

Figure 1.4 Well design plot 
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For instance, the section of 8.5 in hole requires 25 barrels kick tolerance as per 

well design standard of the operator. Based on the bottom-up casing seat design 

method, by using 11.1 ppg mud, the previous casing shoe can be set at 5000 ft., 

however, due to kick tolerance compliance, additional casing is set at 8000 ft. before 

drilling to total depth (TD) at 12000 ft.. 

 

 

Generally, the challenges of the narrow margin drilling can be divided into two 

main categories: 

 

 

1. Drilling mud pressure variation 

 

 

The series of standard drilling operations comprise of start and stop pumping 

intervals as drill pipe connections are made during tripping and drilling operations. 

When circulation stops, static conditions apply in the wellbore, and bottom-hole 

pressure (BHP) is determined solely by the mud column hydrostatic pressure. 

Restarting the pump will bring the well back into a dynamic state, thereby increasing 

downhole pressure and re-establishing ECD. Such variances in bottomhole condition 

can present added challenges, especially when seeking to maintain wellbore pressure 

within a window.  

 

 

Moreover, mud pressure changes based on well depth, thus there is a high delay 

time of changing wellbore pressure when required as mud must first be mixed on the 

surface and circulated downhole. In addition of relying on the MWD data, pressure 

simulator is used to model and predict the downhole pressures, in order to give a quick 

look ahead to gauge the hydraulics condition and precise control of ECD. 
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2. Casing string usage 

 

 

In order to reach the target depth in narrow margin condition, the excessive use 

of casing string is required. This is necessary to prevent mud losses as mud density is 

incrementally elevated to contain wellbore pressure. Furthermore, the compliance to 

kick tolerance worsens the case as additional casings are necessary to ensure well 

integrity during well control events (Leblanc and Lewis, 1968). Further to heightened 

expenses and drilling time, extra casing string can affect the production performance 

as the flow area becomes smaller. 

 

 

 

1.2 Problem Statement 

 

 

As mentioned in the earlier section, the narrowing of the operating margin 

available within the drilling window increases the technical challenges associated with 

drilling operations. Strategic planning always yields huge improvement potential and 

provides the highest impact on well performance without compromising the safety 

aspect. First and foremost, in terms of drilling hydraulics, the need of accurate 

computation of ESD and ECD is important in this case as it would optimize the well 

design and determine the safe drilling and casing depths.  

 

 

The steady-state hydraulics model is widely used by the well engineers during 

planning phase which the magnitude of ECD is constant with time throughout the 

entire domain analyzed at certain bit depth. Figure 1.5 shows the results of steady-state 

hydraulics study which the ECD and ESD values are usually computed when the 

drilling bit reaches TD. These results do not change in time, in which symbolize that 

the bit reaches TD with certain rate of penetration (ROP) and circulation rate, drilling 

operation is performed continuously until the ECD reaches static condition. This 

condition is impossible as during drilling operation, the ECD has been observed to be 

sensitive to cuttings and temperature changes, and also it does not explain how the 

ECD varies starting with the operations of drilling out cement, making-up connection, 

continuing drilling until TD, and hole cleaning. Multiple runs of computation have to 

be performed in order to understand the whole well construction hydraulics effect. 
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Therefore, steady state hydraulics does not represent the operation condition 

and most of the time the steady state model does not take into account parameter such 

as fluid thermal effect and temperature profiles, cuttings (slip) effect, mud gel strength 

effect, pressure-volume-temperature (PVT) relationship of the mud, etc. (Rommetveit 

and Bjorkevoll, 1997). A good well design with narrow margin requires an in-depth 

understanding of the transient hydraulics during all phases of the operation. The 

drilling process is usually highly dynamic and complicated to model, thus, transient 

modeling of drilling hydraulics has traditionally been neglected, although the model is 

able to replicate a real drilling operation and provide a more accuracy prediction than 

steady-state models. 

 

 

 

Figure 1.5 Steady-state hydraulics results 

 

 

Admittedly, kick  tolerance  is  a  key  element  when  establishing  a  well  

design. Apart from the mud weight design, the number of hole sections also relies on 

the kick tolerance results computed using simple spreadsheet, which certain volume of 

kick must be bearable by each sections (Wessel and Tarr, 1991).  NORSOK (2004) 

states that the recommended kick tolerance for each section size and the operators have 

their own standard values which governs their well integrity, as a measure to prevent 

underground blowout. However, neither the American Petroleum Institute (API) nor 

International Association of Drilling Contractors (IADC) provides the method for 

computing kick tolerance. 
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Generally, the kick tolerance is very well defined in open literature,  the kick 

models consider single gas bubbles (Figure 1.6) with simplifications regardless the 

effect of frictional pressure loss during killing operation, equipment handling delay, 

gas migration rate and gas solubility in oil based fluid (Mosti et al., 2017). The 

assumptions are made too conservatively to ensure strict compliance for safety and 

simplicity (Denney, 2012). The single gas bubble model does not characterize the 

actual downhole behavior during a kick scenario, and the condition of single bubble is 

impossible to happen (Santos et al. 2011). Conservative designs may increase costs or 

prohibit drilling due to safety concerns, it does not mean the narrow margin well is 

impossible to drill. A comprehensive optimization kick tolerance study is achievable 

by multiphase kick modeling without compromising the safety and drilling standards. 

 

 

  

  

Figure 1.6 The single bubble gas kick expands when circulated out of well and create 

pressure upsurge: (a) A well control event starts with a gas influx, with pressure 

gradient of 0.1 psi/ft. at the bottom of the well, (b) Gas bubble expands while traveling 

up, (c) The casing shoe depth experiences the highest pressure when the top of gas 

reaches the casing shoe depth, (d) The overall annular pressure profile during well 

killing is greater than mud hydrostatic pressure, larger influx yields higher pressure. 

(a) (b) 

(c) (d) 
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1.3 Hypothesis 

 

 

The detailed modeling of hydraulics in transient mode and multiphase kick 

tolerance can assist in understanding better the degree of drillability of the narrow 

margin hole which subsequently can improve the well planning. Hypothetically, an 

accurate dynamic hydraulics model combines transient effects with a detailed 

specification of fluid properties and geometry allows engineers to view the ECD in 

time and develop, in order to promote effective pressure control and efficiently reach 

the well’s objectives. ECD rises with the increase of mud pumping rate, mud weight 

used, fluid viscosity, circulation time, and rate of penetration. Contrariwise, it declines 

with the increase of temperature, rotational speed of the drill string, annular flow area, 

and drilling depth. 

 

 

During gas migration, the influx interacts with the mud and dissolves in the oil 

phase of the mud until it reaches the bubble point condition at shallow depth. At bubble 

point, it pops out from the oil and starts to expand. In the water-based mud, the influx 

does not dissolve, instead it expands once it enters the well, with certain liquid hold up 

(Umar et al., 2014). The single-bubble models cannot represent these dynamic 

processes and often provide unrealistic results with higher casing shoe pressure. 

 

 

 

 

1.4 Objectives 

 

 

The objectives of the research cover the hydraulics and well control study 

specifically for narrow margin wells: 

 

 

1. To improve current steady-state drilling hydraulics study to transient model, 

which can be a precise representation of operational equivalent circulating 

density and offer strong potential to significantly impact the effectiveness of 

well design and operations. It delivers quantum value to oil operators in terms 

knowledge gained to achieve the operational excellence and reduce non-

productive time. It informs better operational planning and provide more 
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effective means of dealing with the narrow margin challenges in exploration 

projects.  

 

 

2. To model accurate multiphase kick tolerance which can improve the 

effectiveness of the single bubble kick tolerance concept. The research 

outcome can eliminate the need of unnecessary budget as the well is deemed 

undrillable with too many casings or on the other hand an unreliable value that 

could put in jeopardy the achievement of the drilling and safety objectives.   

 

 

 

 

1.5 Research Scope 

 

 

The research scope (Figure 1.7) focuses on the well design using the simulation 

of realistic operation, covering the hydraulics changes in operational parameters over 

time (circulating, static, drilling, and tripping) and multiphase kick tolerance analysis. 

 

 

Primary well control: dynamic hydraulics 
 

1. Comparing the steady state hydraulics and dynamics hydraulics results 

2. Investigating the transient variation in ESD and ECD and identifying the 

operational parameters that affect ECD (Table 1.1) 

3. Optimizing drilling parameters which can result in the best hydraulics 

condition 

4. Verifying the dynamic hydraulics results with real time drilling data 

 

 

Secondary well control: multiphase kick tolerance 
 

1. Comparing the single bubble spreadsheet method from several oil 

operators with multiphase kick tolerance simulation 

2. Recognizing the improvement gaps of spreadsheet method 

3. Performing multiple simulations for sensitivity assessments (Table 1.1) 

 

 

Figure 1.7 Research scope 

Finalized mud weight 
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Table 1.1 Data input and parameters for research  

Simulation cases 1. Shallow water slanted well with pore pressure 

ramp (overpressured reservoir) 

2. Deep water vertical well with narrow margin 

drilling window 

Sections 12.25 in. and 8.5 in. 

Parameters for ECD study 1. Mud temperature effect 

2. Mud viscosity 

3. Rate of Penetration / Cutting loadings 

4. Drill string rotational speed and torque 

5. Annular flow area 

6. Mud weight 

Kick tolerance sensitivity 

study parameters 

1. Water based or oil based mud 

2. Kick intensity  

3. Swabbed kick and drill kick scenario 

Exclusions and 

assumptions 

1. The centrifuge effect of drill string rotational on 

cuttings is negligible. 

2. Normal drilling scenarios are simulated, managed 

pressure drilling and dual gradient drilling 

conditions are not studied. 

3. Kick tolerance study with influx of pure methane 

is presumed to happen at TD of each hole section, 

at constant rate of 3 bbl/min. 

4. Surge, swab effect and cementing pressure are not 

studied. 

5. Driller’s method is used for well control modeling. 

6. Glasso oil PVT correlation model and Dodson-

Standing water PVT correlation model are used to 

model the mud density. 

7. Mud rheology model of Roberton-Stiff is used to 

represent the correlation of shear rate and shear 

stress of the mud. 
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1.6 Significance of Study 

 

 

The narrow margin well condition creates the need to look beyond the 

traditional way of well planning (steady state modeling) to increase operational 

margin. Modeling the wells dynamically is essential and strategically important in 

order to replicate the real drilling operations and provide accuracy which is not possible 

with steady-state models. The transient analysis increases the drillers’ confidence in 

accessing to this challenging field safely that would otherwise have been near 

impossible to drill without understanding of the pressure control. This rigorous 

approach in wellbore pressure management has led the engineers to decision making, 

cost saving, and reaching maximum drillable depth safely. 

 

 

Dynamic modeling in hydraulics and well control of a narrow margin deep 

water hole delivers accurate predictions of wellbore pressure and temperature, linking 

of safe drilling practices with drilling efficiency. The casing seat and maximum 

drillable depths are optimized based on multiphase kick tolerance. The comprehensive 

study of drilling hydraulics and kick tolerance thus offers strong potential to positively 

impact well planning and operational practices for the operators. 

 

 

 

 

1.7 Chapter Summary 

 

 

The scope of studies covers primary and secondary well control of narrow 

margin well which can be set as the best practice for operators to increase the 

confidence in exploring or drilling the tight-margin well safely. The subject 

background, objectives, research scope and significance of study were outlined to 

realize the proposed research work and to understand the need of author to explore 

more in this field of study. 
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