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ABSTRACT

The chemical route to produce esters has several drawbacks associated with 
the utilization of homogeneous acid catalysts that require high reaction temperatures, 
hence is energy intensive, not reusable, creates dissolved solids and involves 
laborious separation processes. Hence, a biotechnological route via enzymatic 
esterification has been proposed as an alternative way to synthesize the problematic 
anti-oxidant, eugenyl benzoate. This is because an enzyme-catalyzed synthesis 
offers favorable advantages such as the use of a more sustainable reaction process 
with high yields and purity, as well as the biocatalyst reusability. An ecofriendly 
support was prepared from chitosan-chitin nanowhiskers (CS-CNWs) for covalent 
immobilization of Rhizomucor miehei lipase (RML) to be used as the biocatalysts. 
Analyses on the RML-CS/CNWs using Fourier transform infrared spectroscopy 
(FTIR), thermogravimetric analysis-differential thermogravimetry (TGA-DTG), field 
emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and 
fluorescence microscopy affirmed the successful covalent immobilization of RML 
onto the surface of CS-CNWs. The resultant RML-CS/CNWs biocatalysts were 
studied for catalyzing synthesis of eugenyl benzoate for various reaction parameters. 
One-Variable-at-A-Time (OVAT) study revealed that under optimal experimental 
conditions of 50 °C at 250 rpm with catalyst loading of 3 mg/mL and 3:1 molar ratio 
of eugenol to benzoic acid, the maximum yield that reached 62.1% was attained after 
5 h as compared to free RML (50.7%). The RML-CS-CNWs also demonstrated 
good operational stability, whereby the biocatalysts retaining 50% of its initial 
activity for up to eight successive esterification cycles. The present work also 
reports a response surface methodology (RSM) with Box-Behnken design (BBD) 
optimization process to synthesize eugenyl benzoate. The effects of four reaction 
parameters: reaction time, temperature, the substrate molar ratio of eugenol to 
benzoic acid and enzyme loading were assessed based on OVAT findings. Under 
optimum conditions, a maximum conversion yield of 66.8% was attained at 50 °C in 
5 h using 3.75 mg/mL of the RML-CS-CNWs, and substrate molar ratio 
(eugenol:benzoic acid) of 3:1. Meanwhile, kinetic assessments revealed the RML- 
CS/CNWs catalyzed the reaction via a Ping-pong Bi Bi mechanism with eugenol 
inhibition, characterized by a Vmax of 3.83 mM min-1 and turnover number (kcat) of 
40.39 min-1 under an optimized experimental condition. Based on the findings, it can 
be concluded that the use of the RML-CS-CNWs biocatalysts was promising in 
affording relatively satisfactory yield of eugenyl benzoate within a reasonably short 
time. Aside from improving enzymatic operational activity and stability, the 
immobilization strategy can facilitate rapid and easy removal of the RML-CS-CNWs 
from the reaction mixture when completed.
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ABSTRAK

Laluan kimia untuk menghasilkan ester mempunyai beberapa kelemahan 
yang dikaitkan dengan penggunaan mangkin asid homogen yang memerlukan suhu 
tindak balas yang tinggi, maka ianya intensif tenaga, tidak boleh diguna semula, 
menghasilkan pepejal terlarut dan melibatkan proses pemisahan yang menjerihkan. 
Maka, laluan bioteknologi melalui pengesteran berenzim telah dicadangkan sebagai 
suatu laluan alternatif untuk mensintesis anti-oksida yang bermasalah, eugenil 
benzoat. Ini kerana sintesis bermangkinkan enzim menawarkan kelebihan 
menguntungkan iaitu penggunaan proses tindak balas yang lebih lestari dengan hasil 
yang tinggi dan tulen, serta kebolehgunaan semula biomangkin tersebut. Suatu 
penyokong mesra alam telah disediakan daripada nanomisai kitin-kitosan (CS- 
CNWs) untuk pemegunan kovalen lipase Rhizomucor miehei (RML) untuk 
digunakan sebagai biomangkin. Analisis terhadap RML-CS-CNWs menggunakan 
spektroskopi inframerah transformasi Fourier (FTIR), analisis termogravimetri- 
termogravimetri pembezaan (TGA-DTG), mikroskopi imbasan elektron-medan 
pelepasan (FESEM), pembelauan sinar-X (XRD) dan mikroskopi pendarfluor 
membuktikan kejayaan pemegunan kovalen RML ke atas permukaan CS/CNWs. 
Biomangkin RML-CS-CNWs yang terhasil telah dikaji untuk memangkinkan sintesis 
eugenil benzoat untuk pelbagai parameter tindak balas. Kajian satu-pembolehubah- 
pada-satu-masa (OVAT) mendedahkan bahawa dalam keadaan optimum eksperimen 
iaitu 50 °C pada 250 rpm dengan muatan mangkin sebanyak 3 mg/mL dan nisbah 
molar eugenol kepada asid benzoik 3:1, hasil maksimum yang menjangkau 62.1% 
telah dicapai selepas 5 jam berbanding dengan RML bebas (50.7%). RML-CS- 
CNWs tersebut juga menunjukkan kestabilan operasi yang baik, di mana biomangkin 
mengekalkan 50% daripada aktiviti awal sehingga lapan kitaran pengesteran 
berturut-turut. Kajian ini turut melaporkan proses pengoptimuman menggunakan 
kaedah gerak balas permukaan (RSM) dengan reka bentuk Box-Behnken (BBD) 
untuk mensintesis eugenil benzoat. Kesan empat parameter tindak balas: masa 
tindak balas, suhu, nisbah molar substrat eugenol kepada asid benzoik dan muatan 
enzim dinilai berdasarkan keputusan OVAT. Dalam keadaan optimum, hasil 
penukaran maksimum sebanyak 66.8 % telah dicapai pada 50 °C dalam waktu 5 jam 
menggunakan 3.75 mg/mL RML-CS-CNWs, dan nisbah molar substrat (eugenol:asid 
benzoik) sebanyak 3:1. Sementara itu, penilaian kinetik mendedahkan RML-CS- 
CNWs memangkin tindak balas melalui mekanisma Ping-pong Bi Bi dengan 
perencatan eugenol, dicirikan oleh Vmax 3.83 mM min-1 dan nombor perolehan (kcat) 
sebanyak 40.39 min-1 di bawah keadaan eksperimen yang optimum. Berdasarkan 
keputusan kajian, dapat disimpulkan bahawa penggunaan biomangkin RML-CS- 
CNWs menjanjikan hasil eugenil benzoat yang relatif memuaskan di dalam jangka 
masa yang agak singkat. Selain daripada meningkatkan aktiviti operasi enzim dan 
kestabilan, strategi pemegunan membolehkan pengeluaran RML-CS-CNWs yang 
pantas dan mudah daripada campuran tindak balas setelah selesai.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Eugenol derived from Eugenia caryophyllata is the principal chemical 

component of clove oil (76.8%) and the compound is popularly known for its 

excellent analgesic, anti-inflammatory and antibacterial effects (Moon et al., 2011). 

Eugenol is a pale-yellow oil with a warm, pungent yet pleasing aroma and smell of 

bay leaves and clove. It is a familiar fragrance in dentistry as it is often mixed into a 

paste and used as a local antiseptic, dental cement, filler and restorative material 

(Devi et al., 2010). Eugenol is usually used in its dimeric forms (i.e. eugenol esters) 

for increased bioactivity (Horchani et al., 2010; Sadeghian et al., 2008) while 

reducing allergic reactions and inflammatory effects when in contact with cells due 

to liberation of phenoxyl radicals as well as quinone intermediates (Horchani et al., 

2010; Yadav and Yadav, 2012). In terms usage safety, the use of eugenol has been 

deemed safe by the Food and Drug Administration (Hemaiswarya and Doble, 2009).

The current chemical approach to synthesizing eugenol esters has several 

inherent drawbacks, among them is the use of strong acid catalysts that incurs 

tedious downstream processing which increases the overall costs of manufacturing 

process (Yadav and Yadav, 2012). To overcome such drawbacks, the 

biotechnological approach of employing enzymes in non-aqueous media may prove 

advantageous since all reactions are carried out under mild conditions (Horchani et 

al., 2010). The feasibility of such method in employing enzyme as biocatalyst was
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previously reported by several researchers (Chiaradia et al., 2012; Horchani et al., 

2010; Mohamad et al., 2015b). Herein, employment of lipases (triacylglycerol ester 

hydrolases, EC 3.1.1.3) to catalyze the synthesis of eugenol esters i.e. eugenyl 

benzoate is proposed.

Currently, lipase from Rhizomucor miehei (RML) has gained considerable 

attention and successfully employed in various synthesis reactions, especially 

esterification. Such preference of the scientific and manufacturing community 

towards RML may be attributable to numerous reports on its catalytic potential at 

different conditions of temperature, pressure, water content and substrates 

(Lorenzoni et al., 2012; Skoronski et al., 2014). Similar to other free forms of 

lipases, RML has a high tendency of deactivation in prolonged contact with high 

temperature and extreme pH, low activity in organic solvents and, hence 

insufficiently stable to withstand tough industrial processing conditions (Rodrigues 

and Fernandez-Lafuente, 2010). In this context, immobilization of RML onto a 

suitable solid support is one of the possible solutions that offers easy recovery and 

reusability of the biocatalysts for better productivity (Zou et al., 2010), as well as 

improved stability and activity of enzymes (Mateo et al., 2007; Zhao et al., 2015).

In the present work, the organic polymers of chitosan (CS) and chitin 

nanowhiskers (CNWs) are chosen as the matrices for immobilization due to their 

excellent benefits. CS is a natural cationic biopolymer with the benefits of 

biocompatibility, non-toxicity as well as high mechanical strength, whereby the 

material can be easily fabricated into high quality films, fibres or bead forms. The 

versatility of this biomaterial is also due to the presence of amino and hydroxyl 

groups in its structure that facilitate attachment of enzymes via covalent bonding or 

crosslinking (Solanki et al., 2009). Moreover, the performance of CS as the support 

for enzyme immobilization can be enhanced by introducing certain nanomaterials 

such as CNWs as filler. The use of CNWs has become increasingly popular in recent 

years due to their exceptional mechanical properties, large specific surface area, high 

aspect ratio, environmental benefits and low cost (Qin et al., 2016). According to a 

recent report, the combination a polymer i.e. CS with the nano-filler CNWs to afford 

the CS/CNWs hybrid matrix can be regarded as a single polymer (polysaccharide)
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composite (Simkovic, 2013) whose mechanical parameters are strongly influenced 

by the origin of the components. The observably enhanced strength and stiffness of 

the CS/CNWs composite has been suggested to be a consequence of the high 

modulus of CNWs and additional interactions that occurred between both 

components (Kelnar et al., 2015).

The process parameters for the RML-CS/CNWs-catalyzed esterification to 

synthesize eugenyl benzoate was statistically optimized using the method of response 

surface methodology (RSM). The software can predict the best reaction conditions 

that would maximize the yield of the ester via a statistically optimized model without 

requiring arduous and time-consuming experiments (Marzuki et al., 2015a). RSM 

merges the experimental designs with interpolation by first or second-order 

polynomial equations in a sequential testing procedure (Pandiyan et al., 2014) that 

allows good estimation of the optimized parameters in the RML-CS/CNWs- 

catalyzed esterification process. Herein, the present study aimed to model the RML- 

CS/CNWs-catalyze esterification of eugenol and benzoic acid using a three-level- 

four-factor Box-Behnken design (BBD).

This present study was aimed at investigating the optimized reaction 

parameters for the application of RML-CS/CNWs as potential sustainable 

biocatalysts. The developed RML-CS/CNWs beads was used as biocatalysts for the 

preparation of eugenyl benzoate from eugenol and benzoic acid. The esterification 

process was optimized using the OVAT and RSM by Box-Behnken Design (BBD) 

for relevant parameters that include incubation time, temperature, molar ratio of acid 

to alcohol and enzyme loading.

1.2 Statement of Problem

Currently, eugenyl benzoate is chemically synthesized as one of the 

important inhibitors of lipoxygenase, which is responsible in avoiding major cause of 

inflammation in asthma and allergic rhinitis (Sadeghian et al., 2008). However, the
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prevailing chemical route to produce eugenyl benzoate may harm the environment as 

well as requiring a lot of energy and time (Chaibakhsh et al., 2012), development of 

new methods that are sustainable and cost effective to overcome such drawbacks 

may prove pertinent and timely. So far, attempts to produce eugenyl benzoate via the 

biotechnological route (Horchani et al., 2010) remains lacking and the potential of 

such method to produce the ester has yet to be fully exploited. Although there are 

studies employing lipases as a biocatalyst in the synthesis of eugenyl benzoate , the 

outcome has been unsatisfactory due to the low conversion yield or the use of lipase 

derived from the pathogenic Staphylococcus aureus, in which the latter may pose 

adverse implications towards human health (Bartolomeu et al., 2016; Hu et al.,

2012).

In this study, covalently bound RML onto CNWs reinforced chitosan (RML- 

CS/CNWs) will be used as biocatalysts for the lab scale synthesis of eugenyl 

benzoate. It was previously described that CS reinforced with CNWs using the 

biodegradable tannic acid as the crosslinker favorably altered the stability and the 

mechanical properties of the resultant CS/CNWs carrier support (Rubentheren et al., 

2015). It is hypothesized that the covalent attachment of RML onto CS/CNWs may 

confer certain benefits of biocompatibility of both supports to RML and additional 

structural integrity to the RML protein structure, thereby increasing operational 

stability of the nanobioconjugates for improved yield of eugenyl benzoate.

1.3 Objectives of the Study

The objectives of this study are:

i. To characterize the morphology, physicochemical properties and stability of 

the RML-CS/CNWs.

ii. To optimize the RML-CS/CNWs catalyzed synthesis of eugenyl benzoate.

iii. To develop kinetic model for the RML-CS/CNWs catalyzed synthesis of 

eugenyl benzoate.
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1.4 Scope of Study

The scopes of this project involve the preparation of chitin nanowhiskers 

using acid hydrolysis reaction in which the supports of CS/CNWs bead are prepared 

for the immobilization of the RML. The study subsequently assessed the 

morphological characteristics of the CS/CNWs and RML-CS/CNWs beads by:

a) Fourier transform infrared (FTIR)

b) Field emission scanning electron microscopy (FESEM)

c) Thermal gravimetric analysis (TGA)

d) X-ray diffraction (XRD)

e) Fluorescence optical microscopy

Next, the study of the characterization of the physicochemical properties and 

optimize the RML-CS/CNWs assisted esterification of eugenol and benzoic acid to 

afford eugenyl benzoate was carried out using the method of OVAT for parameters 

temperature, amount of enzyme, incubation time, substrate molar ratio 

(alcohol:acid), stirring rate, reusability and thermal stability. The ANOVA on the 

results of the OVAT study is crucial to identify the four relevant parameters to be 

investigated in the subsequent RSM study.

The following part of the study is the optimization of the RML-CS/CNWs 

assisted synthesis of eugenyl benzoate using the method of RSM for four relevant 

parameters as the following: temperature, incubation time, amount of enzyme and 

molar ratio of acid to alcohol, according to the proposed conditions by the Design 

Expert 7.1.6 software utilizing the BBD method. The response of the reaction is 

determined in terms of the percentage yield of eugenyl benzoate. Lastly, the kinetic 

study for the RML-CS/CNWs catalyzed esterification of eugenol and benzoic acid 

based on different concentrations of the substrates were carried out to ascertain the 

mechanism that the developed biocatalysts and to identify the kinetic parameters of 

the lipase viz. Vmax, Km, Kcat and Keff.
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1.5 Significance of Study

The RML-CS/CNWs developed in this study offers a one-pot synthesis that 

promotes the use of the Green Chemistry philosophy in producing eugenyl benzoate 

while promoting lesser use of environmentally unfriendly chemicals and hazardous 

acids. In addition, the modification of the CS/CNWs polymer matrix by introducing 

tannic acid as the crosslinker is beneficial owing to its biodegradability, non

cytotoxicity and less expensive to produce (Rubentheren et al., 2015). Moreover, an 

enzyme-assisted reaction is noteworthily carried out under mild conditions and the 

biocatalyst can be reused for several cycles of reaction, hence is prospectively cost- 

saving. Moreover, application of RML-CS/CNWs as the biocatalyst would make a 

significant cost reduction as the amount of enzyme utilized is low.
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