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ABSTRACT 

 

 

 

 

This thesis reports a new composite scaffold material that is conductive and 

porous made from degradable polylactic acid (PLA) and conducting polyaniline 

(PANI) which has the potential for use in promoting tissue regeneration. The 

conductive scaffold was successfully prepared using a simple yet effective method 

known as freeze extraction method. The doped PANI was synthesised using 

conventional method of oxidative chemical polymerization. The electrical 

percolation state was successfully obtained at 3 wt% of PANI inclusion and reached 

at useable conductivity level for tissue engineering application at 4 wt% PANI, 2.91 

x 10-3 Scm-1. 4 wt% inclusion of PANI was justified as the best PLA/PANI 

composite scaffold because it met the criterion as an electro-responsive material 

where the conductivity achieved was higher than 10-3 Scm-1. It is also much suitable 

material in the regeneration of skin tissue (fibroblast) because the mean pore size 

achieved was at 35.82 μm and optimum tensile strength at 3.08 MPa. The UV-

spectrum of the conductive scaffold displayed transition peaks of PANI indicating 

the PANI was still in its conducting doped state inside the scaffold. Incubation for 24 

weeks for in-vitro degradation revealed that the PANI component delayed the 

degradation of PLA. Preliminary bioactivity test results indicated that the doping 

agent able to form chelate at the scaffold surface and this could assist in the 

formation of in-vitro apatite during the biomimetic immersion. 
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ABSTRAK 

 

 

 

 

Tesis ini melaporkan bahan komposit perancah terbaharu berkonduktif dan 

berliang yang diperbuat daripada asid polilaktik (PLA) berdegradasi dan polianilina 

(PANI) berkonduktif di mana berpotensi untuk menggalakkan pertumbuhan semula 

tisu. Perancah berkonduktif ini berjaya dihasilkan dengan menggunakan kaedah yang 

mudah tetapi berkesan yang dikenali sebagai pengekstrakan beku. PANI terdop telah 

disintesis dengan cara yang konvensional iaitu pempolimeran kimia secara oksidatif. 

Tahap perkolasi elektrik berjaya diperoleh pada 3% kemasukan PANI dan mencapai 

tahap konduktiviti yang berguna untuk kejuruteraan tisu pada 4% PANI iaitu 2.91 x 

10-3 Scm-1. Kemasukan 4% PANI telah dibuktikan sebagai PLA/PANI perancah 

komposit yang terbaik kerana ianya memenuhi kriteria sebagai bahan yang elektro-

responsif di mana pencapaian konduktiviti adalah lebih tinggi daripada 10-3 Scm-1. 

Ianya juga bahan yang sangat sesuai dalam pertumbuhan semula tisu kulit (fibroblas) 

kerana purata saiz liang yang dicapai pada 35.82 μm dan kekuatan tegangan yang 

optimum pada 3.08 MPa. Spektra UV perancah berkonduktif ini menunjukkan 

kewujudan peralihan spektra PANI dan ini menunjukkan bahawa PANI masih 

berkeadaan terdop di dalam perancah tersebut. Tempoh pengeraman selama 24 

minggu untuk degradasi secara in-vitro menunjukkan komponen PANI telah 

melambatkan degradasi PLA. Keputusan awal ujian bioaktiviti menunjukkan agen 

dop mampu membentuk sebagai kelat pada permukaan perancah dan ini dapat 

membantu pembentukan in-vitro apatit ketika rendaman cecair biomimetik.
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview 

 

 

Scaffolds in tissue engineering refer to biodegradable materials which are 

highly porous that can act as template for tissue regeneration (Yang et al., 2001). 

Synthetic biodegradable scaffold such as polylactic acid (PLA) has found wide range 

of pharmaceutical applications in the tissue regeneration of skin (Mohiti‐Asli et al., 

2015), cartilage (Muhonen et al., 2015), blood vessel (Li et al., 2015) and cardiac 

valve (Iop and Gerosa 2015). The advantages of PLA are its synthetically 

controllable degradation rate (Cui et al., 2015), good mechanical properties (Shi et 

al., 2015) and biocompatibility (Abdal-hay et al., 2015) plus it can be produced from 

renewable resource (Yang et al., 2015).  

 

 

The methods of preparing a porous PLA scaffold are diverse which includes, 

thermally induced phase separation (Mannella et al., 2015), 3D printing (Rosenzweig 

et al., 2015), porogen leaching (Choudhury et al., 2015), the highly popular freeze 

drying (Salerno et al., 2015) and electrospinning (Morelli et al., 2015). Another 

method to produce polymeric porous scaffold is the simple freeze extraction (Adeli 

et al., 2011).  
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Though there are few reports on PLA scaffold prepared by freeze extraction 

method with the inclusion of other fillers or reinforcements such as carbon nanotubes 

(Adeli et al., 2011), chitosan and alginate (Yuan et al., 2009), bioactive glass (El-

Kady et al., 2010), to date there are no reported studies on the preparation of freeze 

extracted porous conductive scaffold of PLA with the inclusion of conducting 

polymers such as of polyaniline (PANI).  

 

 

PANI is one of the most promising conducting polymers for wide range of 

applications (Li et al., 2008) mainly due to its ease of synthesis and preparation 

(Bhadra et al., 2009), excellent electrical properties (Wang et al., 2015) and being 

biocompatible (Bidez et al., 2006). Inclusion of conductive PANI filler in the PLA 

scaffold might open up opportunities in many biomedical applications such as tissue 

engineering. It is only quite recently that the tuneable electroactivity of PANI has 

been explored in the area of diverse biomedical applications, such as for scaffolds in 

tissue engineering (Qazi et al., 2014).  

 

 

Earlier in vivo test revealed that various forms of PANI caused minimal 

inflammation after 50 weeks of implantation beneath the dorsal skin of rats (Wang et 

al., 1999). It was also shown that PANI can be a good reducing agents and effective 

scavengers of free radicals when present in biological media (Gizdavic-Nikolaidis et 

al.,  2004). Investigation on adhesion and proliferation of cardiac myocytes on PANI 

concluded that PANI potential usefulness as an electroactive conductive polymer in 

cell-culture experiments (Bidez et al., 2006), able to stimulate cell differentiation to 

cardiomyocites (Borriello et al., 2011) and biocompatible for both healthy and cancer 

cells after some modifications (Yslas et al., 2015). However, due to its brittleness 

and nonprocessability (Saini et al., 2012), it should be incorporated into other 

polymers that able to be fabricated into a tissue engineered scaffold.  

 

 

Therefore, the main aim of this study is to prepare and investigate the effects 

of PANI addition on the properties of PLA scaffold prepared using freeze extraction. 

This new type of conductive composite scaffold is expected to exhibit new and 
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enhanced properties including the ease of processing and low cost. Such conductive 

scaffold may be usable in many applications in tissue engineering and biomedical 

implants such as controllable electrically responsive cell growth scaffold, 

controllable drug delivery sites and skin graft for wounds. 

 

 

 

 

1.2 Problem Statements 

 

 

Most of the research works on PLA composite scaffold are focused on the 

mechanical and morphology improvement. Nonetheless it was shown that certain 

material can enhance Schwann cell growths for neural tissue engineering upon 

applied voltage (Baniasadi et al., 2015). This could decrease the time taken for the 

cells to fully mature and it could lessen the time for patients to wait for their new 

regenerate tissue. Thus it seems feasible to induce a certain degree of electrical 

conductivity to a scaffold material in order to obtain cell responsive properties for 

tissue engineering. Though being reported, the study on conductive scaffold is still 

limited to some extent.  

 

 

Freeze drying is a widely used method to prepare porous scaffold but it is 

time and energy consuming (Baldino et al., 2015). Plus the resulting freeze dried 

scaffold usually produced unwanted surface skin which requires additional process 

thus becomes economically uncompetitive (Sachlos and Czernuszka, 2003). In 

regards to conductive scaffolds, they have been fabricated using the electrospinning 

method mainly due to their nanofiber formation which led to high porosity (McKeon 

2010, Shokry et al., 2015). Though the electrospinning process seemed feasible, 

various cumbersome factors should be taken into consideration to obtain its 

nanofiber form such as applied voltage, solvent mixtures, distance between the tip 

and the collector, viscosity of the polymer solution, flow rate and even 

humidity/temperature of the spinning chamber (Subbiah et al., 2005). 
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Being relatively new in the tissue engineering field, conductive scaffold 

prepared using freeze extraction has many unexplored features and characteristics. 

Many aspects that should be studied which includes the electrical conductivity 

enhancement, morphology, pore size and porosity, electronic transitions, 

biodegradability and bioactivity. 

 

 

 

 

1.3 Objectives 

 

 

This study was conducted in order to fulfil the following objectives: 

 

1. To prepare conductive composite scaffold of PLA/PANI via freeze 

extraction  

2. To characterize the electrical, physical and morphological properties of 

the PLA/PANI scaffold 

3. To evaluate the preliminary in-vitro degradation and preliminary 

bioactivity test  

 

 

 

 

1.4 Scope of Study 

 

 

In order to satisfy all the outlined objectives, the scopes of this research are 

undertaken according to the following: 

 

 

Initially, PANI was synthesized according to conventional method as 

reported in literatures. The synthesized PANI was characterized for its morphology, 

color appearance, DC electrical conductivity and UV-vis spectroscopy. Following 
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that, the as synthesized PANI will be used as fillers in the preparation of conductive 

scaffold. 

 

 

Next step was to prepare the scaffold by the inclusions of PANI within the 

PLA using freeze extraction. Amount of PANI used were (0.5, 1, 2, 3, 4, 5 wt%). 

The resulting conductive composite scaffolds were evaluated in terms of its DC 

conductivity, tensile properties, porosity, pore size and degree of swelling. Scaffold 

of PLA/PANI with a suitable electrical conductivity value and good physical 

characteristics were identified and further tested using UV-vis spectroscopy and 

scanning electron microscope.  

 

 

Consequently the conductive composite scaffold was tested for in-vitro 

degradation; evaluating the weight loss and the resulting morphology. Bioactivity 

test of the conductive scaffold was done by immersion in simulated body fluid 

solution (SBF), followed by the evaluation of hydroxyl apatite growth on the sample. 
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