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ABSTRACT

The ridge regression, lasso, elastic net, forward stagewise regression and the 
least angle regression require a solution path and tuning parameter, X, to estimate the 
coefficient vector. Therefore, it is crucial to find the ideal X. Cross-validation (CV) is 
the most widely utilized method for choosing the ideal tuning parameter from the 
solution path. CV is essentially the breaking down of the original sample into two 
parts. One part is used to develop the regression equation. The regression equation is 
then applied to the other part to evaluate the risk of every model. Consequently, the 
final model is the model with smallest estimated risk. However, CV does not provide 
consistent results because it has overfitting and underfitting effects during the model 
selection. In the present study, a new method for estimating parameter in best-subset 
regression called central double cross-validation (CDCV) is proposed. In this 
method, the CV is run twice with different number of folds. Therefore, CDCV 
maximizes the usage of available data, enhances the model selection performance 
and builds a new stable CV curve. The final model with an error of less than n 
standard error above the smallest CV error is chosen. The CDCV was compared to 
existing CV methods in determining the correct model via a simulation study with 
different sample size and correlation settings. Simulation study indicates that the 
proposed CDCV method has the highest percentage of obtaining the right model and 
the lowest Bayesian information criterion (BIC) value across multiple simulated 
study settings. The results showed that, CDCV has the ability to select the right 
model correctly and prevent the model from underfitting and overfitting. Therefore, 
CDCV is recommended as a good alternative to the existing methods in the 
simulation settings.
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ABSTRAK

Regresi batasan, penjerat, jaringan kenyal, regresi berperingkat ke hadapan 
dan regresi sudut terkecil memerlukan lintasan penyelesaian dan parameterpenalaan, 
X, untuk menganggarkan koefisien vektor regresi.Oleh itu, pencarian parameter 
penalaan X yang ungguladalah sangat kritikal. Pengesahan silang(CV) adalah kaedah 
yang paling meluas digunakan untuk memilih parameter penalaan unggul daripada 
lintasan penyelesaian. Pada asasnya CV adalah pemecahan data kepada dua 
bahagian. Satu bahagian digunakan untuk membangunkan persamaan regresi. 
Persamaan regresi itu kemudian diaplikasikan pada satu lagi bahagian bagi menilai 
risiko pada setiap model. Kerananya, model terakhir adalah model yang mempunyai 
anggaran risiko yang terkecil. Walau bagaimanapun, CV tidak menghasilkan 
keputusan yang konsisten kerana ia mempunyai kesan suaian-terlebih dan suaian- 
terkurang semasa pemilihan model. Dalam kajian ini, satu kaedah baharu untuk 
menganggarkan parameter dalam regresi subset terbaik yang dipanggil pengesahan 
silang gandadua pusat(CDCV) dicadangkan.Dalamkaedah ini, CV dijalankan dua 
kali dengan bilanganlipatan yang berbeza. Oleh sebab itu, CDVC akan 
memaksimumkan penggunaan data yang sedia ada, meningkatkan prestasi pilihan 
model dan membina keluk CV stabil yang baharu. Model terakhir yang mana 
ralatnyaadalah kurang daripada n ralat piawai di atas ralat CV yang paling kecil akan 
dipilih. CDCVtelah dibandingkandengan kaedah CV sedia adauntuk menentukan 
model yang betul melalui kajian simulasi dengan saiz sampel dan tetapan korelasi 
yang berbeza. Kajian simulasi menunjukkan bahawa kaedah CDCV yang 
dicadangkan mempunyai peratusan tertinggi dalam mendapatkan model yang betul 
dan kriteria maklumat Bayesan(BIC) yang terendah, merentasi pelbagai tetapan 
dalam kajian simulasi. Hasil kajian menunjukkan bahawa CDCV boleh memilih 
model yang tepat dengan betul dan mengatasi suaian-terlebih dan suaian-terkurang. 
Oleh sebab itu CDCV disyorkan sebagai satu alternatif yang baik kepada kaedah 
yang sedia ada dalam tetapankajian simulasi yang dijalankan.
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CHAPTER 1

INTRODUCTION

1.1 Introduction and Background of the Problem

Multiple regression is frequently used to investigate the relationship between 
the predictor variables and the response variable. There are many types of 
regression methods for example, Ordinary least squares (OLS) regression, best-subset 
regression, Forward selection, Backward elimination, Stepwise, Ridge regression, 
Bridge regression, Garotte, Lasso, LARS, Pathseeker and Elastic Net.

Shrinkage method such as Ridge regression, Lasso and Elastic Net require a 
solution path to estimate the coefficient vector. Since the tuning parameter A is utilized 
to select one estimator from the solution path, finding the ideal tuning parameter A is 
very important.

There are numerous approaches such as Bayesian information criterion (BIC), 
Akaike information criterion (AIC), R \ dj and Cp for finding the ideal tuning parameter 
A. However, the Cross-validation (CV) is the most broadly utilized method due to 
its simplicity and its universality. In particular, the CV splits the original data into 
multiple parts and develop the regression equation using one part of the data. Then the 
regression equation is applied to the remaining data to evaluate the risk of every model. 
Consequently the final model is the model with the smallest estimated risk. CV can be 
applied in almost any algorithm for any structure. For example, the R \ dj, Cp, and BIC 
statistics require information of the quantity of parameter p, while CV does not. In 
addition CV not only tends to give a comparable solution for simple problems but it is 
also a good solution for complex situations, such as when the quantity of parameter p 
is unknown. For instance, the addition of a constant to any of the measures would not 
change the resulting chosen model. However, for many adaptive nonlinear techniques, 
it is difficult to estimate the effective number of parameters. Thus, the method like AIC
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is infeasible and leaves us with CV as a more favourable method of choice. Secondly, 
benefit of CV is its robustness. The Cp and BIC require a proper working model to 
estimate a2. Otherwise, it has a suboptimal performance [1]. While CV doesn’t use 
a2 to build the tuning curve, if the models being assessed are far from correct, CV still 
works well [2, 3]. Thirdly, AIC prefers to pick models which are overfitted as n —> oo, 
whereas BIC is more likely to pick the too parsimonious models if sample size is too 
big.

Many types of CV utilize the similar idea of creating separate folds to choose 
the tuning parameter. However CV uses only a subset of the observations for training in 
each round, so CV typically delivers pessimistic accuracy estimations. Consequently, 
the quantity of folds affect the bias and variance in CV. For example, utilizing a 
small quantity of folds leads to smaller variance but large bias, whereas, CV with 
larger quantity of folds, - makes the variance of the estimators larger, but bias smaller. 
Another weakness of CV is a large portion of the CV error curves are very flat over 
large ranges close to their minimum and this makes it more difficult to choose the 
perfect tuning parameter A o p t -

1.2 Statement of the Problem

CV is the most widely used method to select the optimal tuning parameter to 
estimate the coefficient vector, yet it also has some restrictions.

First, the CV does not provide consistent model selection results because CV 
has an overfitting and underfitting effect during the model selection. The overfitted 
model will frequently result in variances of estimated parameter that are more than the 
model which contains small quantity of predictor. Moreover, it is hard to maintain a 
model with too many predictor variables. Thus the underfitted model will remove the 
key predictor variables and will reduce the predictor power of the model that leads to 
biased estimates of the regression coefficients.

Next CV is normally utilized to validate every model, and then select the model 
that has the lowest CV error. It expects model with lower generalization error to have 
lower CV error. However, Ng [4] shows that the idea may not be right because lower 
expected generalization error may not always come from the model with lower CV 
error.
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Moreover many of the CV curves are very flat over large ranges close to their 
lowest value. It is most difficult to choose the ideal A o p t  for CV.

1.3 Objectives of the Study

The objectives of this research are:

1. To modify the existing CV in order to avoid overfitting and underfitting the
model runs the CV twice with different number of folds and choose the ideal 
tuning parameter with new stable CV curve.

2. To simulate data with different sample sizes and correlation settings to
investigate the effect of different CV methods.

3. To compare the proposed method against other CV methods in order to
determining correct model.

1.4 Scope of the Study

Compare the proposed method, Central Double Cross-Validation (CDCV) 
with current methods: K-fold Cross-Validation (K-fold CV), One-standard-error rule 
of K-fold CV (K-fold CV(SE=1)) and Leave-n^-out CV (CV(n„)). Four principal 
assumptions which justify the utilization of multiple linear regression models are:

• linearity of the relationship between predictor variables and response variable

• independence of the errors (no serial correlation)

• homoscedasticity (constant variance) of the errors

• normality of the error distribution.

Simulation studies were done to evaluate the effect of multicollinearity on the 
estimation of the parameters at various levels of multicollinearity.

Simulation studies were done using statistical environment R. For the 
development of the current methods, the bestglm package was used. For the CDCV
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method, the bestglm package was used with modification of the algorithm.

1.5 Significance of the Study

Cross-validation (CV) is the most broadly utilized method in order to choose 
the ideal tuning parameter from solution path. The aim of this study is to modify 
the current CV method to avoid overfitting and underfitting problem during the 
model selection. Thus, we proposed a new method for estimating parameter in best- 
subset regression called Central Double Cross-Validation (CDCV). Simulation study 
indicates that the proposed method, CDCV, has the highest percentage of obtaining 
the right model across multiple simulated study settings. Therefore CDCV can help 
analysts to select the correct regression models with a reasonable number of predictor 
variables.

1.6 Summary and Outline of the Study

Chapter 2 covers literature review on published work done recently concerning 
the CV. The explanation and methodology of current CV methods and the proposed 
method are shown in Chapter 3. Chapter 4 discusses the structure of simulation studies 
and analyzes the performance of current CV and CDCV in terms of percentage of 
determining the right model and lower BIC value via a simulation study. Next in 
Chapter 4 compares and discusses the performance measures used in this research. 
Finally, in chapter 6 discussion, conclusion and the suggestion for further research are 
given.

1.7 Linear Regression

1.7.1 Introduction

This section covers the basic concept of linear regression. Section 1.7.2 
explains the effect of overfitting and underfitting during model selection. This section 
also explains how number of variables in the model affect the model’s predictive 
ability, bias and variance. Section 1.7.3 introduces some methods that are used to select
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model. These methods can be divided into three classes: goodness-of-fit measures, 
estimating distributional discrepancies and criteria based on prediction error.

1.7.1.1 Ordinary Least Squares

The Ordinary Least Squares (OLS) is a widely accepted method generally 
utilized to estimate parameters to fit data. Analysts normally utilized OLS to build 
a linear regression model [5].

The objective of doing regression is to get the estimate of the regression 
coefficients /3 for the equation of linear regression model as in equation (2.1).

Y  =  X/3 +  e (1.1)

where matrices and vectors are represented by bold uppercase letters. Response vector, 
Y  G MnXl; matrix of predictors, X  G MnXp; error term, e G MnXl. Sample size is 
denoted by n and number of parameters is denoted by p.

Estimate (3 by minimizing the sum of the squared differences between the 
response values and those predicted by the equation with the least squares criterion:

n

min^ ^ 2 ei (L2)
i= 1

and,

ei = Y i - X ' i(3, i = 1,2, ...,n (1.3)

where residual is denoted by e* and transpose matrix of X  is denoted by X-.

Putting it in another way, the coefficients for the least squares regression are 
chosen to minimize the sum of squares of the residuals. The model function is given 
by:
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F((3) = e'e

= (Y —X /3 ) '(Y -X /3 )

=  Y 'Y -/3 'X 'Y  -  Y 'X/3 +  /3 'x 'X /3 

=  Y 'Y  +  ^ 'x 'X /3  -  2 /3 'x 'Y  (1.4)

Differentiate with respect to (3 to minimize F((3) and sets it to zero:

^ ^ | ^  =  2 X 'X ^ - 2 X 'Y  =  0 

The normal equations of the least squares is,

X'X/3 =  X 'Y

If the (X X )-1 exists, then f3 is called the Ordinary Least Squares estimate of f3,

P =

A )

=  (X'X)_1X'Y (1.5)

' p  j

This model is not only used to investigate and model the relationship of the response 
and predictor variables but also used to identify significant predictor variables. 
Therefore this model can also be used for predicting the value of the response variable.

1.7.1.2 Analysis of Variance (ANOVA) Approach to Regression Analysis

The ANOVA methodology is based on the partitioning of sums of squares and 
degree of freedom (df) associated with the response variable Y  [5]. The variation is 
customarily measured in terms of the deviations of the observed response value, Yi and 
their mean Y :
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Y i - Y  (1.6)

The total variation (SSTO), is the sum of squared deviation and defined as:

n

SSTO  = -  Y )2 (1.7)
i= 1

The SSTO increases when the variance among the Yi increases. This is because SSTO  
is the total sum of squares in the response about the mean. The SSTO = 0 when all 
Yi are the same. Once the predictor variable X  is utilized, the variation indicating the 
uncertainty related to the variable Y  is equivalent to Yi data around the fitted regression 
line:

Y i - Y i  (1.8)

where Y* is the ith fitted response.

The measure of variation in the Yt observations that is present when the
predictor variable X  is taken into account is the sum of the squared deviations where
the equation is defined in equation (1.8), which is the SSE.

n

S S E  = ^2 (Y i - Y i)2 (1.9)
i= 1

Next, S S E  denotes the error sum of squares. The S S E  =  0 when all observed 
response value fall on the fitted regression line. As the variation of the Yi around the 
fitted regression line increases, the S S E  also increases. The equation for the regression 
sum of squares (S S R ) is:

n

S S R  = Y^(Yi ~  Y f  
2=1

(1.10)
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Note that S S R  is a sum of squared deviations, the deviations being:

Y i - Y  (1.11)

Each deviation is basically the difference between the fitted value on the 
regression line and the mean of the fitted values Y. If the slope of the regression 
line is equal to zero so that Yi — Y  =  0, then S S R  =  0. Else, S S R  is greater than 
zero.

S S R  may be seen as a measure of that part of the variability of the Yi which 
is connected with the regression line. The S S R  is in association with SSTO. When 
the S S R  is large, the more imperative is the effect of the regression connection in 
representing the total variation in Yi.

1.7.1.3 Stepwise Methods

There are two weaknesses of OLS.

Firstly, OLS usually has low bias yet large variance, shrinking or changing 
some coefficients to zero might improve the accuracy of prediction. Thus, sacrifice a 
little bit of bias will lower the variance of the predicted values, and thus, enhance the 
prediction accuracy on the whole.

Subsequently, certain regression models possess a large quantity of predictor 
variables, where user frequently might be keen to establish a smaller model which 
show the greatest effects. As a result, users are willing to sacrifice some minor details 
to a bigger picture of the model.

Although there are a variety of approaches that can be used for model selection, 
the focus of this research is on best-subset regression.

Since the quantity of conceivable models, 2P_1, which grows quickly with 
the increase in the number of predictors, assessing the majority of the conceivable
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choices can be an overwhelming process. Many automatic computer methodologies 
have been developed to simplify the task. In this thesis, the focus is on the best- 
subset regression. Efficient algorithms have been created in the best-subset according 
to a specified criterion which can identify the best subsets without requiring the fitting 
of all of the possible subset regression models. Indeed, these methods require the 
calculation of only small portion of all possible regression models. A case in point 
is, if the Cp criterion is to be employed and the five best subsets according to this 
criterion are to be identified, these algorithms search for five subsets of X  variables 
with the smallest Cp value utilizing much less computational effort than running all 
of the possible subset regression models. These algorithms do not just give the best 
subsets according to the specified criterion, but also frequently recognize a few good 
subsets for each conceivable quantity of X  variables in the model to give the user 
additional helpful information in final regression model.

1.7.2 Deletion of Predictor Variables

In exploratory observational studies, after the screening process, the model 
would still include a large number of predictor variables. Another problem is 
that the model that contains large quantity of predictor variables frequently has 
multicollinearity issue. Subsequently, the user will hope to lessen the number of 
predictor variables utilized in the final model [5]. A brief explanation is given below.

First, the model which contains a limited number of predictor variables may 
be less demanding to work with and miss some truly informative variables. Second it 
is hard to maintain a regression model with too many predictor variables. Last, if the 
model includes many highly correlated predictor variables, the sampling variation of 
the regression coefficients may increase, and thus decreases the model’s descriptive 
capacities, and consequently increases the problem of round off errors and the 
performance of model to predict new observation becomes lower. In conclusion, the 
variances of the fitted values, a2Yt will become bigger when more useless predictor 
variables stay in the model.

Subsequently, once the user has decided upon the functional form of the 
regression relations and whether any interaction terms are to be included, the following 
step in various exploratory observational studies is to identify a couple of good subsets 
of X  variables for further study. The model should include the potential predictor
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variables in first-order form, higher-order form, and interaction terms.

The identification of good subsets is promisingly useful in deciding which 
predictor variables are to be included in the final regression model. The influence of 
suitable functional and interaction relationship for these variables generally comprise 
the main challenges in regression analysis.

How to determine the “best” model may depend on the user’s purpose because 
application of regression model is very wide. For example, a descriptive use of 
a regression model will typically emphasize precise estimation of the regression 
coefficients, whereas a predictive use will focus on the prediction errors. Frequently, 
diverse subsets of the pool of potential predictor variables will best serve these varying 
purposes. Even for a given purpose, sometime we found that few subsets are also 
similarly “good” according to a given criterion, and the decision among these good 
subsets needs to be made on the basis of extra contemplations.

The identification of good subsets should be done with careful consideration. 
Removing the key predictor variables can reduce the predictor power of the model and 
bring about biased estimates of regression coefficients, mean responses, and model’s 
predictive capability, and biased estimates of the error variance. The bias in these 
estimates is related to the fact that with observational data, the error terms in an 
underfitted regression model may reflect nonrandom effects of the predictor variables 
not incorporated in the regression model. It is imperative to exclude predictors which 
are sometimes called latent predictor variables.

Next, the overfitted model will frequently result in variances of estimated 
parameter that are more than the model which contain small quantity of predictor 
variables.

1.7.2.1 Curve Fitting

Gruber [6] pointed out that model which contains too many predictor variables 
has smaller bias and large variance. Due to the flexibility of the functional form 
being applied to fit the model, noise was also detected simultaneously with the data, 
resulting in unstable predictions. However, the model which contains a limited quantity



11

predictor variables, has smaller variance yet large bias because it capture the curvatures 
of the true function / .

Their researches show that the number of variables in the model affect the 
model’s predictive ability.

1.7.2.2 Prediction Error and Model Error

In the prediction problem, an initial data set (Xi,Yi), i = 1 , n,  consisting 
of n(p +  1)- dimensional multivariate observations, comprised of a response Yi, and a 
p-dimensional vector of predictor variables Xi. It is assumed that the first element of 
every is 1, correspond to the constant term in the regression model.

Assume this data set which is occasionally named as training set is employ to 
predict the responses Y0i,i = 1 , m,  corresponding to m  new vectors X Qi. The main 
matter is to estimate the mean fi0i of the response YQi.

Let Y* =  ( Y i , Yn) and Yg =  (Yqi, Y0rn). Y  and Y 0 assumed to have 
covariance matrices a2In and a1 Im (where In and lm are identity matrix), respectively, 
and that Y  and Y 0 are independent with the same probability structure; if = xjQ, 
then E[Yi\ = E[Y0j\. Also, let

/ f

X 1 ^ 0 1

\ a n d  X q  = ;

/ /

. X n . _ X 0 m

Estimate /3 =  (X X) 'X 'Y  from the training set. The least squares predictor 
of Y 0 is X 0/3. The sum of the squared of prediction errors is

m
-  aw5)3 =  HY „ -  ato^ll2, (1.12)

2=1
which can be written as
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|Y0 -  Mo + Mo -  X 0/9||2 = ||Y0 -  Moll2 + IlMo -  X 0̂ ||2+
2(Y0 -M o)'(Mo- X o3)

If take expectations over the new data only, the quantity obtained is known as 
prediction error (PE):

PE =  £ y 0[ | | Y o - X 0/3 | |2]

=  £ Y o [ | | Y 0 - M o l l 2] +  l l M o - X o £ | | 2

=  E'Y0 y~l(Yio — Mio)2
i= 1

+ IIm0 - x 0̂ | |2

=  mo2 +  11/x0 — X 0/3||2. (1.14)

where m a2 reflects the underlying variability of the data, | |mo — X 0/3| |2 measures how 
well the linear model represented by X 0 estimates the mean Mo ° f  the new responses 
Y 0.

In equation (1.14), the cross-product term vanishes because Y  and Y0 are 
independent and

£;Yo[(Y0 - M o)2(^ o - X 0̂ )] =  (£ Yo[Y0] - m;)(Mo - X 0̂ )
(Mo ~  Mo)  V o  ~  x o/3)

0.

Equation (1.14) shows that the PE is the sum of m a2 and a term 11Mo — X 0/3||2. 
This term | |mo — X 0/3| |2 is called model error (ME) and it is a vital quantity for 
measuring model’s predictive capacity.

P E  — ma2 + M E , (1.15)
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where

M £ =  ||/z0 - X 0/3||2. (1.16)

The ME depends on the regression matrix X 0.

If X 0 =  X, this indicates that m  =  n and fx0 =  -EfY] =  [A. Suppose the 
probability structures of the new observations are equal to old observations. Therefore, 
let e =  Y  — fj, and P  =  X (X  X )_1X /, hence a simple equation for the ME can be 
defined as the following given that the cross-product term disappears again as P 2 =  P.

M E  = Im - x ^ | | 2

\ / j ,  -  P Y ||2

| m - p ( ^  +  £)II2 

|(In - P ) M - P e | | 2 

,|(In - P ) / z | | 2 +  ||P £ ||2 

I* (I* ~ P)m +  ePe ,

The expected model error E[ME\ is

E[ME\ = fi (ln — P)/z +  E[ePe]

= ^  (In -  P)fx +  a2tr(P)

= » ( I n - P  )»  + a2p. (1.17)

Using equation (1.15) and (1.17), the corresponding formula for the expected PE when
X 0 =  X  is

E[PE\ = E[na2 + M E ]

= (n + p)a2 +  / / ( I n -  P)/x, (1.18)

Now define the total bias and total variance of the predictor X/3 by
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TOTAL BIAS = ||/x — £[X/3]||

and

TOTAL VARIANCE =  tr(Var[Xp]) =  a2tr(P).

The first term of equation (1.17) is only the square of the total bias,

||m- £ [ x /3]||2 =  ||/L t-(x (x 'x )-1x£;[Y]||2 =  ||(in- P ) / / | |2 =  //'(in -P )//.

The second term of equation (1.17) indicates the total variance. Subsequently 
equation (1.17) expresses the expected ME as the addition of the total of the measuring 
bias and the measuring variability of the predictor. Thus, when the variability becomes 
bigger yet the bias becomes smaller when the model includes new variables. The best 
model, having minimum expected ME, will have negotiations amid these conflicting 
prerequisites of small bias and low variability.

Consequently, the bias and variance are affected by the quantity of variables in 
the model. Quantity of variables and variance both tend to increase together, whereas 
the bias decreases as the quantity of model increases.

1.7.3 Choosing the Best Subset

Section 1.7.2 shows that utilizing a model which includes all X  variables, 
will cause the predictive ability to reduce. An alternative way to improve model’s 
predictive ability is to utilize one subset of the predictor variables and apply a least 
squares predictor based on the chosen subset. This section discuss the methodology 
to identify the best subset. Use a criterion to evaluate the performance of each model, 
then select the model that optimizes the criterion.
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Numerous approaches are utilized to select model. We split these approaches 
into the accompanying classes: goodness-of-fit measures, estimating distributional 
discrepancies and criteria based on prediction error.

1.7.3.1 Goodness-of-Fit Criteria

The R 2 criterion is known as the coefficient of determination and defined as 
follows [5]:

where SSTO is the total sum of squares and SSE is the error sum of squares.

In order to recognize a few good subsets of X variables, subsets with high R 2 
are chosen.

The R 2 criterion and error sum of squares S S E  provide the same information. 
Since the denominator SSTO  is a constant for all possible regression models, when 
R 2 becomes bigger, the S S E  becomes smaller. Therefore the model is better when the 
SSE is at low level.

The R 2 criterion is not intended to identify the subsets that maximize this 
criterion because R 2 can never diminish when more X  variables are included in the 
model. Consequently R 2 will be maximum when all P -1 potential X  variables are 
added in the regression model. The expectation in utilizing the R 2 criterion is to 
discover the point where adding more X  parameters does not increase R 2 significantly. 
Obviously, the determination of significant increment in R 2 is judgmental in nature.

Since R 2 does not take note of the quantity of variables in the model and 
since max (R2) can never decreases as p increases, the adjusted coefficient of multiple 
determination Rfjydjy adjusts R 2 by dividing each sum of squares by its associated df:
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w  =

=  d -2°)
1 _  MSE 
1 SSTO/{n—\)

This coefficient takes the quantity of parameters in the regression model into 
account through the degrees of freedom (df). From equation (1.20) the RfAdj) increases 
if and only if M S E  diminishes since SSTO/(n — 1) is fixed for the given Y  data. 
Subsequently, RfAd̂  is equivalent to utilizing M SE ,  so RfAdj) might be utilized to 
identify the subsets that maximize this criterion. The largest RfAdj) f°r a given number 
of parameters in the model, max (R\Ad̂ ), can indeed decreases as p increases. This 
happen when the increase in max (R2) turns out to be too small to the point that it is 
not adequate to offset the loss of an extra df. Users of the R f ^  criterion seek to find a 
few subsets for which RfAdj) is at the maximum or so near to the maximum that adding 
more variables is not beneficial.

1.7.3.2 Estimating Distributional Discrepancies - AICP and BICP Criterion

R(Ajj,p) is a m°del selection criteria that penalizes models having large quantity 
of predictors. While, Akaike’s information criterion (AICV) and Bayesian information 
criterion (BICP) are well known methods and these methods give penalties for adding 
predictors [7].

For a regression model with Gaussian errors, the AICP is defined as [8]

AICP = n\n  (SSE P) -  n In (n) +  2p (1.21)

and the BICP is defined as [8]

BICp =  n ln  (SSEP) — n ln  (n) +  [In (n)]p (1-22)

where p is the number of parameters, n  is the size of sample and SSE P is S S E  for the 
model being considered.
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Notice that for both of these measures, the first term is n  In SSE P which will 
decrease when p increases. The second term is fixed, and the third term increases 
proportionately with p. Model with small SSE P function well by these criteria, as 
long as the third term of AICP and BICP are kept small. If n > 8, the penalty for BICP 
is bigger than that for AICP; henceforth the BICP criterion prefer more parsimonious 
models. In general, for these two measurements, model with smaller AIC and BIC are 
preferred.

1.7.3.3 Criteria based on prediction error - Mallows’ Cp

The Mallows’ Cp is defined as [7]:

(SSEp/M S E m) -  (n -  2p)

where SSE P is S S E  for the model being considered, M SE m is the mean square error 
for the full model, n is the sample size, and p is the number of parameters in the model, 
including the constant.

In general, models with small Mallows’ Cp and near to p will do well. The 
reason is the model is reasonably precise in evaluating the true regression coefficients 
and predicting future observation, the smaller the value of Cp, the better the model 
predict future observations. However, the model’s predictive ability and bias will be 
poor, when value of Cp is more than p.


