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ABSTRACT 

For a successful realization of the solar photovoltaic (PV) system, the 

availability of an accurate, fast and reliable computer simulation tool is 

indispensable. The most crucial component that directly affects the accuracy of the 

simulator is the model of the PV cell (or module) itself. As an improvement over its 

single diode counterpart, the two-diode model exhibits superior accuracy for wide 

variations of irradiance and temperature. However, due to the limited number of 

information that are available on the manufacturer datasheet, the determination of all 

seven parameters of the two-diode model is very challenging. This thesis proposes a 

new hybrid method to improve the computation of the two-diode model. Unlike other 

existing hybrid methods, the proposed method retains the computation speed of the 

analytical approach and utilizes only standard datasheet information. Furthermore, it 

does not employ any simplification in the computation of the model parameters. Four 

parameters are determined analytically, while the remaining three are optimized by 

using differential evolution. The speed is improved significantly because the 

parameters are optimized only once, at standard test condition, while the values at 

other conditions are computed using the analytical equations. Additionally, a 

procedure to guide the initial conditions of the Newton-Raphson iteration is 

introduced. For validation, the algorithm is implemented in MATLAB software and 

its performance is compared with other established computational methods for 

mono-crystalline, poly-crystalline and thin film modules. When evaluated against the 

experimental data extracted from the datasheets, the mean absolute error is improved 

by 10 times, while the speed is increased by approximately three times. The standard 

deviation of the decision parameters over 100 independent runs is less than 0.1, 

which suggests that the optimization process is very consistent. Lastly, to prove the 

applicability of the proposed method in simulation applications, the algorithm is 

implemented into an in-house PV array simulator and its performance is validated 

using field data obtained from a PV monitoring station. 



vi 
 

ABSTRAK 

Untuk merealisasikan kejayaan sistem solar fotovolta (PV), ketersediaan alat 
simulasi komputer yang tepat, pantas dan boleh dipercayai adalah sangat diperlukan. 
Komponen terpenting yang mempengaruhi ketepatan simulator secara langsung ialah 
model sel PV (atau modul) itu sendiri. Sebagai penambahbaikan ke atas pasangan 
diod tunggalnya, model dua-diod mempamerkan ketepatan yang unggul untuk 
pelbagai variasi sinaran dan suhu. Walau bagaimanapun, disebabkan bilangan 
maklumat yang terhad pada lembaran data pengeluar, penentuan kesemua tujuh 
parameter model dua-diod adalah sangat mencabar. Kajian ini mencadangkan kaedah 
hibrid baru untuk memperbaiki pengiraan model dua-diod. Tidak seperti kaedah 
hibrid sedia ada yang lain, kaedah yang dicadangkan ini mengekalkan kelajuan 
pengiraan pendekatan analitik dan hanya menggunakan maklumat pada lembaran 
data pengeluar yang piawai. Selain itu, ia tidak menggunakan sebarang 
penyederhanaan dalam pengiraan parameter model. Empat parameter ditentukan 
secara analitik, manakala baki tiga dioptimumkan dengan menggunakan evolusi 
kebezaan. Kelajuan meningkat dengan ketara kerana parameter dioptimumkan sekali 
sahaja, pada keadaan ujian piawai, manakala nilai pada keadaan lain dikira 
menggunakan persamaan analitik. Di samping itu, satu prosedur untuk membimbing 
keadaan awal lelaran Newton-Raphson diperkenalkan. Untuk pengesahan, algoritma 
ini dilaksanakan dalam perisian MATLAB dan prestasinya dibandingkan dengan 
kaedah pengiraan lain yang ditetapkan untuk modul filem mono-kristal, poli-kristal 
dan filem nipis. Apabila dinilai terhadap data eksperimen yang diekstrak daripada 
lembaran data, min ralat mutlak bertambah baik dengan 10 kali ganda, manakala 
kelajuan meningkat sebanyak kira-kira tiga kali ganda. Sisihan piawai parameter 
keputusan lebih 100 larian bebas adalah kurang daripada 0.1, dimana menunjukkan 
bahawa proses pengoptimuman sangat konsisten. Akhir sekali, untuk membuktikan 
kebolehgunaan kaedah yang dicadangkan dalam aplikasi simulasi, algoritma ini 
dilaksanakan ke dalam simulator PV talasusunan dalaman dan prestasinya disahkan 
dengan menggunakan data lapangan yang diperolehi daripada sebuah stesen 
permantauan PV. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

The foreseeable depletion of fossil fuels reserves, the increased concerns on 

the effects of global warming, and the ever-rising global energy demand have 

positioned mankind in the search of renewable energy sources (RES) that are clean, 

sustainable and affordable [1, 2]. Among the RES, solar photovoltaic (PV) system 

has emerged as one of the most promising in the current global energy scenario [3]. 

It is estimated that, if utilized to the full extent, one-hour of energy received from the 

sun is sufficient to power the world for a year [4]. Moreover, from the technological 

viewpoint, solar PV systems are very convenient to install, almost maintenance free, 

easily scalable, and do not produce greenhouse gases or noise during normal 

operation. These prospects have encouraged governments around the world to 

promote this technology by offering attractive initiatives such as generous fed-in 

tariff schemes, tax-breaks, and capital subsidies [5-7]. Notwithstanding these efforts, 

PV power is still far from grid-parity, i.e. the point at which the price of PV power 

per unit is at par with electricity provided by the power utility companies. This is 

primarily due to the high capital cost and low efficiencies (15 − 20%) of the PV 

modules [3, 8]. Moreover, in contrast to the conventional energy sources, the energy 

output of a PV system is highly dependent on the availability  of solar irradiance [9].  
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For these reasons, it is imperative that all available energy that is harvested 

by the PV modules to be optimally processed. In that regard, the availability of an 

accurate, fast and reliable computer simulation tool is indispensable to evaluate the 

performance of the system prior to installation. The simulator can be used for many 

purposes, for example, 1) to test the behaviour of the maximum power point tracker 

(MPPT) [10, 11], 2) to estimate the system efficiency [12, 13], and 3) to study the 

interaction between the power converter and the PV arrays [14, 15]. The first two 

activities are crucial during the design and development stage of the power converter 

hardware, while the third is useful for energy yield prediction. The latter is directly 

related to the investment decision and customer’s financing strategies. In addition, 

the information obtained from simulation can be very valuable to analyse the 

performance at the system level, i.e. to investigate the characteristics of the PV 

system under certain (or unusual) meteorological conditions, e.g. partial shading or 

rapid change of irradiance and temperature.  

The most crucial component that directly affects the accuracy of the simulator 

is the model of the cell (or module) itself. It is always desirable to have a model that 

closely emulates the behaviour of physical solar cells, i.e. fits the measured current-

voltage (I-V) data under all operating conditions. In PV literature, the most widely 

accepted approach is to utilize the electrical equivalent circuit models. Here, both 

linear and non-linear electrical elements are used to describe the I-V relationships for 

any given irradiance (G) and temperature (T). The shape and amplitude of the I-V 

curve, in turn, are governed by the values of the model parameters, which have to be 

determined. The complexity of the solution ranges from the most rudimentary ideal 

single diode model, the single diode RS-model, the single diode RP-model, and the 

two-diode model [16]. Due to their intrinsic simplicity (i.e. fewer parameters), the 

single-diode models are more popular. However, in recent years, the two-diode 

version has gained attention owing to its superior accuracy [17, 18]. The 

improvement is primarily due to the inclusion of an extra diode, which represents the 

charge recombination process that is neglected in the single-diode models [19]. 

Notwithstanding the advantage, the two-diode model is more complex and as a 

consequence the computational burden is increased significantly. The parameters to 

be determined is seven, compared to only five for the single-diode RP-model. 
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Furthermore, due to the presence of two exponential terms and the transcendental 

nature of the equations, obtaining the solution for these unknown seven parameters is 

very challenging. These, perhaps explain the limited reported works on the two-diode 

model. 

The values of model parameters are normally determined in two ways: the 

numerical extraction or the analytical approach. In the numerical extraction, a point-

by-point fitting of the computed I-V values to the experimental dataset is 

performed—mainly by certain types of mathematical or optimization algorithms. The 

evolutionary algorithm (EA) techniques are widely used due to their global search 

capability and effectiveness in handling non-linear function without requiring 

gradient information. By defining an objective function, the model parameters are 

extracted by minimizing the error between the computed values and experimental 

dataset [20-23]. Despite its accuracy, the approach inherits several drawbacks which 

makes it impractical to be used as the computational engine for the PV simulator. 

First, to perform the comparison, it is mandatory that the entire experimental I-V 

dataset of the specific module is available. However, this information is not always 

provided in the manufacturer datasheets [24]. As a result, the application of the 

numerical extraction approach is highly situational. Second, due to the point-by-point 

comparison, the computation process is very time-consuming. This is especially true 

when a large number of unknown parameters are involved in the optimization [20]. 

On the other hand, the analytical approach computes the model parameters by 

solving a system of equations, derived from several key points of the I-V curve. 

These points, namely the short circuit point (ISC, 0), maximum power point (IMPP, 

VMPP), open circuit point (0, VOC), temperature coefficients for short circuit current 

(Ki) and open circuit voltage (Kv), are commonly available in the standard datasheet. 

Therefore, the analytical method is more practical. Furthermore, since there is no 

requirement to analyze the entire I-V curve, the number of iteration is much reduced. 

This leads to significantly rapid computations, which is an important feature for any 

simulator. Nonetheless, the analytical methods always rely on various mathematical 

assumptions and simplifications to solve for the two-diode model [18, 25, 26]. This 
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is inevitable, since the number of equations that can be formulated from the model 

based on the standard datasheet information are insufficient to determine all the 

seven parameters. Although these approximations simplify the computation, they 

tend to result in compromised and at times, unrealistic solutions. 

Recently, a new hybrid approach has been proposed to overcome the 

aforementioned shortcomings. It incorporates both analytical and numerical 

extraction. The analytical approach is employed to define a system of equations 

which relates the parameters to several key points on the I−V curve and their 

variations with respect to G and T. Meanwhile, EA is used to optimize the model 

parameters based on a suitable objective function. By doing so, the model parameters 

can be solved simultaneously, without requiring the availability of the I−V 

information. Moreover, since fewer number of assumptions are required, the hybrid 

methods are, in general, more accurate than the conventional analytical approach 

[27-30]. With these advantages, it has been applied quite extensively for the 

computation of the single-diode model. However, up till now there has been very 

limited works on its two-diode model counterpart. There is an absence of a reliable 

and sufficiently fast hybrid computational method for the latter.  

1.2 Problem Statement  

In comparison to its single diode counterpart, the two-diode model is a more 

realistic representation of the PV cell. The model is known for its superior accuracy 

in a wide range of operating conditions. However, due to the presence of the seven 

unknown model parameters and two exponential terms in the model equation, 

solving for the two-diode model is particularly challenging. The numerical approach, 

which is based on point-by-point comparison of the I-V curves, is time-consuming 

and requires graphical information that are normally not provided in the datasheet. 

As a result, it is not practical to be used as the computational engine of a PV 

simulator. On the other hand, due to the complexity of the two-diode model and the 
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limited number of information available on the datasheet, using the analytical 

approach often involves numerous assumptions and simplifications which lead to 

compromised, and sometimes, unrealistic solutions. Therefore, it is crucial to obtain 

a solution for the two-diode model without the aforementioned shortcomings. 

1.3 Objective of Research 

In view of the potential of the hybrid modelling approach, the main objective 

of this research work can be formulated as follows: 

(i) To propose, design and implement a fast and reliable hybrid 

computational method for the two-diode model. The expected 

outcome is a practical algorithm that is able to accurately estimate 

the PV module output under any environmental conditions. 

Furthermore, the proposed method should require only information 

that are readily available from the standard module datasheet. 

(ii) To implement the proposed method as a new PV model option in the 

Photovoltaic Array Simulator (PVAS). The idea is to prove the 

applicability of the proposed modelling method as the computational 

engine of a workable PV simulator. To be more realistic, the results 

from the simulator are validated by the data from an actual PV 

system in the field.  
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1.4 Scope of Research and Limitations 

To achieve the objective of the research, the scope of work for this research is 

defined as follows:  

(i) The method is developed to model monocrystalline, polycrystalline, 

and thin-film PV modules. Other types of modules such as organic 

and multi-junction are not considered. 

(ii) To compute the PV module/array output, all the PV cells are 

assumed to be identical and work under the same operating 

conditions. 

(iii) To prove the applicability of the proposed method in practical 

simulation applications, it is implemented as a new PV model option 

in an existing in-house PV simulator, known as the Photovoltaic 

Array Simulator (PVAS). Due to software limitations, only series-

parallel array configuration is considered. The maximum power that 

can be emulated by the PVAS is 7 kW, with an open circuit voltage 

range of 0−800 V and short circuit current range of 0−24 A.  

1.5 Research Methodology 

The overall flow of the research work that is described in this thesis is as 

depicted in Figure 1.1. In the initial phase, a comprehensive survey and review of the 

literature is carried out. The aim is to identify the research gap through an in-depth 

understanding of the latest development in PV modelling and simulation. Based on 
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the findings, the objectives, scope, and limitations of the research are carefully 

defined. Next, in accordance to the research objectives, a hybrid computational 

method for the two-diode model is developed. The performance of the proposed 

method is evaluated against other well-established computational methods using six 

PV modules of different technologies (i.e. mono-crystalline, poly-crystalline, and 

thin film) for a wide range of operating conditions. As input to the computational 

methods, the specifications of each PV modules are obtained from the manufacturer 

datasheet. At this stage, any shortcomings of the proposed method are examined and 

improved. The process is reiterated until satisfactory modelling performance is 

achieved. Overall, two distinct computational methods are introduced. The first 

method, termed “proposed method A” in the thesis, describes an initial attempt to 

solve for the two-diode model based on the conventional hybrid approach. In the 

second method, “proposed method B”, several critical improvements are made to 

eliminate the drawbacks found in the first. Subsequently, to prove the applicability of 

proposed method B in PV simulation applications, it is implemented as a new PV 

model option in the Photovoltaic Array Simulator (PVAS). The PVAS is configured 

as a part of the hardware-in-the-loop (HIL) setup which emulates a grid-tied PV 

system. For validation, the measurement data from the HIL setup is evaluated using a 

set of field data that is collected from an actual grid-tied PV system installed at 

Universiti Teknikal Malaysia Melaka (UTeM).  
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Start
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literature to identify research gap

Develop an improved hybrid 
computational method
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against existing algorithms

Collect field data from PV 
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Figure 1.1 Flowchart of research methodology 



9 
 

1.6 Organization of Thesis 

This thesis is organized into 5 chapters. The contents of the subsequent 

chapters are outlined as follows: 

Chapter 2 provides a relevant background knowledge and extensive review of 

the modelling methods that are used in PV simulation. The methods are broadly 

categorized into various groups, i.e. the analytical approach, the numerical extraction 

approach, and the hybrid approach. The merits and drawbacks of each approach are 

discussed and highlighted.  

Chapter 3 describes the main contribution of the thesis. It proposes two 

different hybrid computational methods for the two-diode model. The working 

principles of the algorithms and the derivation of equations are described in detail. 

The performances of the proposed methods are compared with other well-established 

computational methods in terms of accuracy, speed, and consistency. The results are 

validated by using six modules of different technologies. Based on these 

assessments, the superior method is selected, and its improvements are justified. 

Chapter 4 presents the incorporation of the proposed method in a hardware-

in-the-loop (HIL) setup. The idea is to show the applicability of the proposed 

computational method in a PV simulator. Furthermore, the results from the HIL 

setup are verified using actual field data. The working principle of PVAS system and 

the added PV model are described in detail. For validation, the output of the HIL 

setup is compared with field data measurement from an actual PV string. 

Chapter 5 concludes the works undertaken and highlights the contributions of 

this research. Several suggestions on possible directions of future work are also 

given.  
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