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ABSTRACT

Rivest-Shamir-Adelman (RSA) algorithm is one of the state-of-art public-
key cryptography that is efficient in terms of implementation because it uses the
same general equation for encryption and decryption, that is, modular exponentiation
equation. The security reliability of RSA algorithm is based on the difficulty of
factoring a large number. The larger the RSA key size, the higher the security level
that can be achieved. However, at the same time, the complexity of the computation
increases, which results in more computation cycles. Software implementation of RSA
with large key size is too slow and less effective for large amount of data encryption
or decryption. Hence, the purpose of this project is to implement a hardware-based
RSA coprocessor to handle RSA encryption and decryption effectively. This project
implements a RSA coprocessor using radix-2 Montgomery modular multiplication that
described at bit-level. This implementation uses carry-saved adders to achieve parallel
processing in hardware. The hardware implementation of the RSA coprocessor is done
using Verilog synthesizable Register-transfer Level (RTL) code to allow scalability.
Simulation results are obtained to validate the functionality of the design. The design
is synthesized using Altera Quartus software tool to evaluate the performance of the
implementation. The designs are synthesized on device Stratix V 5SEEBF45I4 for
key-size of 128-bit, 1024-bit and 8192-bit. The data throughput of the 8192-bit design
can reach up to 3.387 kbps with LE utilization of 30% on the device used. Although the
performance of the design is not the highest among the related works, but this design
provides a proven working prototype for 8192-bit RSA coprocessor using Bit-level
Montgomery Modular Multiplication for hardware parallel processing.
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ABSTRAK

Rivest-Shamir-Adelman (RSA) algoritma adalah salah satu kripto algoritma
yang menggunakan kekunci umum. RSA cekap dari segi pelaksanaan kerana ia
menggunakan persamaan umum yang sama untuk penyulitan dan penyahsulitan, iaitu,
persamaan pengeksponenan modular. Keselamatan algoritma RSA adalah berdasarkan
kesukaran memperfaktorkan nombor yang besar. Semakin besar saiz kekunci RSA,
semakin tinggi tahap keselamatannya. Walau bagaimanapun, pada masa yang
sama, kerumitan pengiraan juga meningkat dan menyebabkan lebih banyak kitaran
pengiraan. Pelaksanaan RSA dengan saiz kunci yang besar menggunakan perisian
adalah perlahan dan kurang berkesan untuk data yang besar. Oleh itu, tujuan projek ini
adalah untuk menghasilkan kopemproses RSA berasaskan perkakasan supaya dapat
mengendalikan penyulitan dan penyahsulitan RSA dengan lebih cekap. Projek ini
menghasilkan kopemproses RSA menggunakan pendaraban modular Montgomery
radiks-2 dalam tahap bit. Perlaksanaan projek ini menggunakan penambah simpan-
bawa untuk mencapai pemprosesan selari dalam perkakasan. Kod tahap daftar
data (RTL), Verilog digunakan untuk menghasilkan rekaan perkakasan ini supaya
hasil reka ini lebih berskala. Hasil penyelakuan diperolehi untuk mengesahkan
kefungsian rekaan projek ini. Rekaan projek ini disintesis dengan menggunakan Altera
Quratus untuk menilai prestasinya.Hasil reka ini disintesis dengan menggunakan
peranti Stratix V 5SEEBF45I4 untuk saiz kekunci 128 bit, 1024 bit dan 8192
bit. Daya pemprosesan hasil reka bit 8192 boleh mencapai 3.387kbps dengan
penggunaan logik 30% atas peranti tersebut. Walaupun prestasi hasil kerja ini
bukan yang tertinggi antara kerja-kerja sebelum yang berkaitan, namum hasil kerja
ini menyediakan prototaip kopemproses RSA 8192-bit berfungsi yang menggunakan
pendaraban modular Montgomery radiks-2 dalam tahap bit untuk pemprosesan selari
dalam perkakasan.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

Since the invention of computer and internet connections, the way of people
store and communicate information has changed drastically from physical forms to
digital forms. From one of the latest report of EMC-sponsored IDC Digital Universe
study (Gantz and Reinsel, 2012), an estimation of 2.8 zettabytes of data is created
and replicated in year 2012. The study also projected that by 2020, the amount
of data in the digital world will reach 40 zettabytes. With such a huge amount of
information accessible over the wire, the issue of privacy and data security become
a major concern. It is estimated that about one third of the data in the digital world
requires a certain extend of security for the purpose of privacy, regulations and fraud
prevention. The examples of data that required high security are banking information,
corporate information, personal account information, and payment transaction.

In recent years, facts like the wide acceptance of online shopping activities, the
significant growth in smart mobile devices, and the fast-paced software development
have made security a basic requirement in global computing ecosystem. On top
of the data security concerns in client and server computing systems, the growing
wave of Internet of Things (IoT) recently has again surfaced the demands on internet
security. The IoT extends existing internet infrastructure to embedded computing
devices that realized machine-to-machine communications, environmental monitoring
and control, smart applications, and telehealth applications. Without security stacks
in the application, hackers can easily alter the data and take over control of the
application.

To protect information from unauthorized parties, data security system is
implemented. The backbone of a data security system is data cryptography. Up to
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date, there are numerous of data cryptography algorithms available to serve the similar
purpose, that is, to protect information by encrypting it. Rivest-Shamir-Adleman
(RSA) algorithm is one of the cryptography algorithm that is widely used. The RSA
algorithm has proven to be highly secured although the algorithm is relatively more
complex than symmetric-key cryptography algorithm. The security level of RSA
algorithm can be increased by using a larger key size. However, as the key size
increases, the computation complexity of the data cryptography increases as well. This
will cost the speed of the data cryptography process.

For some of the applications where the speed of data cryptography and the level
of security are equally important, hardware-assisted cryptography system is a good
solution. The complex computation part of the RSA cryptography can be leveraged
to a dedicated hardware RSA coprocessor. With this approach, the speed of data
cryptography can be kept at an acceptable level even for large key-size. However,
implementation of RSA algorithm in hardware is not straight forward. The algorithm
need to be modified in order to be implemented in hardware. There are several methods
that can be used to implement RSA algorithm, with each of it has different advantages
in terms of performance and resources.

1.2 Problem Statement

RSA public key cryptography algorithm has been widely implemented for data
security solution due to its high level of reliability and security. The uniqueness of
RSA algorithm is that both the encryption and decryption processes used the same
mathematical operation. However, the biggest drawback of the algorithm is the long
computation time due to its underlying complex wide-operand modular arithmetic.
The larger is the RSA keys’ size, the higher level of security it can achieve. However,
at the same time, the complexity of the algorithm increases, which results in more
computation cycles. As the computation system power growing speedily from year
to year, a relatively large key size is required to ensure the RSA cryptosystem is
computationally impossible to crack.

In some systems where the level of security is intolerable, the cryptography
processing time required will become very significant. The situation becomes worse
when the amount of data to be processed is huge. One of the typical example is the
bank server system. Pure software implementation of RSA cryptography system, in
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this case, is too slow and insufficient to keep up with the computational demands of
RSA cryptography processing. Hence, hardware implementation of RSA cryptosystem
provides a practicable solution to the problem of the cryptography processing speed.

RSA algorithm using Binary Exponentiation consists of modular multiplication
that required high computation cycles. Accelerating the modular multiplication
operation will significantly help accelerating the whole RSA cryptography process.
Thus, this project will focus on the hardware implementation to accelerate the Modular
Multiplication in RSA coprocessor. Bit-level Montgomery Modular Multiplication
algorithm that uses carry-saved adder for hardware parallel processing is implemented
as the core of the RSA coprocessor to optimize the performance.

1.3 Objective of the Study

To implement and to improve the design of hardware-based 8192-bit RSA
core which is able to handle RSA encryption and decryption efficiently. This is by
implementing Bit-Level Montgomery Modular Multiplication using carry-saved adder
to achieve hardware parallel processing.

1.4 Scope of the Study

Based on the outlined objectives above, available hardware and software
resources, and the time frame allocated, this research project is narrowed down to
the following scope of work.

1. The designed RSA core is able to handle 8192-bit RSA encryption and
decryption correctly.

2. Synthesizable RTL code, Verilog HDL is used for the hardware implementation
of the designed RSA core. The design has to be parameterized so that the
coprocessor is reconfigurable for other key sizes, based on the required security
level and the hardware resources constraints by targeted applications.

3. The logic functionality of the design need to be verified accurate in simulation
environment. The simulation tool used is Altera ModelSim.
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4. The RSA key pair generation of the RSA cryptosystem is not part of the scope
of this project.

1.5 Report Organization

This project report is written in six chapters. The first chapter has introduced
the background the problem as the motivation of this project. The problem statement,
the objective and the scope of this project are clearly stated. The remaining chapters
are organized as the followings:

1. Chapter 2 describes the theory part of public-key cryptography and RSA
algorithm. In the same chapter, previous related works are discussed.

2. Chapter 3 explains the related algorithms used for this RSA hardware
implementation.

3. Chapter 4 described in detailed of the translating the chosen algorithm into
hardware description. Functional block diagrams and flow charts are used to
assist the explanation of the design.

4. Chapter 5 shows the results obtained from the RSA hardware implementation
simulation. This chapter also evaluate the area and performance of this project
compare to the other related works.

5. Chapter 6 provides conclusion towards this project and gives recommendations
for future works.
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