
8192-BIT RIVEST-SHAMIR-ADLEMAN DATA ENCRYPTION HARDWARE
ACCELERATOR

CHEW YEN WEN

A project report submitted in partial fulfilment of the
requirements for the award of the degree of

Master of Engineering (Electrical – Computer & Microelectronic System)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

DECEMBER 2015



iii

This is dedicated to my beloved family.



iv

ACKNOWLEDGEMENT

I would like to express my gratitude to my current supervisor, Assoc. Prof.
Dr. Muhammad Nadzir Bin Marsono for guiding me towards the completion of this
project. He generously spending time to supervise me and to give timely advices. I
would also like to thank my previous supervisor, Dr. Rabia Bakhteri for her guidance
and inspiration of the project topic. I express my deep sense of gratitude to my
manager, Lai Soon Chong for being supportive throughout my part-time Master study.
He was being helpful by providing technical advices when I have problems. Sincere
thanks to my company, Intel for sponsoring my part-time Master study at Universiti
Teknologi Malaysia (UTM). I am grateful towards my classmates, colleagues and
friends who have directly or indirectly helped me along the duration of my Master
study. Lastly, this project would not have been possible without the moral support and
encouragement from my family. I would like to thank my family for being there for
me.



v

ABSTRACT

Rivest-Shamir-Adelman (RSA) algorithm is one of the state-of-art public-
key cryptography that is efficient in terms of implementation because it uses the
same general equation for encryption and decryption, that is, modular exponentiation
equation. The security reliability of RSA algorithm is based on the difficulty of
factoring a large number. The larger the RSA key size, the higher the security level
that can be achieved. However, at the same time, the complexity of the computation
increases, which results in more computation cycles. Software implementation of RSA
with large key size is too slow and less effective for large amount of data encryption
or decryption. Hence, the purpose of this project is to implement a hardware-based
RSA coprocessor to handle RSA encryption and decryption effectively. This project
implements a RSA coprocessor using radix-2 Montgomery modular multiplication that
described at bit-level. This implementation uses carry-saved adders to achieve parallel
processing in hardware. The hardware implementation of the RSA coprocessor is done
using Verilog synthesizable Register-transfer Level (RTL) code to allow scalability.
Simulation results are obtained to validate the functionality of the design. The design
is synthesized using Altera Quartus software tool to evaluate the performance of the
implementation. The designs are synthesized on device Stratix V 5SEEBF45I4 for
key-size of 128-bit, 1024-bit and 8192-bit. The data throughput of the 8192-bit design
can reach up to 3.387 kbps with LE utilization of 30% on the device used. Although the
performance of the design is not the highest among the related works, but this design
provides a proven working prototype for 8192-bit RSA coprocessor using Bit-level
Montgomery Modular Multiplication for hardware parallel processing.



vi

ABSTRAK

Rivest-Shamir-Adelman (RSA) algoritma adalah salah satu kripto algoritma
yang menggunakan kekunci umum. RSA cekap dari segi pelaksanaan kerana ia
menggunakan persamaan umum yang sama untuk penyulitan dan penyahsulitan, iaitu,
persamaan pengeksponenan modular. Keselamatan algoritma RSA adalah berdasarkan
kesukaran memperfaktorkan nombor yang besar. Semakin besar saiz kekunci RSA,
semakin tinggi tahap keselamatannya. Walau bagaimanapun, pada masa yang
sama, kerumitan pengiraan juga meningkat dan menyebabkan lebih banyak kitaran
pengiraan. Pelaksanaan RSA dengan saiz kunci yang besar menggunakan perisian
adalah perlahan dan kurang berkesan untuk data yang besar. Oleh itu, tujuan projek ini
adalah untuk menghasilkan kopemproses RSA berasaskan perkakasan supaya dapat
mengendalikan penyulitan dan penyahsulitan RSA dengan lebih cekap. Projek ini
menghasilkan kopemproses RSA menggunakan pendaraban modular Montgomery
radiks-2 dalam tahap bit. Perlaksanaan projek ini menggunakan penambah simpan-
bawa untuk mencapai pemprosesan selari dalam perkakasan. Kod tahap daftar
data (RTL), Verilog digunakan untuk menghasilkan rekaan perkakasan ini supaya
hasil reka ini lebih berskala. Hasil penyelakuan diperolehi untuk mengesahkan
kefungsian rekaan projek ini. Rekaan projek ini disintesis dengan menggunakan Altera
Quratus untuk menilai prestasinya.Hasil reka ini disintesis dengan menggunakan
peranti Stratix V 5SEEBF45I4 untuk saiz kekunci 128 bit, 1024 bit dan 8192
bit. Daya pemprosesan hasil reka bit 8192 boleh mencapai 3.387kbps dengan
penggunaan logik 30% atas peranti tersebut. Walaupun prestasi hasil kerja ini
bukan yang tertinggi antara kerja-kerja sebelum yang berkaitan, namum hasil kerja
ini menyediakan prototaip kopemproses RSA 8192-bit berfungsi yang menggunakan
pendaraban modular Montgomery radiks-2 dalam tahap bit untuk pemprosesan selari
dalam perkakasan.



vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xi
LIST OF ABBREVIATIONS xiii
LIST OF APPENDICES xiv

1 INTRODUCTION 1
1.1 Problem Background 1
1.2 Problem Statement 2
1.3 Objective of the Study 3
1.4 Scope of the Study 3
1.5 Report Organization 4

2 LITERATURE REVIEW 5
2.1 Public-key Cryptography 5
2.2 Public-key Algorithm 7

2.2.1 ElGamal Algorithm 7
2.2.2 ECC Algorithm 8
2.2.3 RSA Algorithm 8
2.2.4 RSA Key Generation 10

2.3 RSA Algorithm in Hardware Implementation 11
2.3.1 Area and Performance Trade-off 11
2.3.2 Systolic Array Architecture 12



viii

2.3.3 High Radices Montgomery Exponentia-
tion 13

2.4 Chapter Summary 15

3 THEORY AND METHODOLOGY 17
3.1 Project Workflow 17
3.2 Modular Exponentiation 19
3.3 R-L Binary Modular Exponentiation 20
3.4 Montgomery Modular Multiplication 22
3.5 Bit-level Montgomery Modular Multiplication 23
3.6 Montgomery Modular Exponentiation Algorithm 24
3.7 Chapter Summary 27

4 DESIGN AND IMPLEMENTATION 28
4.1 Pre-implementation: Verifying the Algorithm 29
4.2 Implementation of Bit-level Montgomery Modular

Multiplication 29
4.2.1 Processing Element (PE) 29
4.2.2 Formation of Bit-Level Montgomery

Modular Multiplication 31
4.2.3 Pipelined Adder 32
4.2.4 Functional Block Diagram (FBD) 34
4.2.5 Algorithm State Machine (ASM) Chart 35

4.3 Implementation of Montgomery Modular Exponen-
tiation 37
4.3.1 Functional Block Diagram (FBD) 37
4.3.2 Algorithm State Machine (ASM) Chart 38

4.4 Chapter Summary 40

5 RESULT AND DISCUSSION 41
5.1 Hardware Test Based on Simulation 41

5.1.1 Sample Parameters from OpenSSL 41
5.1.2 Simulation Result of Montgomery Modu-

lar Exponentiation 44
5.2 Area and Performance Evaluation 55
5.3 Chapter Summary 57

6 CONCLUSION AND FUTURE WORK 59



ix

6.1 Project Achievement 59
6.2 Recommendations for Future Works 60

REFERENCES 61

Appendices A – E 63 – 83



x

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Summary of El-Gamal algorithm, ECC algorithm and RSA
algorithm 7

2.2 Variable representations in RSA 9
2.3 Summary of related works 16
3.1 Summary of modular exponentiation methods 20
5.1 Input parameters 44
5.2 Output parameters 44
5.3 RSA coprocessor synthesis results for different key sizes 56
5.4 Area and performance comparison for different 1024-bit RSA

hardware implementations 57



xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Confidentiality and authentication using public-key cryptog-
raphy 6

2.2 Processing element using one multiplier and one adder
(Paniandi, 2006) 12

2.3 Processing element using two multipliers and two adders
(Rentería-Mejía et al., 2012) 12

2.4 Systolic array with byte-level PE’s (Paniandi, 2006) 14
2.5 Systolic array of with control signal (Rentería-Mejía et al.,

2012) 15
3.1 Project workflow 18
4.1 Relationship between the algorithms 28
4.2 Processing element, PE0 30
4.3 Processing element, PEx 30
4.4 Processing element block 31
4.5 Data flow in the processing element block 31
4.6 Dependency graph of Bit-level Montgomery Multiplication

hardware implementation 32
4.7 Pipelined adder implementation 33
4.8 FBD of Bit-level Montgomery Modular Multiplication (data

path) 34
4.9 FBD of Bit-level Montgomery Modular Multiplication (state

machine) 35
4.10 Top-level view of Bit-level Montgomery Multiplication 35
4.11 ASM chart of Bit-level Montgomery Multiplication 37
4.12 FBD of Montgomery Modular Exponentiation 38
4.13 ASM Chart of Montgomery Modular Exponentiation module 40
5.1 Example of decoded private-key file generated by OpenSSL 43
5.2 Example of original message and the encrypted message. a)

Original message b) Ciphertext 43



xii

5.3 Simulation waveform of 128-bit RSA encryption. a)
Beginning part b) Last part 46

5.4 Simulation log of 128-bit RSA encryption 47
5.5 Simulation waveform of 128-bit RSA decryption. a)

Beginning part b) Last part 48
5.6 Simulation log of 128-bit RSA decryption 49
5.7 Simulation waveform of 1024-bit RSA encryption. a)

Beginning part b) Last part 50
5.8 Simulation log of 1024-bit RSA encryption 51
5.9 Simulation waveform of 1024-bit RSA decryption. a)

Beginning part b) Last part 52
5.10 Simulation log of 1024-bit RSA decryption 53
5.11 Simulation waveform of 8192-bit RSA encryption. a)

Beginning part b) Last part 54
5.12 Simulation log of 8192-bit RSA encryption 55



xiii

LIST OF ABBREVIATIONS

ALM - Adaptive Logic Modules

ASM - Algorithm State Machine

ECC - Elliptic Curve Cryptography

FBD - Functional Block Diagram

GCD - Greatest Common Divisor

L-R Binary - Left-to-Right Binary

PE - Processing Element

R-L Binary - Right-to-Left Binary

RSA - Rivest-Shamir-Adelman

RTL - Register-transfer Level

Verilog HDL - Verilog Hardware Description Language



xiv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Project Hierarchy of RSA-8192 63
B Numerical Example for Algorithm 5 64
C Screenshot of Synthesis Results of RSA-8192 Coprocessor 71
D C-programming Code for Verifying the Algorithm 75
E Sample Test Parameters for Simulation 83



CHAPTER 1

INTRODUCTION

1.1 Problem Background

Since the invention of computer and internet connections, the way of people
store and communicate information has changed drastically from physical forms to
digital forms. From one of the latest report of EMC-sponsored IDC Digital Universe
study (Gantz and Reinsel, 2012), an estimation of 2.8 zettabytes of data is created
and replicated in year 2012. The study also projected that by 2020, the amount
of data in the digital world will reach 40 zettabytes. With such a huge amount of
information accessible over the wire, the issue of privacy and data security become
a major concern. It is estimated that about one third of the data in the digital world
requires a certain extend of security for the purpose of privacy, regulations and fraud
prevention. The examples of data that required high security are banking information,
corporate information, personal account information, and payment transaction.

In recent years, facts like the wide acceptance of online shopping activities, the
significant growth in smart mobile devices, and the fast-paced software development
have made security a basic requirement in global computing ecosystem. On top
of the data security concerns in client and server computing systems, the growing
wave of Internet of Things (IoT) recently has again surfaced the demands on internet
security. The IoT extends existing internet infrastructure to embedded computing
devices that realized machine-to-machine communications, environmental monitoring
and control, smart applications, and telehealth applications. Without security stacks
in the application, hackers can easily alter the data and take over control of the
application.

To protect information from unauthorized parties, data security system is
implemented. The backbone of a data security system is data cryptography. Up to



2

date, there are numerous of data cryptography algorithms available to serve the similar
purpose, that is, to protect information by encrypting it. Rivest-Shamir-Adleman
(RSA) algorithm is one of the cryptography algorithm that is widely used. The RSA
algorithm has proven to be highly secured although the algorithm is relatively more
complex than symmetric-key cryptography algorithm. The security level of RSA
algorithm can be increased by using a larger key size. However, as the key size
increases, the computation complexity of the data cryptography increases as well. This
will cost the speed of the data cryptography process.

For some of the applications where the speed of data cryptography and the level
of security are equally important, hardware-assisted cryptography system is a good
solution. The complex computation part of the RSA cryptography can be leveraged
to a dedicated hardware RSA coprocessor. With this approach, the speed of data
cryptography can be kept at an acceptable level even for large key-size. However,
implementation of RSA algorithm in hardware is not straight forward. The algorithm
need to be modified in order to be implemented in hardware. There are several methods
that can be used to implement RSA algorithm, with each of it has different advantages
in terms of performance and resources.

1.2 Problem Statement

RSA public key cryptography algorithm has been widely implemented for data
security solution due to its high level of reliability and security. The uniqueness of
RSA algorithm is that both the encryption and decryption processes used the same
mathematical operation. However, the biggest drawback of the algorithm is the long
computation time due to its underlying complex wide-operand modular arithmetic.
The larger is the RSA keys’ size, the higher level of security it can achieve. However,
at the same time, the complexity of the algorithm increases, which results in more
computation cycles. As the computation system power growing speedily from year
to year, a relatively large key size is required to ensure the RSA cryptosystem is
computationally impossible to crack.

In some systems where the level of security is intolerable, the cryptography
processing time required will become very significant. The situation becomes worse
when the amount of data to be processed is huge. One of the typical example is the
bank server system. Pure software implementation of RSA cryptography system, in



3

this case, is too slow and insufficient to keep up with the computational demands of
RSA cryptography processing. Hence, hardware implementation of RSA cryptosystem
provides a practicable solution to the problem of the cryptography processing speed.

RSA algorithm using Binary Exponentiation consists of modular multiplication
that required high computation cycles. Accelerating the modular multiplication
operation will significantly help accelerating the whole RSA cryptography process.
Thus, this project will focus on the hardware implementation to accelerate the Modular
Multiplication in RSA coprocessor. Bit-level Montgomery Modular Multiplication
algorithm that uses carry-saved adder for hardware parallel processing is implemented
as the core of the RSA coprocessor to optimize the performance.

1.3 Objective of the Study

To implement and to improve the design of hardware-based 8192-bit RSA
core which is able to handle RSA encryption and decryption efficiently. This is by
implementing Bit-Level Montgomery Modular Multiplication using carry-saved adder
to achieve hardware parallel processing.

1.4 Scope of the Study

Based on the outlined objectives above, available hardware and software
resources, and the time frame allocated, this research project is narrowed down to
the following scope of work.

1. The designed RSA core is able to handle 8192-bit RSA encryption and
decryption correctly.

2. Synthesizable RTL code, Verilog HDL is used for the hardware implementation
of the designed RSA core. The design has to be parameterized so that the
coprocessor is reconfigurable for other key sizes, based on the required security
level and the hardware resources constraints by targeted applications.

3. The logic functionality of the design need to be verified accurate in simulation
environment. The simulation tool used is Altera ModelSim.



4

4. The RSA key pair generation of the RSA cryptosystem is not part of the scope
of this project.

1.5 Report Organization

This project report is written in six chapters. The first chapter has introduced
the background the problem as the motivation of this project. The problem statement,
the objective and the scope of this project are clearly stated. The remaining chapters
are organized as the followings:

1. Chapter 2 describes the theory part of public-key cryptography and RSA
algorithm. In the same chapter, previous related works are discussed.

2. Chapter 3 explains the related algorithms used for this RSA hardware
implementation.

3. Chapter 4 described in detailed of the translating the chosen algorithm into
hardware description. Functional block diagrams and flow charts are used to
assist the explanation of the design.

4. Chapter 5 shows the results obtained from the RSA hardware implementation
simulation. This chapter also evaluate the area and performance of this project
compare to the other related works.

5. Chapter 6 provides conclusion towards this project and gives recommendations
for future works.



REFERENCES

Altera. Logic Array Blocks and Adaptive Logic Modules in Stratix IV Devices. In
Stratix IV Device Handbook, chapter 2. Altera Corporation, 3.1 edition, 2011.

T. Blum and C. Paar. High-radix montgomery modular exponentiation on
reconfigurable hardware. Computers, IEEE Transactions on, 50(7):759–764, 2001.

A. Daly and W. Marnane. Efficient architectures for implementing montgomery
modular multiplication and rsa modular exponentiation on reconfigurable logic.
In Proceedings of the 2002 ACM/SIGDA tenth international symposium on Field-

programmable gate arrays, pages 40–49. ACM, 2002.

W. Diffie and M. E. Hellman. New directions in cryptography. Information Theory,

IEEE Transactions on, 22(6):644–654, 1976.

T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In Advances in cryptology, pages 10–18. Springer, 1985.

J. Gantz and D. Reinsel. The digital universe in 2020: Big data, bigger digital shadows,
and biggest growth in the far east. IDC iView: IDC Analyze the Future, 2007:1–16,
2012.

D. E. Knuth. The art of programming, vol. 2, semi-numerical algorithms, 1981.

N. Koblitz. Elliptic curve cryptosystems. Mathematics of computation, 48(177):203–
209, 1987.

Y. Kong and Y. Lai. Low latency modular multiplication for public-key cryptosystems
using a scalable array of parallel processing elements. In Circuits and Systems

(MWSCAS), 2013 IEEE 56th International Midwest Symposium on, pages 1039–
1042. IEEE, 2013.

V. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology-

CRYPTO’85 Proceedings, pages 417–426. Springer, 1986.

P. L. Montgomery. Modular multiplication without trial division. Mathematics of

computation, 44(170):519–521, 1985.

A. Paniandi. A hardware implementation of Rivest-Shamir-Adleman co-processor for

resource constrained embedded systems. PhD thesis, Universiti Teknologi Malaysia,



62

Faculty of Electrical Engineering, 2006.

C. P. Rentería-Mejía, V. Trujillo-Olaya, and J. Velasco-Medina. Design of an 8192-bit
rsa cryptoprocessor based on systolic architecture. In Programmable Logic (SPL),

2012 VIII Southern Conference on, pages 1–6. IEEE, 2012.

R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

A. C. Shantilal. A faster hardware implementation of rsa algorithm. Oregon State

University, Corvallis, Oregon, 97331, 1993.


	DECLARATION
	DEDICATION
	ACKNOWLEDGEMENT 
	ABSTRACT
	ABSTRAK
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF APPENDICES
	Introduction
	Problem Background
	Problem Statement
	Objective of the Study 
	Scope of the Study
	Report Organization

	Literature Review
	Public-key Cryptography
	Public-key Algorithm
	ElGamal Algorithm
	ECC Algorithm
	RSA Algorithm
	RSA Key Generation

	RSA Algorithm in Hardware Implementation
	Area and Performance Trade-off
	Systolic Array Architecture
	High Radices Montgomery Exponentiation

	Chapter Summary

	Theory and Methodology
	Project Workflow
	Modular Exponentiation
	R-L Binary Modular Exponentiation
	Montgomery Modular Multiplication
	Bit-level Montgomery Modular Multiplication
	Montgomery Modular Exponentiation Algorithm
	Chapter Summary

	Design and Implementation
	Pre-implementation: Verifying the Algorithm
	Implementation of Bit-level Montgomery Modular Multiplication
	Processing Element (PE)
	Formation of Bit-Level Montgomery Modular Multiplication
	Pipelined Adder
	Functional Block Diagram (FBD) 
	Algorithm State Machine (ASM) Chart 

	Implementation of Montgomery Modular Exponentiation
	Functional Block Diagram (FBD) 
	Algorithm State Machine (ASM) Chart 

	Chapter Summary

	Result and Discussion
	Hardware Test Based on Simulation
	Sample Parameters from OpenSSL 
	Simulation Result of Montgomery Modular Exponentiation 

	Area and Performance Evaluation
	Chapter Summary

	Conclusion and Future Work
	Project Achievement
	Recommendations for Future Works

	REFERENCES 
	Project Hierarchy 
	Files
	Flow summary of 128-bit RSA-8192 Coprocessor
	Fmax summary of 128-bit RSA-8192 Coprocessor
	Flow summary of 1024-bit RSA-8192 Coprocessor
	Fmax summary of 1024-bit RSA-8192 Coprocessor
	Flow summary of 8192-bit RSA-8192 Coprocessor
	Fmax summary of 8192-bit RSA-8192 Coprocessor




