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ABSTRACT 

 

 

 

 
 As a sustainable and renewable energy carrier, hydrogen is considered as a key 

future fuel to make the low carbon energy schemes present. In recent years attention has 

been given for conversion of waste materials, including plastics towards production of 

hydrogen. Studies in this field are important because it resolves numerous problems 

brought about by plastic waste. Polyethylene terephthalate (PET) is one of the major 

products of plastic waste which constitutes a major threat to the environmental 

conservation efforts and living organism. Phenol has been chosen in this study as a 

solvent for PET toward hydrogen production since phenols are unwanted liquid by 

product of bio-oil from the biomass pyrolysis process. This study is to investigate 

catalytic steam reforming of phenol with dissolved PET over bimetallic nickel-

palladium (Ni-Pd) supported on γ-aluminium oxide (γ-Al2O3), lanthanum oxide (La2O3), 

zirconium oxide (ZrO2) and zeolite (ZSM-5) for hydrogen production. The scope of this 

research was based on the catalyst characterization, catalyst testing, process parametric 

study and reaction mechanism. The PET dissolution was screened in various solvents, 

and it was found that phenol is the most suitable solvent for this study. The catalytic 

steam reforming was carried out on the PET-phenol solution using a fixed bed reactor at 

atmospheric pressure. Developing a highly active and stable catalyst for hydrogen 

production from the steam reforming of waste products was the aim of this study. 

Supported Ni/Pd was prepared by impregnation method and screened on the steam 

reforming process. Ni-Pd/Al2O3-La2O3 was found to be the promising catalyst, as it was 

able to obtain as high as 95.6% phenol conversion, 69.5% hydrogen selectivity and 

remarkable performance even after 36 h. An in depth study of Ni-Pd/Al2O3-La2O3 

catalyst was carried out from catalytic screening. Phenol concentration of 10 wt. %, 

temperature as low as 800 oC and total feed flow rate of 0.4 ml/min resulted in the 

highest hydrogen selectivity and highest PET-phenol conversion. Analysis on products 

composition indicated that steam reforming of PET-phenol generally produced aliphatic, 

high amount of aromatic compounds, together with moderate amount of cyclic 

compounds. The reaction conditions also led to alkylation of phenol by the reforming 

products from PET-phenol solution in the presence of the catalyst. Based on the product 

formation in the proposed reaction mechanism, free radical and carbenium ion 

mechanisms are of high chance to occur. In the parametric study five factors considered 

were temperature, feed flow rate of phenol+PET+water, N2 flow rate, phenol 

concentration, as well as concentration of PET solution, while the responses were 

phenol conversion (Y1) and hydrogen selectivity (Y2). The result from the parametric 

study indicated that all the main independent variables have a significant influence on 

the dependent variable of Y1 and Y2 with the range of 47.2-97.6% and 49-71%, 

respectively. The most effective parameters in this study were temperature of 800  oC 

and PET concentration of 7 wt. %. In conclusion, this study explored new thought 

toward useful product from waste plastic materials. It provides a promising clean 

technology, which employed PET waste and phenol in the catalytic steam reforming 

toward production of hydrogen. 
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ABSTRAK 

 

 

 
Sebagai pembawa tenaga mampan dan boleh diperbaharui, hidrogen dianggap 

sebagai bahan bakar utama pada masa hadapan bagi menjayakan skim tenaga karbon 

rendah. Sejak beberapa dekad yang lalu, tumpuan terhadap penukaran bahan buangan, 

termasuk plastik untuk menghasilkan hidrogen telah diberi perhatian. Kajian dalam 

bidang ini adalah penting kerana ia dapat menyelesaikan banyak masalah yang terhasil 

daripada sisa plastik. Polietilena tereftalat (PET) adalah salah satu daripada produk 

utama sisa plastik yang merupakan ancaman utama kepada usaha pemuliharaan alam 

sekitar dan organisma hidup. Fenol telah dipilih dalam kajian ini sebagai pelarut PET 

untuk menghasilkan hidrogen disebabkan ia adalah produk cecair sampingan yang tidak 

diingini dalam bio-minyak hasil proses pirolisis biojisim. Kajian ini bertujuan untuk 

mengkaji pembentukan semula wap bermangkin di antara fenol dengan larutan PET ke 

atas dwilogam nikel-paladium (Ni-Pd) yang disokong pada γ-aluminium oxide (γ-

Al2O3), lanthanum oxide (La2O3), zirconium oxide (ZrO2) dan zeolite (ZSM-5) untuk 

penghasilan hidrogen. Skop kajian ini adalah berdasarkan pencirian mangkin, ujian 

mangkin, proses kajian parametrik dan tindak balas mekanisme. Pelarutan PET dikaji di 

dalam pelbagai pelarut dan didapati bahawa fenol adalah pelarut yang paling sesuai 

untuk kajian ini. Pembentukan semula wap pemangkin dilakukan pada larutan PET-

fenol dengan menggunakan reaktor turus tetap pada tekanan atmosfera. Pembentukan 

mangkin yang aktif dan stabil bagi penghasilan hidrogen daripada pembentukan semula 

wap produk buangan merupakan matlamat kajian ini. Ni/Pd yang disokong pada 

penyokong disediakan melalui kaedah impregnasi dan disaring dalam proses 

pembentukan semula wap. Ni-Pd/Al2O3-La2O3 didapati sebagai mangkin yang paling 

berpotensi kerana ia mampu mencapai 95.6% penukaran fenol, 69.5% kememilihan 

hidrogen dan mampu bertahan walaupun selepas 36 jam. Satu kajian yang mendalam 

terhadap parameter proses pemangkin Ni-Pd/Al2O3-La2O3 telah dilaksanakan. 

Kepekatan fenol 10%, berat suhu serendah 800 oC dan kadar aliran suapan cecair 

sederhana 0.4 ml/min menghasilkan kememilihan hidrogen dan penukaran PET-fenol 

yang tertinggi. Analisa terhadap komposisi produk menunjukkan bahawa pembentukan 

semula wap PET-fenol umumnya menghasilkan alifatik, sebatian aromatik yang tinggi, 

dan sebatian siklik yang sederhana. Keadaan tindak balas juga menyebabkan alkilasi 

fenol oleh pembentukan semula produk dari larutan PET-fenol dengan kehadiran 

mangkin. Berdasarkan pembentukan produk didalam cadangan tindakbalas mekanisme 

radikal bebas dan ion karbenium adalah yang paling berkemungkinan berlaku. Dalam 

kajian parametrik, lima faktor yang dipertimbangkan ialah suhu, kadar aliran suapan 

fenol+PET+air, kadar alir jisim (ml/min) nitrogen, kepekatan fenol, dan kepekatan 

larutan PET, sementara sandaran adalah penukaran fenol (Y1) dan kememilihan 

hidrogen (Y2). Hasil daripada kajian parametrik menunjukkan bahawa semua 

pembolehubah bebas utama mempunyai pengaruh yang penting terhadap pembolehubah 

bersandar, Y1 dan Y2, dengan julat masing-masing 47.2-97.6% dan 49-71%. Parameter 

yang paling berkesan adalah pada suhu 800 oC dan kepekatan 7 % berat PET. Sebagai 

kesimpulan, kajian ini meneroka peluang baru untuk produk yang berguna daripada 

bahan buangan plastik. Ia menyediakan teknologi bersih, menggunakan sisa PET dan 

fenol bagi pembentukan semula wap bermangkin untuk penghasilan hidrogen. 
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CHAPTER 1 

 

 

 

 

1 INTRODUCTION 

 

 

 

 

 Background of Study 1.1

 

 

Depleting fossil fuels and environmental concerns has motivated the research 

for production of clean renewable fuel. As an ideal candidate for a clean and 

sustainable energy source, hydrogen has attracted notable research interest in recent 

years. Hydrogen has excellent safety record and can be transported, stored and used 

just as other numerous fuels [1]. In recent times, hydrogen is produced from sources 

such as water, coal gasification, acetic acid, natural gas, butanol, ethanol, methane, 

glycerol, bio-oil and naphtha catalytic steam reforming [2]. Not only has the 

development of hydrogen production as a renewable fuel keen a keen area of 

research, attention has also been given to conversion of waste materials to energy, 

including plastics [3, 4]. Studies in this field are of great importance because it 

resolves numerous problems brought about by plastic waste together with other 

forms of waste, especially after their consumption. 

 

 

Among different types of plastic, Polyethylene terephthalate (PET) is one of 

the main sources of packing materials such as bottles for mineral water and soft 

drinks all around the world. A major uniqueness of PET is its wide application as 

packaging material, especially in food industry. This is mainly due to its non-

hazardous nature to health as well as other living organisms. Even though it has no 

direct hazardous impact to environment, its percentage in the waste stream coupled 

to its low degradation makes it harmful [5]. One of the chemical methods used to 

recycle PET, is solvolysis, such as methoanolysis and glycolysis [6]. With the great 



2 

 

advantage that a portion of PET can be recycled straight to virgin PET [7], or to raw 

constituents [8] via chemical alteration techniques (such as glycolysis and 

hydrolysis), yet the main problem of recycling PET is that a considerably big amount 

returns to waste dumps. Consequently, any novel implementation or artificial use of 

waste PET would be a momentous relief to the surroundings [9] and this is one of 

the main emphasis of the current study. Therefore, generation of hydrogen from 

plastics is indeed a promising technology environmentally and economically [10]. 

 

 

Base on the realities that majority of the polymers dissolve into hydrocarbon 

combinations, co-processing unwanted polymers as part of the feed to standing 

processing plants, both thermal and catalytic, is a considerable attitude for the third 

reprocessing polymers. Since they are actually hydrocarbons of high molecular 

weight and that those methods are completely proven, they would not need 

significant practical amendment [11, 12]. The method that had been investigated in 

place of an explanation concerning plastic recycling is so-called 

dissolution/reprecipitation (DR). This method for energy recovery has several 

advantages over approaches similar to waste incineration and pyrolysis [13]. PET is 

considered as a momentous portion of the curbside mixture and indicates a 

significant recycling prospect [14]. 

 

 

However, as most studies in the polymer recycling process were carried out 

in batch reactors, there are some difficulties to apply the process such as continuous 

mode in polymer recycling industry. In order to achieve such development, polymer 

reforming has to be carried out in continuous process mode. Nonetheless, polymer 

waste in its solid waste is difficult to be fed into reactor continuously. Thus, there is 

a need to develop a method that enables smooth continuous feeding of polymer 

waste into the reactor, as there are many advantages associated with this process. 

Studies by previous researchers [15, 16] may serves as a possible solution to the 

mentioned problem. In their studies, the polymer is dissolved in compatible solvents 

to form solutions with reasonable viscosity. The polymer solution was then feed into 

the reactor to produce useful gas and liquid products using cracking/reforming 

process. However, such processes are very scarce in literature, and only limited to 
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small scale. Hence, it is necessary to investigate on catalytic reforming of polymer in 

larger scale. 

 

 

As regards to the processes, there are different processes for hydrogen 

production, namely: steam reforming (SR), coal gasification, auto-thermal reforming 

(ATR), dry reforming (DR), partial oxidation (POX), thermolysis, pyrolysis, and 

electrolysis, which show effective routes for hydrogen technology. Among these, 

steam reforming is the most studied route since it produces the highest hydrogen 

yield compared to other methods such as ATR, POX, and DR [17, 18]. 

 

 

In studies of catalytic steam reforming, phenol (C6H5OH) is often used as a 

model compounds. As an important constituent in the aqueous portion of bio-oil, 

(lignin-derived) phenol constitutes about 38% by weight [19]. Since PET is soluble 

in phenol, it has been selected in this study as a feedstock [20] which can make 

unique product that contains two main waste component (phenol as a solvent and 

PET as a solute). The phenols and phenolic compounds are not considered as fuels 

and they are corrosive to combustion engines. It can also be produced from 

renewable sources, like biomass via fast pyrolysis procedure and more breakdown 

phenolics [21]. 

 

 

Steam reforming of phenol to produce hydrogen has been investigated over a 

wide variety of supported metal catalysts such as Ni, Rh, Fe, Rh-Fe, CaO, Pt, Pd, 

and Rh [22-25]. Meanwhile, numerous studies have shown that support such as γ-

Al2O3, La2O3, ZrO2, MgO, and CeO2 also plays a critical role in the catalytic 

performance for hydrogen production from phenol steam reforming [22, 25, 26]. 

Matas Güell et al. found that Ni/K-La2O3-ZrO2 and Ni/CeO2-ZrO2 catalysts 

exhibited high activity in hydrogen production and good stability in phenol 

conversion [22]. However, the catalysts suffered in deactivation due to coke 

formation. Garbarino et al. studied ethanol and phenol steam reforming over Ni–

La/Al2O3 catalyst under temperatures between 500 and 750 °C, GHSV = 54000 h
−1

 

of a gaseous mixture with the following composition: 39.3% He, 54.6% water, 4.1% 

ethanol and 2% phenol [27]. Operating at 750 °C H2 yield was achieved with 82% 

and phenol conversion of 88%. 
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Among the catalysts, alumina (Al2O3) is the most commonly employed 

support in various thermal processes because of chemical and mechanical stability, 

low cost and high surface area for metal dispersion [28, 29]. The La2O3 and ZrO2 as 

support materials have displayed a great vital catalyst-support interaction [30]. 

Bimetallic catalysts such as nickel on Al2O3, ZrO2 and La2O3 have been used for 

steam reforming [31] which are able to suppress the formation of coke. In addition to 

Al2O3, La2O3 has displayed prolong ability as reported by many researchers [32-34]. 

Among the different metals, although noble metals have higher activity and stability, 

their high cost advises the use of catalysts with transition metals. Ni is one of the 

most used metal in steam reforming processes due to its lower cost and excessive 

available in nature as compared to other noble metals [35]. Nevertheless, it is 

commendable that noble metals such as Rhodium (Rh), Palladium (Pd), Ruthenium 

(Ru), etc. are resistant to coke formation even at high temperatures (>700 
o
C), thus 

provides prolong stability to catalyst [36-38]. It has been reported that co-loading of 

a small quantity of a noble metal to a non-noble metallic catalyst has significant 

effect on the overall catalytic activity and products selectivity [37, 39]. Recently, Pd-

based catalysts have been widely investigated due to its lower cost and high 

performance in comparison to Pt-based catalysts. Lot of research efforts have been 

dedicated to it, such as formic acid oxidation on Pd and Pd-based catalysts [40, 41]. 

A two-step decomposition of metal organic compounds and successive reduction 

with H2 on magnesia powder to prepare Pd–Ni core-shell nanoparticles has been 

reported by Sao-Joao et al. [42].  

 

 

In this study steam reforming of PET waste is the presented method that has 

designated for hydrogen generation. Based on prior studies, the literature to date on 

phenol steam reforming reaction is relatively limited and only a few studies have 

attempted to develop plastic recycling methods based on cracking reaction. In 

addition, no works has been issued on steam reforming of PET over supported Ni-Pd 

catalysts. In this study, a number of Ni-Pd catalyst supports, which are set by initial 

wetness impregnation technique, will be carried out. 
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 Problem Statement 1.2

 

 

The disposal of plastic waste has caused numerous problems to the 

environment as it does not degrade. Many methods have been proposed including 

polymer catalytic cracking (pyrolysis), DR method [13] and the usage of 

biodegradable plastic to replace the conventional plastic. However, the energy 

consumption of cracking process is very high, and its use in liquid fuels production 

is hardly justified. In addition, most studies on catalytic cracking of polymer have 

been conducted in batch process, which is difficult to be applied in polymer 

recycling industry. There is a need to develop catalytic cracking of polymer in 

continuous mode [15, 16], since such process is more scalable and suitable for 

industry requirements. Nevertheless, development of catalytic cracking of polymer 

in continuous mode is challenging due to the lack of comprehensive studies. In order 

to develop such process, the compatible solvent for PET has to be determined, due to 

its limited solubility in many solvents. The production of bio-degradable plastic is 

also under debate due to the competition of the process with food production. Hence, 

it is proposed to combine the dissolution and catalytic reforming of polymer waste 

into the energy. There is no study done on this process yet according to the open 

literature, hence a detailed study on the process is needed. The main problem of PET 

molecule recycling is that it cannot be recycled to soft drink bottles again due to the 

smell and hygiene; thus, dissolution of PET into suitable solvent to produce energy 

in a new way is yet to be studied. 

 

 

The high cost of catalyst is another major constrain to hydrogen production 

from phenol steam reforming process [23, 43-46]. Noble metals such as ruthenium, 

rhodium, palladium, iridium, platinum, and gold provide high hydrogen yield in the 

reforming reaction. However, the high cost of noble metals limited their further 

application. Accordingly, the search for non-noble metal catalysts with good activity 

and selectivity in the phenol steam reforming reaction would receive considerable 

attention. This will undoubtedly contribute towards making the process more 

economical, especially when reflected in terms of high and stable hydrogen 

production [47-49]. Nickel among non-precious transition metals shows good 

performances in steam reforming reaction. 
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Another problem is that phenol constitutes up to 38 wt.% of non-fuel product 

from pyrolysis of biomass in bio-oil production. Phenol is an attractive feedstock for 

hydrogen production as it is non-inflammable in nature and also water-soluble. 

Phenol is an unwanted, reactive and corrosive compound of pyrolysis oil and is not 

suitable for the internal combustion. Phenol also can be found in the industrial 

wastewater, for example from textiles and pharmaceuticals industry. Thus instead of 

producing carbon dioxide in the combustion or oxidation, converting phenol into 

hydrogen or employing phenol as a solvent for dissolving PET to generate new 

useful products can help to reduce greenhouse effect. Based on previous studies, no 

works on PET waste reforming over supported Ni + 1 wt.% Pd catalysts had been 

reported. In this study, several Ni-Pd catalyst supports, were carried out which may 

novel the study with improved catalyst as well as a new route towards hydrogen 

production. 

 

 

 

 

 Objective of Study 1.3

 

 

The detail objectives were divided into five, which are; 

 

 

a) to prepare and characterize the physical and chemical properties of the Ni and 

Pd supported on γ-Al2O3, La2O3, ZrO2 and ZSM-5. 

b) to perform catalyst screening on the prepared catalyst in a fixed bed reactor 

for the PET-phenol steam reforming. 

c) to carry out an in-depth study of the promising catalyst on the catalytic steam 

reforming of PET-phenol solution towards hydrogen production, feed 

conversion and liquid product composition. 

d) to propose a reaction mechanism of the PET-phenol steam reforming in the 

present of the catalyst, and 

e) to evaluate the significant and the interaction factors of the reaction 

parameter such as temperature, feed flow rate, mass flow, phenol 

concentration, as well as concentration of PET in phenol solution using 

design of experiment (DOE). 
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 Scope of Study 1.4

 

 

The overall scopes of this work are divided into six according to the 

objectives, and methodology as listed below. 

 

 

a) 10 wt.% (Ni-Pd) on different type of supports, γ-Al2O3, La2O3, ZrO2 and 

ZSM-5 were deposited using an impregnation method. The prepared catalysts 

were characterized by X-Ray Diffraction (XRD), the total surface area by 

BET, reducibility of Ni/Pd by temperature programmed reduction-hydrogen 

(TPR-H2), base properties by temperature programmed desorption-carbon 

dioxide (TPD- CO2), surface morphology and composition by SEM-EDX, 

and coke formation by thermagravimetry analysis (TGA). 

b) Prior to the preparation of PET-solvent solution, solvent screening was 

carried out using different pure solvents (phenol, methanol, hydrochloric 

acid, acetic acid, acetone, ethylene glycol, iso-octane, dimethyl benzyl amine, 

iso-propanol, dichloromethane, ethanol, xylene, toluene, benzene and sodium 

hydroxide) to determine the best solvent for dissolution of polyethylene 

terephthalate (PET). Phenol was the only solvent that easily dissolves PET at 

90 
o
C.  Fuctional molecules characterizations were also performed on PET by 

Fourier-transformed Infra-red (FTIR) spectrometry. 

c) The catalyst screening were performed at the temperature of 700 °C, 0.2 

gram of catalyst, total feed flow rate of 0.4 ml/min (specifically 

(water:phenol:PET) ratio of (1:0.107:0.003)), 3 wt.% PET solution and 1-9 

feed to steam ratio; in a fixed bed reactor operated atmospheric pressure. The 

liquid products were analyzed to obtain the conversion and product 

composition. In addition, the stability of each catalyst was evaluated in term 

on the conversion as of reaction time and rate of coke deposition. The PET-

phenol solution sample was prepared from the dissolution of PET in pure 

phenol, the bottles of mineral water was cut in different size such as; 0.3, 0.5 

and 1.0 cm
2
. 

d) An in-depth study in varying reaction parameters such as reaction 

temperature (600 to 800°C), amount of catalyst (0.1 to 0.3 g), feed flow rate 

(0.10 to 0.40 ml/min), concentration of phenol (10 to 30 wt.%), concentration 
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of PET solution (3 to 10 wt.%), mass flow rate (10 to 40 SCCM) was carried 

out for the optimal catalyst. Temperature programmed oxidation (TPO) and 

thermagravimetry analysis (TGA) analysis of coke for the used catalyst was 

also accomplished. 

e) Composition of the product was determined from scope (d) after performing 

catalytic reforming. The plausible mechanism was proposed for catalytic 

reforming of PET-phenol, based on the literature, compared to the 

composition of products, considering the effect of temperature and residence 

time. 

f) By using the selected catalyst, a parametric study was carried out on the 

catalytic steam reforming of PET solution in a fixed bed reactor. Two-level 

full factorial design was generated using Minitab® for this purpose. The 

factors studied were temperature (600-800 
o
C), total feed flow rate (0.1-0.4 

ml/min), mass flow (10-40 SCCM), concentration of phenol (10-30 wt.%) 

and concentration of PET into solvent (3-7 wt.%), while the responses were 

feed conversion and hydrogen selectivity. 

 

 

 

 

 Significant of Research 1.5

 

 

In the literature, a few works discussed on recycling of PET via dissolution 

method and no study has been worked on catalytic steam reforming of PET toward 

production of useful energy. Whereas in this study, the performance of different 

supported Ni and Pd catalysts in PET reforming reactions were studied in details. 

Due to the numerous problems brought by the plastic waste, it is important to 

determine an effective method to handle them when disposed. Although extensive 

studies had been performed on catalytic cracking of plastic waste, it is still not ready 

to be adopted in the plastic waste recycling industry, due to many limitations that 

have not been solved yet. Some of the limitations include the storage and separation 

of plastic waste prior to the recycling process, process efficiency in term of energy 

consumption and waste conversion, and the difficulty to scale up the process into 

continuous process, due to clogging problem. Therefore, the new method, combining 

polymer dissolution and catalytic steam reforming in continuous process, is 
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suggested in this study as a solution towards plastic waste recycling. In addition, 

PET ascribed as the main packaging waste materials in the environment and since it 

contains high hydrogen content, it could be of great importance to use this plastic in 

order to handle an environmental concern towards value product of hydrogen. 

Palladium and nickel were the widest used transition metals for various steam 

reforming reactions, and both were suggested as appropriate materials because of 

their maximum catalytic performances. However, the detailed comparisons of Ni and 

Pd over M (M= γ-Al2O3, La2O3, ZrO2 and ZSM-5) catalysts in terms of catalytic 

behaviors in PET reforming reactions have not yet been officially published 

anywhere. Thus, catalytic behaviors of these different supported transition metals 

catalyst in steam reforming of PET-phenol solution are aimed in this study. 

 

 

In addition to catalytic behaviors, the performance of hydrogen production 

from PET-phenol steam reforming reaction can be affected by many issues. Thus, it 

is important to use a method such as design of experiments (DOE) in order to 

decrease the number of experiments and to simplify the description of the significant 

operation conditions [50]. Moreover, in order to explain the products formation, as 

well as the effects of different parameters in catalytic reforming of polymers, 

proposing the possible reaction mechanisms could be significant as there was lack of 

research study in the literature. The study would benefit in a number of particular 

areas in terms of processing, such as a reduction of energy consumption and 

expenses of the catalyst, as well as the feed usage. The catalyst in this work (Ni with 

the addition of only 1% Pd) has a lower cost compared to the noble metal such as 

ruthenium (Ru), rhodium (Rh), platinum (Pt) and iridium (Ir). The study would be 

qualified to prepare a thought on reducing the catalyst to rise the hydrogen 

generation besides feed conversion. To the best of our knowledge, no study is 

reported in the open literature using a combination of polymer dissolution and 

catalytic cracking/reforming of PET to generate hydrogen, the result from this study 

is expected to expand the frontier of knowledge in the field of plastic waste recycling 

in the globe. 
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 Thesis Outline 1.6

 

 

This thesis consists of five chapters. Chapter 1 states the research 

background, problems, research objectives, scopes and significance of research. 

Chapter 2 discusses the literature review including background knowledge on 

catalytic steam reforming of phenol, DOE, analysis techniques that are commonly 

used for characterization purpose in catalytic reforming, recent development for PET 

recycling and proposed reaction mechanism. Chapter 3 describes the experimental 

setup and the procedures followed during the research work which includes catalyst 

preparation, characterization methods on fresh and used catalyst, feed preparation, 

analysis of gas and liquid products, study on effects of reaction parameters towards 

process performances and products compositions as well as parametric study (DOE). 

Chapter 4 provides the data processing and discussions on the results, such as 

preparation and characterization of catalysts, preparation of feed for catalytic steam 

reforming reaction using dissolution technique and catalytic screening for 

performance and stability of the optimal catalyst, followed by proposed mechanism 

on catalytic reforming of dissolved PET into phenol as well as reducing the number 

of experiments using DOE. The conclusion from this research and the 

recommendations for future study is presented in chapter 5. 
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